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We consider the small separation asymptotic expansions of the Casimir interaction energy and the
Casimir interaction force between two parallel cylinders. The leading order terms and the next-to-leading
order terms are computed analytically. Four combinations of boundary conditions are considered, which
are Dirichlet-Dirichlet, Neumann-Neumann, Dirichlet-Neumann, and Neumann-Dirichlet. For the case
where one cylinder is inside another cylinder, the computations are shown in detail. In this case, we
restrict our attention to the situation where the cylinders are strictly eccentric and the distance between the
cylinders d is much smaller than the distance between the centers of the cylinders. The computations for
the case where the two cylinders are exterior to each other can be done in the same way and we only
present the results, which turn up to be similar to the results for the case where one cylinder is inside
another except for some changes of signs. In all the scenarios we consider, the leading order terms are of
order d~7/2 and they agree completely with the proximity force approximations. The results for the next-
to-leading order terms are new. In the limiting case where the radius of the larger cylinder approaches
infinity, the well-known results for the cylinder-plate configuration with Dirichlet-Dirichlet or Neumann-

Neumann boundary conditions are recovered.
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L. INTRODUCTION

Recently, there has been an increasing interest in the
Casimir effect from both the theoretical and the experi-
mental sides [1]. Before the turn of this century, the theo-
retical studies on the exact Casimir effect were mostly
restricted to simple geometries such as parallel plates,
spherical shells, and cylindrical shells. However, these
geometric configurations pose a certain degree of difficulty
for the experimental verification of the Casimir effect,
such as the difficulty in achieving parallelism. As a result,
experimentalists favor other configurations, especially the
sphere-plane configuration. However, in the last century,
one has to rely on the proximity force approximation to
estimate the Casimir force between such configurations,
which hampers the determination of the experimental ac-
curacies. To circumvent the problem, intensive activities
have been carried out to research for theoretical methods to
determine the Casimir interactions between two or several
objects beyond the accuracies afforded by the proximity
force approximations. In the last decade, a number of
methods have been developed, which include the semiclas-
sical approximation [2,3], the optical path method [4-6],
the worldline approach [7-10], the functional determinant
or the multiple scattering method [11-20], and the exact
mode summation method [21,22]. Using the multiple scat-
tering method, one can in principle write down a functional
for the Casimir interaction energy between two or several
objects. Nevertheless, it should be mentioned that the mode
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summation approach can also lead to the same result,
although this latter method has only been applied to the
configuration of two eccentric cylinders.

In principle, using the various methods mentioned
above, one can compute the magnitude of the Casimir
force numerically. However, the accuracy is always sub-
jected to the computing capacity of the computer, espe-
cially when the separation between the objects is small,
which is of more interest for comparison to experiments.
On the other hand, to determine the dependence of the
Casimir force on various parameters of a configuration,
one usually has to assume a priori the form of the
dependence on the parameters and determine the coeffi-
cients that fit best for that particular form. These coef-
ficients are subjected to numerical errors and it is not easy
to justify the accuracy of the results. Therefore there is a
call for analytically computing the asymptotic expansion
of the Casimir force when the separation between the
objects is small. For the cylinder-plate and the sphere-
plate configurations, the first corrections to the proximity
force approximations have been computed analytically in
[11,23-25]. Although the configurations of two cylinders
and two spheres are among the popular ones whose exact
Casimir interaction energies have been derived using the
multiple scattering approach or the mode summation
method [12,14-22,26-28], analytical studies on the cor-
rections to the proximity force approximations for these
configurations are still lacking. The purpose of this article
is to address this problem for the configuration of two
cylinders. The results would be compared to the results
for the cylinder-plate configuration which is a special
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case where the radius of one of the cylinders ap-
proaches infinity.

In [28,29], some experimental setups have been pro-
posed to measure the Casimir interaction force between
two eccentric cylinders. It was argued that the cylindrical
configuration has some of the experimental advantages of
both the parallel planes and the sphere-plane configura-
tions. It can lead to favorable conditions to search for extra-
gravitational forces in the micrometer range and for the
observation of finite-temperature corrections. These latter
subjects have been explored for the cylinder-plane con-
figuration in [30-33]. In view of this, the cylindrical con-
figuration is becoming increasingly important in the study
of the Casimir effect. It is timely to do an analytical study
on the strength of the Casimir force when the separation
between the cylinders is small.

In this article, we consider the case where one cylinder is
inside another, and the case where two cylinders are out-
side each other. The functional determinant representations
of the exact Casimir interaction energies have been derived
in several places, such as [20-22,34-36] for the case of one
cylinder inside another, and [1,20,35,36] for the case of
two cylinders exterior to each other. Using this formulas,
we compute analytically the first correction to the prox-
imity force approximations. In the case of one cylinder
inside another, the roles of the two cylinders are not sym-
metrical. We explain the computations in detail for this
case. The computations for the case of two cylinders out-
side each other can be done in the same way and we only
present the results.

Throughout the paper, we use the units with 7 = ¢ = 1.

II. PROXIMITY FORCE APPROXIMATION OF
THE CASIMIR INTERACTION BETWEEN
TWO PARALLEL ECCENTRIC CYLINDERS

As shown in Fig. 1, we consider two parallel cylinders of
length L and radii a and b, respectively. The cylinder of
radius a lies inside the cylinder of radius b. Denote by o

A

(b cos ©, bsin )

D
\2

FIG. 1. The cross section of two eccentric cylinders.
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the separation between the centers of the cylinders, and d
the distance between the cylinders. Clearly, we have § =
b — a — d. In this article, we assume exclusively & > 0;
i.e., the cylinders are not concentric. The concentric case
has been considered in [28,37,38]. For the boundary con-
ditions on the cylinders, we impose Dirichlet or Neumann
boundary conditions. In the following, we will denote the
boundary conditions by XY, where X = D (Dirichlet) or N
(Neumann) is the boundary condition on the cylinder of
radius a, and Y = D or N for the cylinder of radius b.

In this section, we use the proximity force approxima-
tion (PFA) to obtain the leading term of the Casimir
interaction force between the two cylinders when
d < 6 < b — a. Notice that the radii a and b are fixed
parameters, whereas the distance between the cylinders d
is a variable.

First, recall that the Casimir interaction force per unit
area on two parallel plates separated by a distance H is
given by

2

) = =~ G557z

(D

if the two plates are both imposed with Dirichlet boundary
conditions or Neumann boundary conditions. If one plate is
imposed with Dirichlet boundary condition and one plate is
imposed with Neumann boundary condition, the Casimir
interaction force density is —7/8 times of (1), i.e.,

z 7 _ 72
8 480H* 3840H*"

I (@) = )

Using PFA, we have to integrate the Casimir energy den-

sity F gas (H) over the area of one of the cylinders, with H
being the distance from a point of the integrated cylinder to
the other cylinder. Here we choose to integrate over the
cylinder of radius 4. The integration over the length of the
cylinder is trivial. Using polar coordinates, we find that
the shortest distance from the point with parameter 6 (see
Fig. 1) to the cylinder of radius a is

\/(bcosﬁ — 8)2+ (bsind)? —a=vb*+ 8> — 2bScosf — a.

Then for the DD or the NN case, the PFA for the Casimir
interaction force between the cylinders is

prra — _TbL (7 ! 6.
® 240 Jo (\/b2 + 82 — 2bS cosh — a)4

Making a change of variables

Vb + 82 —2bScosh — a
u= y ,

we find that
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3_b2+52_(du+a)2
cos 55 ’
. Vab28% — [b> + 82 — (du + a)’?  Jdu — 1)2a + du + d)[(2b — a — d)> — (du + a)*]
sinf = _ |
2bé 2b6
b sinf
du=——"""_
“ ddu+ a)
and thus
PFA = — mbL (Cb-a)=d/d) d(du + a) 2 du
Cas 240 J4 At Vdu —1D)Q2a + du + d[2b — a — d)? — (du + a)?]

In the limit d — 0, we find that the leading order term of
the PFA is

T et e W)
240\2(b — a)d"? J1 u*
mJabL

= — ) 3
768y2(b — a)d’/? ©)

For two perfectly conducting eccentric cylinders, the prox-
imity force approximation to the Casimir interaction force
is twice that of (3), corresponding to the sum of the TE
(which is equal to NN) and the TM (which is equal to DD)
contributions. This has been obtained in [29].

For the DN or the ND case, one just has to multiply (3)
by —7/8 which gives

FPEA 7 JabL

as : (4)
6144200 — a)d'?

III. THE FORMULA FOR THE EXACT CASIMIR
INTERACTION ENERGY BETWEEN THE
PARALLEL ECCENTRIC CYLINDERS

The exact Casimir interaction energy between two
eccentric cylinders has been derived in [21,22,34] using
mode summation approach and in [20,35,36] using scat-
tering or functional determinant method. The Casimir
interaction energy can be represented as

L 00
.o [0 £Trn(1 - M(E)E (5)

where M is an o X oo matrix with elements M,,,, —o0 <

m, n < oo,

(e - 2 ,,2,0 Kp((:g pn (3O, (3€),
N = ) ,,iw ey hren 0601, (50)
MRNO) = 0 3 iy e 06, (00
R = el s MUY, snr, 0. ©

Ky(ad) &=, 1,008)

In these formulas, 7,(z) and K, (z) are the modified Bessel
functions of first and second kinds, respectively. Recall that
the dependence on the distance d between the cylinders is
encoded in the variable 6 = b — a — d. From (6), we
notice that the terms dependent on d, I,_,,(8&)1,_,(5¢),
are identical for the four combinations of boundary con-
ditions. The factors /,,_,,(6¢) and I, _,(6&) actually come
from translation formulas.

Expanding the logarithm and taking the trace in the
formula (5), we find that the Casimir interaction energy
can be evaluated as

L o0

Jo*—°°
X Z Mjojl (f)
Js=—00

Alternatively, one can also use the identity Tr In= Indet to
write the Casimir interaction energy (5) as

ECas =

M; ; (&)dE. (7)

S [ emdent - m@nae. )
T Jo

In principle, the magnitude of the Casimir interaction
energy can be evaluated with the help of a computer.
When the separation between the cylinders d is much
larger than the radius a of the smaller cylinder, one can
in fact determine analytically the dominating term of the
Casimir interaction energy from (7), since in this case,
the dominating term is the term with s =0 and j, = 0.
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In the opposite limit where d < a, b, which is of more
experimental interest, even the numerical computation of
the magnitude of the Casimir interaction energy or the
Casimir interaction force poses a great challenge since
one has to take the matrix M with larger size in (8) for
convergence. Some numerical results have been discussed
in [39] for the special cases of quasiconcentric cylinders
(where 6 < a), concentric cylinders (where 6 = 0), and
the limiting case of a cylinder in front of a plane (where
b — ). In the following, we will use an analytical ap-
proach to compute the leading order term and the first
order correction term of the Casimir interaction energy
and the Casimir interaction force when d < a, b. In
addition, we also assume that d < b — a. However, we
do not make any assumption about the relative sizes of §
and a. As mentioned above, we assume exclusively that
6 #0.Infact,d < b — aimpliesd < 6 and 6 ~ b — a.
The method we use is similar to that used in [11,40] for a
cylinder in front of a plane and in [23,24,41] for a sphere
in front of a plane. Compared to the case of a cylinder in
front of a plane discussed in [11,40], the main complica-
tion here is the summation over p that appears in the
matrix elements M,,, (6).

o0
[o )

Eew == 47T(b—a)zzs+1/o @ Z

Jo=—00

where Amn;p(a)) = mn p(w) mn; p(a))’

l(aw) K,(Bw)

-

L(aw) K,(Bw)
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IV. ASYMPTOTIC BEHAVIOR OF THE CASIMIR
INTERACTION ENERGY AND THE CASIMIR
INTERACTION FORCE OF THE ECCENTRIC

CYLINDERS AT SMALL SEPARATION

Define the dimensionless parameter

a
b—a

a =

and the dimensionless variable

Let

We are interested in the asymptotic behaviors of the
Casimir interaction energy and the Casimir interaction
force when & << 1. Making a change of variables & =
w/(b — a) in (7), we find that the Casimir interaction
energy can be rewritten as

(w)dw, 9)

o0
Z Aloh 170

]:/0 Ps

I(aw) K,(Bw)

Buno(@) = ¥ o) T,Bo)' 2@ = K1 () T(B)”
 I(aw) K,(Bw) B )
Bglr?p(w) - K;n(aw) I:(Bw) ’ Tmn;p(w) - Ip—m((l

el ((1

By (w) =

K, (@w) Tj(Bw)’ w0

—&)w).

To find the first two leading terms of the Casimir interaction energy, one can replace the summations by integrations, i.e.,

L i 1 0 ] 0 S s s .
Ecy ~ — 5> [ a)f f [TA5. 0@ [1dr:[1diide. (11)
dm(b —a)* s+ 1 Jo —oo —o0 iy e
(2s+2)times

with the understanding that j,.; = jo.

Using Debye asymptotic expansions of modified Bessel functions [42], one finds that A

(w) has an expansion of

the form e
A
Ay (@) = = o exp(vn(w) + vrn(w,) — 2v3m(w;) + van(wy)
n Vs”fl(ws))(l n z,(t(w})) i z,(t(wy)) ZZb(l‘(w3)) n Ui (Hwy)) n M1(1(w5)))’ (12)
Vi vy V3 Vy Vs
where
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aw
Vg = V3 = Vy, Vs = V3 = Py, w1=v—l,
(1-8w
w5 = —"—; i) =VvI+2Z2+In—F-o
Vs 1 +4/1+ 72

ADD — DN — vy 1+ a)1 )1/4
V2V4V5\(1 + w%)(l + w%)(l + ws) ’

2

ANN — ZND — V2 I+ w3

z.(t) = u,(¢) [or z.(¢t) = v, (¢)] if the cylinder of radius c is
imposed with Dirichlet boundary condition (or Neumann
boundary condition), with

563 — 3t (1) = 76 — 9t
24 U 24

The plus or minus sign in (12) depends on the boundary
conditions. For DD or NN boundary conditions, we have
the plus sign, whereas for DN or ND boundary conditions,
we have the minus sign.

When the variables v, v,, v3, w, € vary, the function

u () = —

vin(wy) + vyn(wy) — 2v3n(ws) + van(w,s) + vsn(ws)

is always nonpositive. It achieves the maximum value of 0

when v, = v,, e =0, and
V3 = —Vl = —V2.
a a
In that case,
aw
(1)1:&)2:(()3:(1)420)5:—.
vy

This suggests that in (9), we can rename j, as m, and

introduce new variables ny, ..., ng, qo, - - -, g, so that
ji=m+ n, l1=i=<s,
_B ,
pi__(2m+ni+ni+])+qi, Oﬁlﬁs,
2a
By a further substitution
mv1 — 72
©0=—-",
aTt
we find that
Ec, ~
Cas 27761
(2s+1)t1mes
s s s dT
X l_[ Am+n,<,m+n,»+];p,»(w(7)) l_[ dqi l_[ dnidm?’
i=0 i=0 i=1
(13)

with the understanding that ny = ny, = 0.

1/4
V1V4V5\(1 + w%)(l + w%)(l + w5)> ’
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aw Bw (1-8)w
a)2=—’ a)3=_, a)4=—’
Vy V3 Vy
1
Hz) = —;
V1 + 22
[
With
V1=m+n,~, n2=m+n,-+l,

B
vy = Z(Zm +n; + nivy) + qi

and treating n;, n,.y, q;, and & as perturbed variables,
one can easily deduce that v;n(w;,) + vyn(w,) —
2v3n(ws) + vam(wy) + vsn(ws) has a perturbative ex-
pansion of the form

vin(w) + vyn(wy) — 2vsn(ws) + van(ws) + vsn(ws)

~ Z Z elm' kG (ny, iy, q) H i (7), (14)
k=0 j=0

where Gy;(n;, n;11, q;) is a homogeneous polynomial of
degree k in n;, n;.;, q;- The terms with (k, j) = (0,0)
and (k, j) = (1, 0) are identically zero. The leading terms
are —J)(;, where

2em BT a’qit
M= —— +"—(n; —njy)* +—=—
aT 4m mp
—— 4 ~ 4
(k,j)=(0,1) (k,j)=(2,0)

comes from the terms with (k, j) = (0,1) and (k, j) =
(2,0). This implies that the leading contribution to the
Casimir interaction energy comes from m~ g~ !, n;,
Nivy, q; ~Jm~ e~/ Hence, the (k, j) term in (14)
is of order &/**/271 To keep everything up to order &,
we need the terms in (14) with j + k/2 = 2. With the

help of a computer, we find that up to terms of order &,

vin(w,) + van(w,) — 2v3n(w;) + van(w,y) + vsn(ws)
-~ _EDEI' + ?11 + %i,

where 2; and ‘B; are terms of order /e and & given,
respectively, by
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(o + 2)% 2q7(n; + niyy) | a’q; B(n; + njw)(n; — nipy)? (n; + n;yy)
A = _2< 352 28 + 4 (n; = nipy)* + 3 ) - 87'(2%' + —a )
5 — 37— 1) (a4(a2 +3a +3)qt | &’(a+2)(n; + niv))qi " a?qi((a® + a)(n; — njyy)* + (n; + njsy)?)
’ 3 1283 62 83

n a?qi(n; + np)(n; — nigy)? n B n,
8 192

”i+1)2((a2 —a)(n; —

nig1)? + Tn? + 10n;n;4, +7”z+1))

aq? + qi(n; + i) +

_er(l - 7'2)<

In the same way, for ‘A, one finds that

(a*(n; = nj1)* + (n; + ni+1)2)> _&'mr
4a ’

a

A~T1+6+9),
m

where €; and D, are, respectively, terms of order /e and & given by

2
-
CPP = _Z(ach + nis1),

DL = g(1 — 72)

a’@?r* (3 — 1) agq7’
* 2m? a 2m? ({n;
+272(n? — 2nniyy

in the DD case. The DN case is the same as the DD case,
and the NN or ND case can be obtained from (15) by
interchanging n; and n, . Finally, one can check that the
leading term of

z2(1(@))) | z(1(@3)) ) 2 (1(@3))
131 Vy V3
L mtwy)) | (t(ws))
Vy Vs

is of order . Denote by §; the leading term. In the DD
case, it is given by

I+ a+ a?)r(57% — 3)

DD _
& 12mp ’
whereas for the NN, DN, and ND case, we have
- (7?2 —1) ar(? —1)
aN =g+ T v g TR,
mf3 Bm
Tt — 1)

FND — DD 4 7(7?

Notice that ; does not depend on n;, n;,;, and q;.
Collecting the terms, we find that

eXp(—Emi + QII + %l)

aT
Am+n,»,m+ni+1;p,-(w(7)) ~=* 2am

~ arT
XA+C+D)0 +F)~*=5—
27m

where &, and §; are, respectively, terms of order /€ and &
given by

®, =0 +C, o= %91,2 FUGC, + B, + D, + 5,

+ nyy) = 275(n; + 2n0)

e V(1 + G+ 9)),

2
- W(az(l - 27'2)(”1' - ni+1)2

—5n2,,) — n? 4+ 2nn;y +302,), (15)

Substituting into the Casimir interaction energy (13), we
find that up to first order correction term,

as+1L 0 ( 1))((s+1)
Ecas ~ =5 5122 [ Yzfm -
25T T ea s+ 1

s=0
X /00 joo exp(—i%,»)(l + i@ﬁi
J® —% i=0 i=0
(254 1)times
+ Z Z ©,6; + Z@,)]‘[dq,]'[dn dmdr.
i=0 j=i+1

Here y = 0 for DD or NN boundary conditions, and y = 1
for DN or ND boundary conditions. The leading order term
of the Casimir interaction energy is

oSt ( I)X(s+1) .,
E(()?as == 2.9+27Ts+2a2 o s+1 / ] m
Xfw fw exp(—z,ﬁm,-)
J — i=0
(2s+1)times
X l—[dq,»l—[dn,-dmdr. (16)
i=0 i=1

The integrations of the term
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of order /& over n;, n;\,, q; give zero since this term is
odd in either ¢;, n;, or n;y;. Thus the next-to-leading
order term is

as+1L 00 ( 1))((&+1)
B - - [l [
as 2s+277.s+2a2 k s+ 1

] - exp( ZEDB)(Z 3 60,

i=0 j=i+1

(2s+1)t1me§
+ i@i>ﬁdqiﬁdnidmdr, (17)
i=0 =0 =1

which is of order & smaller than the leading order term.

Let us first consider the leading order term (16). It is
straightforward to compute. Integrating over ¢;, 0 = i = s,
first, we have

R

S+1)t1mes
B 7T((S+1)/2)m((s+1)/2)ﬁ((s+1)/2)
B asH1AG+D/2)

5 e

i=0

For the integrations over n;, 1 =i = s, since [11]

1 2 3 2 \2
Z(" = niy)? —2<”1 ——n2) "‘5(712_5713)
s+ 1
+
s

f°° o A=) gy = ‘/§ for any x,, (19)

integrating in the order n; — n, —

00 00 S T
f f exp(—zé'fi(n,-—
—o00 —00 i=0 m
v
stimes

257Ts/2ms/2

- BA‘/Z N

n?, (18)

and

.. — n, gives

"i+1)2> ﬁ dn;
i=1

Therefore,
o B & (D
Cas = 43242 s+ 1)3/2
[ T (5/2)[ m3/ ( 2s + l)sm)dde
3 5/2 L 1)((s+1)
__ SelVBL § (DT ] dr.  Q0)
 642mdle 5/2 = (s + 1)

Using the fact that

PHYSICAL REVIEW D 84, 065027 (2011)
R N S
S(s+1)* 90 (s +1)* 890 720’

we find that for DD or NN boundary conditions the leading
order term of the Casimir interaction energy is

773\/EL
EOCas = — , 21

19204/2(b — a)d*/?

whereas for DN or ND boundary conditions,

773 \/EL

E? s = . (22)
15360420 — a)d®?
For the Casimir interaction force, one then obtains
3JabL
Fo, = —— ¢ (23)

S 76826 — a)d'?

for DD or NN boundary conditions, and

7 3\/ bL
Fly=— 8 (24)

61442(b — a)d"/?

for DN or ND boundary conditions. The leading terms of
the Casimir interaction forces (23) and (24) agree com-
pletely with that derived from proximity force
approximations.

For the next-to-leading order term (17), we integrate first
with respect to ¢; using the formulas

o , 0, if j is odd,
f q"e*’\q dq = F(’H (25)
—o0 if j is even.

AGTO2)

A straightforward computation gives

((s+1)/2) 0 [ (s+1)
L~ B IPL (=¥ -9/
s 2s+277.((.s+3)/2)a2 s+ 1 0
f (=972 [ f ( 2(s + Dem
aT
stlmes
s ,B’T s—1 s A 5. A
- 24—(’71 - ni+l)2>(z Z (Sji(sij + Z‘@l)
= 4m i=0 j=i+1 i=0
N
X l_[ dn;dmdr, (26)
i=1
where
A a\/T © aZQzZT ~
©, = =B ) exp(— mp )651'61611',
2 a\/T o0 a’ 2
‘@l = € p( )‘Sz)l ql
Tmf J-w

The term chi can be decomposed into two parts:
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D=8+ &

where ; is as before and is independent of n; and n,, .
The explicit expressions for (&; and §&; are given in
Appendix A. They are functions of n; and n;, . Let

N C N

i 25 73/2 1512

Xfoo foo exp(—
— 00 — 00

stimes

o BTN

ij 28 - s/2 s/2

Lo L2

mmes

N ﬂT _ N S
IZOE(’% ”i+1)2)@iilj[ld”

—(’l i+1)2)®i@jnd”p
i=1

SZmT(S +1)

BS,DD —
3a’p
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and
s s—1 s
B =>L+Y > I
i=0 i=0 j—i+1
so that
VBL & (-1
EICas T 4322 Z 3/2
4mlca® S (s + 1)
% f QLY ] > m3/2exp<_w)3sdmdr
0 0 arT
(27)

The integrals I; and J;; are Gaussian and can be inte-
grated in exactly the same way as in [11], which we explain
in Appendix B. For the DD case, we find that

(s + 1> +3a +2) + i([(s + 12 + GBa +2)]7? + [~2(s + 1)? + 32 — 1])

T([ 7(s + 1)> + 3a + 2]72 +4(s+1)2+a —a—l)

168m(s + 1)

DD
=&, and

For the DN case, since &N

at(t? — 1)

Bm

SDN _ &DD | DN _ DD _ &DD _
&?i =i T 7= gji

’

we find that

als + Dr(72 — 1)
Bm '

For the NN case or the ND case, G} = G} and @3N =
SND can be obtained from (SDD and $tPP, respectlvely, by

1nterchang1ng n; and n;y;. As explalned in our previous
work [40], these imply that J;; NN = =J5 ND — jsPD - and

S—j,s—i

BX,DN — BS,DD —

2
T(r — 1
[P — 3PP 4 N op _ oo (T~ 1) )
mp
2
ND DD pp . T(TF—1)
[P = 300 + FND — FPD = [P0 4 —

Hence,

(s + Dr(72 = 1)
mp

:BS,NN — BS,DD + R (28)

(s + Dr(r2 = 1)

B sND — RBsDD 4 29)

We notice that the change in B* due to the change of
boundary conditions only comes from the term involving
u;(¢) and v,(?) in the Debye asymptotic expansions of the
modified Bessel functions and their derivatives.

Now, it is easy to perform the integration over m and
7 in (27). We find that in the DD case,

FLDD _ 3+/abL i 1
Cas 64\/§7T(b _ a)3/2d3/2 s:O(s + 1)4
| 2 24—
Xf ((24a+16)7' +7a* — « 3)0]7
0 12ap
- 3vabL i 1 ( 7,7 )
6427 (b — a)32d3? S (s + 1)*\12  36ap
~ mWabL ( 7
19203/2(b — a)d¥/>\12(b — a)

N 7(b — a))‘
36ab

(30)

In the NN case, (28) implies that

065027-8
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L & 1 1 S 2(s + 1 + (2 =1
Elczll\iN E(lng VB LT_(S/Z)L m3/zexp(— (s )8m>(s )7(T )dde

41320 S (s + 1) aT mp

O e 1)4<12 36aB  9ap 1)2)

m\abL ( 7 [7 40]b—a) an
1920,/2(1; —a)d3/2\12(b — a) 3a) ab )
Here we have used the fact that
Z 1)2 "6

For DN and ND boundary conditions, the summation over s is alternating in sign. Using
S G
S(s+1)72 127

we have
3JabL 1) 7
EPN = Vab Z ) 4< + +—(s + 1)2)
6427(b — a)¥2d®? & (s + 1)*\12  36aB 9B
7m3\JabL ( 7 L7 b—a+ 160 1) 32)
15 360y2(b — a)d¥/2 \12(b — a) 36 ab 2172 b)
Finally, for the ND case, it is easy to find that
IND _ Tm3JabL ( 7T b—a 160 1) (33)
€ 153605200 — a)d®/2 \12(b — D36 ab 204 a)

Combining with the leading terms, we find that the asymptotic expansions of the Casimir interaction energies are given,
up to the first corrections, by

3./ _
E2D ~ — ™ JabL (1 + d[ LG a)] + )
‘ 19204/2(b — a)d*/? 12(b —a)  36ab

3 -
B - L (T (1)) )
‘ 19202(b — a)d®? 12(b —a) \36 37*) ab

3 _ -
EDN 7mabL (1 +d[ 7 Tb—a) 16021 +)
" 1536042(b — a)d/? (b—a)  36ab  217* b
Tm3\JabL 7 7(b — 160 17
END ~ ' Vab (1+d[ Jb—a) S~ +) (34)
1536042(b — a)d*/? 12(b —a)  36ab 217" al
For the Casimir interaction forces, we then obtain
3 _
FoD - — m\JabL (1+d[ 710 a)]+m)’
7682(b — a)d"/* 200b —a)  60ab
FAN ~ — VabL (1 + d[—7 + (l - i>—a- + >
Cas 5 R B
768206 — a)d"/? 20b —a) \60 @*) ab 35)
FDN Tm3JabL (1+d[ 7 +7(b—a)+21-+m)
61444206 — a)d’? 2006 —a)  60ab 77 b ’
3 _ -
D 7m3JabL (1+d[ 7 (b a)_3_221 +)
614426 — a)d"? 20(b — a) 60ab T a

065027-9



L.P. TEO

From these, it is easy to see that if the smaller cylinder is
imposed with Dirichlet boundary conditions (the DD or
DN case), then the proximity force approximation under-
estimates the strength of the Casimir interaction force.
However, if the smaller cylinder is imposed with
Neumann boundary conditions, then the proximity force
approximation may overestimate or underestimate the
strength of the Casimir interaction force depending on
the relative sizes of the two cylinders. Numerically,

7 (7 8 )b —a
RIS B
20b —a) \60 2] ab
0.6939(b — 0.4985a)(b — 2.0059a)

ab(b — a) ’
7 n 7(b — a) 32 1
20(b — a) 60ab 71 a
0 3465(b + 0.1815a)(b — 1. 8549a)
B ab(b — a)

Therefore there is a critical ratio of b/a over which the
proximity force approximation overestimates the strength
of the Casimir interaction force.

An interesting limiting case to study is the cylinder-
plate configuration which can be achieved by taking the
limit b — oo. In this case, we find from (35) that the first
two leading terms of the Casimir interaction force are
given by

CPDD __ _ m\JaL ( + )
Cas 7682d7/? 60 a

popNy . mfal m\JaL ( [7_8]d+ )

Cas 768\/5617/2 77.2 a

v TV (T d )

6144/2d7/> 60 a
T \JaL 7 32 7d

FCP’ND~4(1+[———]—+...). 36

Cas 6144+/2d7/> 60 77 ]a (36)
The results for the DD case and the NN case have been
obtained in [11]. However, to the best of our knowledge,

the results for the DN and the ND case have not been
obtained before.

V. TWO PARALLEL CYLINDERS EXTERIOR
TO EACH OTHER

In this section, we consider the case where two cylinders
are parallel and exterior to each other (see Fig. 2). The
results for this case can be obtained in the same ways as
the case of one cylinder inside another cylinder which we
consider above. Now, the distance between the centers of
the cylinders & is related to the radii a and b of the
cylinders and the distance between the cylinders d by
d=a+b—d.

PHYSICAL REVIEW D 84, 065027 (2011)

>
>

Y

A

AN

FIG. 2. The cross section of two cylinders exterior to each other.

The proximity force approximation shows that at small
separation (i.e., d < a, b), the leading term of the Casimir
interacting force between the cylinders is given by

Fgl:? o m3JabL ’
‘ 768y2(a + b)d’/?

for DD and NN boundary conditions. For DN and ND
boundary conditions, we have

FPEA 7m3\JabL ‘
T 61442(a + b)d'?

The exact Casimir interaction energy between two cylin-
ders which are exterior to each other has been derived
using the scattering approach or functional determinant
method in [1,20,35,36]. It can still be written in the form

(37)

(38)

L 00
Ecu=7- [0 £Trin(l - M(O)dE (39)

where now the elements of the infinite matrix M are

M6 = O 5 g K OOK, 1 56)
ME) = 1?}5&% 3 Km0, 06)
MEN(®) = - ((a ‘fg) piw Ilp((l;é;) Kpin(BE)K 1, (5),
MO = D S K, (60K, (06)

Kj(ad) & K, (bé
(40)

The computations of the leading order term and the next-
to-leading order correction term of the Casimir interaction
energy go in parallel to the former case. Let
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e =

PHYSICAL REVIEW D 84, 065027 (2011)
d

a+b

be the dimensionless variable. Then as € — 0", we find that

mabL

DD __

7

7(a + b)

Cas

- 1+4—
1920/2(a + b)d5/2(

____mabL (1 + d[ —
19204/2(a + b)d>?

NN __
Cas

DN __

12(a + b)

7

12(a + b)

7

|+
40

)

32

)

a+ b7
ab |

36ab

<7
+ _ —
36

Ta+b) “h

160 17

3
7m\/abL (1 +d[_

Cas

ND __

12(a + b)

7

2172 b
160 17

36ab
T(a+b)

15360y2(a + b)d>/?
Q+%_

T3 \JabL
Cas
For the Casimir interaction force, we then obtain

DD _ _

12(a + b)

36ab 2172 al

7(a + b)

+

Cas

15360+4/2(a + b)d>/?
3\/_L (

7682(a + b)d"/?

NN
Cas

DN __

[ 20(a + b)

[ 20(a+b) (7

7

]
=)

T(a+b)

60ab

321 (42)

JabL
TmabL (1 + d[—

Cas

ND

20(a + b)

7

__] +
60ab 77 b
32 1

T(a+b)

768,/2(51 +b) d7/2
61442(a + b)d"/?
Q+4—

Tm\JabL

6144y2(a + b)d"?
Notice that for the DD and the NN cases, there is a
complete symmetry between the parameters @ and b. On
the other hand, the ND case can be obtained from the DN
case by interchanging the parameters a and b. These are
expected since in the present case, the two cylinders are on
equal footing.

Numerically, 7/60 — 8/7* = —0.6939. Therefore, it is
easy to conclude that in the NN case, the proximity force
approximation overestimates the strength of the Casimir
interaction force. For the DD boundary conditions,

Cas

7

B T(a+b)
20(a + b) N

60ab

7(a®> — ab + b?)
60ab(a + b)

> 0.

Therefore, the proximity force approximation underesti-
mates the Casimir interaction force. For the ND boundary
conditions,

T Ta+b) 321
20(a +b) 60ab T a
_ _ 03465(b + 1.8549a)(b — 0.18154)
B ab(a + b)

Therefore, we find that the proximity force approximation
may underestimate or overestimate the strength of the

20(a + b)

1.

77 a

60ab

Casimir interaction force depending on the ratio of the
two radii of the cylinders.

It is interesting to compare the results for two cylinders
exterior to each other (41) and (42) with the results for one
cylinder inside another cylinder (34) and (35). Notice that
they have similar coefficients up to the changes of signs.
This can be considered as an analogy of the result obtained
in [19], where the exact closed forms for the Casimir
energy of two weakly coupled dielectric cylinders were
derived and it was shown that the analytic results for one
cylinder inside the other can be obtained as an analytic
continuation of the result for two cylinders exterior to each
other.

Taking the limit » — oo, we again recover the configu-
ration of a cylinder in front of a plate. It is easy to check
that taking the b — oo limits of (42) gives (36).

VI. CONCLUSION

In this article, we have computed analytically the
asymptotic expansion of the Casimir interaction force
between two cylinders, with one inside the another, or
both outside each other. We compute the leading order
term and the next-to-leading order term. Different combi-
nations of Dirichlet (D) and Neumann (N) boundary con-
ditions are discussed. The results read as

065027-11
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FDD m3\JabL (1+ [ 7(1;:0:)}r )
s 7684200 T a)d!? 20(b Ta)  60ab | )
FNN mvabL ( [ (7 i)bia]_{_ )
s 768206 T a)d!/ 20(b 20(b * a) 2) ab | )
3 (43)
FON Tm\abL (1+ [i 7 10Fa 3221]+...),
Y 6144206 * a)d’? 20(b ¥ a) 60ab 7% b

3 J—
FND Tm\JabL (1+d[i 7 GRS 1]+...).
61442(b = a)d’? 20(b ¥ a) 60ab 77 a

For the terms = or =, the sign on the top is for the case where one cylinder is inside another, and the sign at the bottom is
for the case where the two cylinders are exterior to each other. It is observed that for each case, the leading term of the
Casimir interaction force agrees with that derived using the proximity force approximation. The proximity force
approximation may underestimate or overestimate the magnitude of the Casimir interaction force depending on the
boundary conditions and the ratio of the radii. The special b — oo limiting case which gives the results for the cylinder-
plate configuration is discussed. It is found that the » — oo limits of the asymptotic expansions for the DD and NN cases
reproduce the well-known results for the corresponding asymptotic expansions for the cylinder-plane configuration.

Although we only consider the Dirichlet and Neumann boundary conditions in this article, it is easy to obtain from (43)
the asymptotic expansions for perfectly conducting or infinitely permeable cylinders. More specifically, if both the
cylinders are perfectly conducting or both are infinitely permeable, one takes the sum of the results for the DD and the
NN cases. If one cylinder is perfectly conducting and one is infinitely permeable, then one takes the sum of the results for
the DN and the ND cases.

d

I+

+

L

| +
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR (; AND §;

For (35,-,
72(n; —3n,11) n B (n;+ni ) —niy)* 87'(”1‘ +ni41)

4m 8m? a ’

GPP — GPN —

and @FN and @?D are obtained from this by interchanging n; and n; ;. For §;,

(ae2 +3a +3)(372 — 1)7 2372 - 1)
16mpg 16m?

QDD “DN

(e + a)(n; — npy)* + (n; + ngy)?)

B (3 —- 1B
192m3

eB(1 —72) _er(l - %)

(n; = nip)*((@? = a)(n; — ni)* + 7”,2 + 10n;n;4, + 7"12+1) -
2a dam

Br(3t* — 1) B 72

X (@?(n; = nip)* + (n; +nigy)?) +e(1 = 72) + (—2a27%(n; — njyy)?

4dm 8m?
S5(a + 2)273
+272(n? = 2nin;yy — 5n2,,) + &?(n; — niy)? — n? + 2mnggy +3n7,) F—o——
48mp
ala +2)7* B 5 ela +2)7>  37%(n; + niyq)? ,87'5(an — ”,2+1)2 B em3(n; + njy)?
72(”1' Nis1) + 2 3
16m 2a 32m 32m dma
a’Br’ (n; =y, ) — eB7’ (n; — ny, ()2 B270(n; + i) (n; — nyy)* . 8,37'4(”,2 - n%Jr])z
64m® 1 ! 4m 0 T 128m* 8m2a
§ g2 Tmp + g2 ™ (n; + npy)? _(a+ 2)7? B aprt (1 — n ) + e BT . ™ni(n; + nisy)
a? 2a? 4m gm2 ~ 4m?

_ Bronisy(n; + ni ) — nigy)? te i (n; + niyy) _ g?mr

8m?3

mao a
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SN and NP are obtained from this by interchanging n; and n; .

APPENDIX B: THE INTEGRALS I AND J;;

For I}, using the identity

z 1 2 3 2 2 +1
Z(nl-—n,»ﬂ)2 =2(ns ——ns_l) +—<ns_1 ——n“._z) +o+1 n?, (B1)
= 2 2 3 s
we can integrate in the order ny, — ... — n, — n;. The integrations over n, .. ., n, only require the formula (19), whereas

the integration over n; needs the formulas of (25).
For I, we use (18) and integrate in the order n; — ... — n,.
For I!,1 =i = s — 1, using the identity

J 1 2 i+1 i 2 1 2
Z(ni—ni+1)2=2(n1 _El’lz) + ...+ ; (ni—i+1ni+1) +2(ns—§ns,|) + ...
i=0

. s —1 ( s—1i—1 >2+ s+ 1 2
—\n: e T —_—Fn5, .,
— 1\ = i+ (s —i) ™!

we can first integrate in the order n; — ... — n;_; — ny, — ... — n;.,, and then make a change of variables

i
X:”i_m”iﬂy Y= Nitq.

The integrations over x and y can be performed using (25).

It is interesting to remark that although the cases of [ and I§ have to be considered separately, it turns out that by
formally substituting i = 0 and i = s into the formula obtained for I{ where 1 = i = s — 1, the results agree with I and I}
respectively.

For J§j;, using the identity (B1), we can first integrate in the order n; — ... — n;. Then make a change of variables

s—1

X = ny, y=ny, — ny,

and integrate over x and y using (25).
For J§,, using the identity

Zs:(n—n- )2=2<m —1m>2+ +s—Z(m _s—3m )2+s—1<m _s—2(n_n))2
P i i+1 2 2 3 s —3 s—2 s—2 s—1 s—2 s—1 s—1 1

s 1 2 s+1 2
+ n, —-ng| +——ny,
s—1 s K

where m; = n; —n;, 2=1i=s — 1, we can first integrate in the order m, — ... — m,_|. Then make a change of
variables

and integrate over x and y.
For Jj;, where 2 = j = s — 1, using the identity

1 \2 i — 1 =2 2 1 2
Z(ni—ni+1)2=2(m2—§m3) +...+].—<mj,1—],T(nj—n1)> +2<ns—§ns,1) + ...
i—0 J

j—2 1
s—J s—j—1 ) j ( 1 )2 s+1 5
+—F——\njpp———ni |+ ——\ny —=n;| +—7F—n;
s—j—1(1+2 s—j =t ) s =i+
s—j+1( R )2
B . o —
s—j A s—j+1n] ’

where m; = n; — n,2 =i = j — 1, we can first integrate in the order my — ... — m;_; — n; — ... — n;;,. Then make
a change of variables
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1 s—J
X=n, ——n, =n, I=n.4 ——n;
1 J y j AL

and integrate over x, y, and z.

For J;_, , using the identity (18), we can first integrate in the order n; — ... — n,_,. Then make a change of variables
s— 1
X = Ng—1 — ng, y = ng
and integrate over x and y.
For Ji,, 1 =i = 5 — 2, using the identity
5 1 i i—1 \2 1 2
Z(ni — i) =20 — 5mp)* L+ (ni—l - ni) + z(ms—l - _ms—2) +...
= 2 i—1 i 2
+s—i—1( _S—i—2( B ))2+i+1< B i >2+ s+ 1 )
s—i—a\rr T g R Ry N VT M
s—i ( 1 )2
T\ ——nmin
s—i—1 s — 1

where m; = n; —n,, i +2=j=s— 1, we can first integrate in the order n; — ... = n;_ | = mg_ | — ... = m;;,.

Then make a change of variables
i 1

A= N0 T iy Y= i+, L= ng — it
i+1 -

and integrate over x, y, and z.
For J§, |, 1 =i =s — 2, using the identity

il 1 2 i+ 1 i 2 1 2
> (n; = nip1)* =2(ny — = +.+ (4— ; )+2< - = _)+“.
i:o(nl nity) (”1 2”2) ; n; Pt 1”z+1 ng 2ns 1

N s — 1 ( s—1—1 >2+ s+ 1 )
1\ n: ——n: —_— N,
s—i—1\ ' g—i il i+ (s —i) ™!

we can first integrate in the order n;y — ... — n;_; — ny, — ... — n;;3. Then make a change of variables

i s—i—1
i i1 i+1 y i+1 i+2 s — i+1
and integrate over x, y, and z.
Finally, for J{, where | =i =5 —3,i+ 2 = j = s — |, using the identity

ij°
J I \2 i+1 i 2 1 2
iZ()(ni—niH)z:Z(nl—znz) +...+ ; (n,-—mniﬂ) +2(ns—§ns,]) + ...
s—j+1 s—J 2 1 2
+ﬁ(n]+1—s_17+1nj) +2(mi+2—§mi+3> + ...
j—i—1 j—i—2 )2 j ( i+1 )2 s+1 o,
+L = (m - T, —n + ) 2
j—i—2<’"f‘ P A ) B TS 1 f It} G ) B e Ea Vi

where my = ny — n;yq, i +2 =k =j— 1, we can first integrate in the order ny — ... = n;_y = ng— ... = nj,H, —
mii, — ... — m;_;. Then make a change of variables
i i+1 s—j

i y i+1 P 7 Jj+1 s—j+ 17

and integrate over x, y, z, and w.
As in the case of I{, by formally substituting (i, j) = (0, 1), (0, 5), (0, /), (s — 1, 5), (i, 5), (i, i + 1) into the expressions
obtained for Jj; where 1 =i = s —3,i+2 = j=s— I, one obtains respectively Jg,, Ji, Ji;, Jy i Ji it

s—1,5> Yis>
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