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Because of its versatility, the 2-form field has been employed to describe a multitude of scenarios that

range from high energy to condensed matter physics. Pushing forward in this endeavor we study the

interaction energy, intermediated by this kind of field, between branes in a variety of configurations. Also,

the so-called Cremmer-Scherk-Kalb-Ramond model, which consists of the electromagnetic field coupled

to the Kalb-Ramond gauge potential, is considered. It turns out that these models exhibit a much richer

class of sources than usually thought, able to intermediate novel forms of interactions in different

scenarios.
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I. INTRODUCTION

The interaction between two static scalar charges inter-
mediated by their coupling to a massless scalar field leads
to an attractive coulombian interaction. A similar situation
occurs for rank-2 symmetric tensors and static currents,
whose interaction is intermediated by their coupling to the
gravitational field. For two time-independent external
vector sources, whose interaction is intermediated by
the electromagnetic field, we have a repulsive coulom-
bian force between equal charges. The attractive or repul-
sive nature of these forces are also present when we
consider interactions between charges and multipoles dis-
tributions intermediated by these bosonic fields [1,2].
Nevertheless, massive fields always intermediate short
range interactions.

On the other hand, it has been shown that the Dirac field
can intermediate anisotropic interactions between point-
like and time-independent external fermionic sources [1]
that are also long-range ones in the case of massless field.

Because of these results some questions can be raised in
concerning the influence of the spin, tensorial nature and
mass of fields which can intermediate interactions between
time-independent sources that simulate charges or multi-
pole distributions. In order to gain a better insight into
these questions, in this work we pursue an investigation
about some of these points in connection to the so-called
Kalb-Ramond field, the rank-2 skew-symmetric field,
which is the gauge of strings [3], that is coupled, in
heterotic string theory [4], to the Yang-Mills Chern-
Simons three-form.

It is worth mentioning that, recently, a lot of effort has
been spent in trying to understand observable signatures of
the Kalb-Ramond field, possibly due to an induced optical
activity [5], that would naturally occur in a braneworld

scenario at low energies indicating a physics beyond the
standard model. Besides, it has been employed to explain a
vortex-boson duality in three dimensions that takes place in
cuprate superconductivity[6].
Specifically, in Sec. (2), we investigate the interaction

between two skew-symmetric rank-2 time-independent
tensorial sources intermediated by their coupling to the
Kalb-Ramond field. We consider a 3þ 1-dimensional
space-time and the currents are taken to be concentrated
along two distinct parallel D-dimensional branes. We pay
special attention to the case where the branes have zero
dimension, that is, they are pointlike. The current consid-
ered is interesting once it shows a pointlike dipole aspect
for the Kalb-Ramond field. The trivial fact that a 2-form
field cannot be coupled to a pointlike charge appears in a
different notorious perspective and the results are extended
to the interaction between two parallel linear charges dis-
tributions. We also argue why we cannot have a true point-
like dipole for the Kalb-Ramond field.
In Sec. III, we study the so-called Cremmer-Scherk-

Kalb-Ramond model [7,8], which consists of the electro-
magnetic field coupled to the Kalb-Ramond one and can
be taken as the generalization of the Chern-Simons model
for 3þ 1 dimensions. It appears in various scenarios, like
supersymmetric models [9–11], cosmic strings [12], cos-
mology [13], noncommutative space-time [14] and axions
[15]. We choose the same external time-independent
source coupled to the Kalb-Ramond field considered in
the first model. For the electromagnetic sector we consider
an external source composed by two uniform charges
distributions along parallel branes. We show that, in spite
of the considered model to be gauge invariant, when
we have only electromagnetic pointlike charges we get
the Yukawa interaction between them. When we have
only skew-symmetric pointlike currents, the interaction
between them is, in some circumstances, the one interme-
diated by a massive bosonic field, specifically, the interac-
tion between two pointlike charges and two pointlike
dipoles. By imposing appropriated restrictions to the
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skew-symmetric source, we can have only a Yukawa-type
interaction or a dipole-dipole interaction for massive field.
Similar analysis can be done when the branes are lines or
planes.

II. RANK-2 SKEW-SYMMETRIC CURRENTS

In this section, we consider a 3þ 1 space-time with the
presence of two D-dimensional parallel branes. We shall
denote by d the perpendicular (spatial) dimensions to the
branes in such a way to have 3 ¼ Dþ d. Notice that
0 � D, d < 3 and when D ¼ 0 we have d ¼ 3 and the
branes are points.

We shall also denote the perpendicular and parallel
spatial coordinates to the branes, respectively, by xk and

x? and use the metric signature ðþ;�;�; . . .Þ.
Let us start by studying the model in Dþ dþ 1 dimen-

sions given by the Lagrangian

L KR ¼ 1
12G

���G��� þ 1
2J

��H��; (1)

where H�� is the Kalb-Ramond field [3], J�� is a skew-

symmetric external source andG��� is the field strength of
the Kalb-Ramond field, given by

G��� ¼ @�H�� þ @�H�� þ @�H��: (2)

The external source J�� has a vanishing divergence,
@�J

�� ¼ 0.

It is worth mentioning that the Lagrangian (1) exhibits
the gauge invariance

H�� ! H�� þ @��� � @���; (3)

where �� is a four-vector.
With the standard Faddeev-Popov method for gauge

fields, the generating functional for the Kalb-Ramond field
can by written as the path integral

ZKR ¼
Z

DH exp

�
i
Z

dDþdþ1xL

� 1

2�G

ð@�H��Þð@�H�
�Þþ 1

2
J��H

��

�
; (4)

where �G is a gauge parameter. Taking �G ¼ �1 and
performing the functional integral (4), as exposed in
[16,17], we have

ZKR ¼ exp

�
� i

2

Z
dDþdþ1xdDþdþ1y

J��ðxÞ
2

G��;��ðx; yÞ

� J��ðyÞ
2

�
; (5)

where the Green’s function is

G��;��ðx; yÞ ¼
Z dDþdþ1p

ð2�ÞDþdþ1

1

p2
ð������ � ������Þ

� exp½�ipðx� yÞ�: (6)

From now on, we shall consider only time-independent
sources, that is, J��ðxÞ. In this case the Lagrangian of the

system does not exhibit explicit dependence on the time
coordinate and, so, the corresponding functional generator
can be written in the form [18]

Z KR ¼ lim
T!1 expð�iETÞ; (7)

where E is the energy of the system and T is the time
interval.
Comparing (5) and (7), we have

E ¼ 1

2T

Z
dDþdþ1xdDþdþ1y

J��ðxÞ
2

G��;��ðx; yÞ J��ðyÞ
2

:

(8)

Now, let us search for an external source concentrated
along two parallel D-dimensional branes which resembles
the presence of charge or multipole distributions for the
Kalb-Ramond field.
For the electromagnetic field, it can be shown that [1]

static and uniform distributions of electric charges along
branes can be described by external four-vector sources
proportional to Dirac delta functions concentrated along
the branes. Because of its symmetries, it is well known that
the Kalb-Ramond field is not consistent with sources pro-
portional to Dirac delta functions concentrated at points of
space, as shall be exposed at the end of this section. The
most simple skew-symmetric external time-independent
source with vanishing four-divergence and concentrated
along a brane with arbitrary dimension, (including dimen-
sion zero, that is, points) is given by

J��ðx?Þ ¼ 	����V�@�ð
dðx? � aÞÞ; (9)

where 	���� is the Levi-Civita tensor with 	0123 ¼ 1, V� is
a pseudo four-vector taken to be constant and uniform in
the reference frame where the calculations are performed
and a is a d-dimensional spatial vector, a ¼ ða1; . . . ; adÞ.
The source (9) is concentrated along the D-dimensional

brane located at a. It is important to notice that we are
restricted to a 3þ 1 space-time and d can assume the
values 3, 2, or 1, where the brane becomes a point, a line
and a plane, respectively.
Although we are considering only static configurations,

note that, for a given d, the source (9) can be taken as a
special case of an expression valid also to moving branes.
For instance, in the case of a pointlike brane with world
line a�ð�Þ and four velocity u�ð�Þ ¼ da�ð�Þ=d�, where �
stands for the proper time, we have the skew-symmetric
source

J��ðxÞ ¼
Z

d�	����V�ð�Þð��� � u�ð�Þu�ð�ÞÞ@�

� ½
4ðx� � a�ð�ÞÞ�; (10)

F. A. BARONE, F. E. BARONE, AND J. A. HELAYËL-NETO PHYSICAL REVIEW D 84, 065026 (2011)
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where 
4ðx� � a�ð�ÞÞ ¼ 
3ðx� að�ÞÞ
ðx0 � a0ð�ÞÞ. If
V� is constant and the brane is fixed, that is, a0¼x0¼�,
a ¼ constant and u� ¼ ��0, the source (10) reduces to (9)
with d ¼ 3, as follows:

J��ðxÞ ¼
Z

d�	����V�ð��� � ��0��0Þ@�

� ½
3ðx� aÞ
ðx0 � �Þ�
¼
Z

d�	����V�ð��� � ��0��0Þ@�

� ½
3ðx� aÞ�
ðx0 � �Þ
¼
Z

d�	����V����@
�½
3ðx� aÞ�
ðx0 � �Þ

¼ 	����V����@
�½
3ðx� aÞ�;

where in the second and third lines we used the fact that
when � ¼ 0 the integral vanishes.

Once the source (9) is a skew-symmetric tensor, its
components i0, i ¼ 1, 2, 3, build up the polar vector

Ji0ðx?Þ ¼ 	0i��V�@�

dðx? � aÞ

¼ ½V � ðr
dðx? � aÞÞ�i; (11)

which has vanishing divergence, and with the spatial part
we may construct an axial vector as follows:

	ijkJijðx?Þ ¼ 2V0ðr
dðx? � aÞÞk: (12)

Now let us take an external source composed by two
terms, each one in the form (9), but concentrated along
different (parallel) branes,

J��ðx?Þ ¼ 	����@�½V�

dðx? � a1Þ þW�


dðx? � a2Þ�:
(13)

In the equation above, V� and W� are two pseudo four-
vectors and a1 and a2 are two distinct spatial
d-dimensional vectors.

Substituting (13) in (8), performing two integrations by
parts and discarding the terms due to the self-interaction of
a brane with itself (which does not contribute to the force
between the branes) we have

E ¼ � 1

2T

Z
ddþDþ1x

Z
ddþDþ1y

�
Z ddþDþ1p

ð2�ÞdþDþ1
	����	���ð@�ðxÞ@�ðxÞG��;�ðx; yÞÞ

�
�
V�W�

4

dðx? � a1Þ
dðy? � a2Þ

þ V�W�

4

dðx? � a2Þ
dðy? � a1Þ

�
: (14)

Using the fact that G��;�ðx; yÞ ¼ G��;�ðy; xÞ and the

Fourier representation (6), performing a change of varia-
bles and, in the following order, the integrals
dx0dp0dy0dxkdpkdykdx?dy?, defining the difference

vector a ¼ a1 � a2, the D-dimensional area of a brane
LD ¼ R

dDy and using the fact that T ¼ R
dy0, we can

write the energy (14) in the form

E ¼ � 1

4
LD

Z ddp?
ð2�Þd 	

����	���

� 1

2
ðV�W� þ V�W�Þð����� � �����Þ

� p�p�

p2
?

expðip? � aÞ; 0<�; � � d; (15)

With the aid of the identity 	����	��
�� ¼

�2ð������ � ������Þ, Eq. (15) leads to

E ¼ E

LD

¼ �
Z ddp?

ð2�Þd ½ðV
�W�Þp2

? þ ðV � p?ÞðW � p?Þ�

� 1

p2
?
expðip? � aÞ; (16)

where we have defined the energy per unity of brane’s area,
E ¼ E=LD.
In order to calculate the integral (16), we define the

operator ra ¼ ð@=@a112; . . . ; @=@ad12Þ and rewrite Eq. (16)
in the form

E ¼ ½ðV�W�Þr2
a þ ðV � raÞðW � raÞ�

�
Z ddp?

ð2�Þd
1

p2
?
expðip? � aÞ: (17)

The integral above is calculated in [1]. For this task, it is
necessary to consider the case where d ¼ 2 and d � 2. For
d � 2 we have

Z ddp?
ð2�Þd

1

p2
?
expðip? � aÞ

¼ 1

ð2�Þd=2 2
ðd=2Þ�2�ððd=2Þ � 1Þa2�d; d ¼ 2; (18)

where � stands for the Gamma function.
For d ¼ 2, we proceed as in Refs. [1,2], and introduce a

mass parameter, as a regulator parameter, and an arbitrary
positive constant a0 with dimension of length, which does
not contribute to the force between the branes, as follows:

lim
m!0

�Z d2p?
ð2�Þ2

1

p2
? þm2

expðip? � aÞ
�

¼ 1

2�
lim
m!0

K0ðmaÞ

¼ 1

2�
lim
m!0

�
��� ln

ma

2
þ lna0 � lna0

�
: (19)

In the equation above, � is the Euler constant, K0ðxÞ is the
K-Bessel function of order 0 and we have used the fact that
[19] K0ðxÞ!x!0 � �� lnðx=2Þ.
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Separating the a-independent terms at the right-hand
side of (19),

lim
m!0

�Z d2p?
ð2�Þ2

1

p2
? þm2

expðip? � aÞ
�

¼ � 1

2�
ln
a

a0
� 1

2�
lim
m!0

�
�þ ln

ma0
2

�
: (20)

In spite of being divergent, the second term at the right-
hand side of (20) is a independent and does not contribute
to the force between the branes. So, it shall be discarded
from now on.

Substituting (18) or (20) in (16), we are led, after some
manipulations, to the same result

E ¼ � 1

ð2�Þd=2 2
ðd=2Þ�1�ðd=2Þ

� 1

ad
½ðV? �W?Þ � dðV � âÞðW � âÞ�; (21)

where â ¼ a12=ja12j and a ¼ ja12j.
It is interesting to notice that result (21) is the same as

the one obtained by an uniform dipole distributions along
branes placed at a1 and a2, but with an overall minus sign
[1,2].

In spite of the four-vectors V� and W� in (13) can have
perpendicular as well as parallel components to the branes,
only their perpendicular components contribute to the
energy (21).

As shall be discussed, the Kalb-Ramond field cannot
couple with a true pointlike dipole, but the source (13) can
be taken as being concentrated at two points. WhenD ¼ 0,
the branes are points and, once the space-time has
3þ 1 dimensions, we have d ¼ 3, E ¼ E, V? ¼ V and
W? ¼ W. In this situation we can write

Eðd ¼ 3Þ ¼ � 1

4�

1

a3
½ðV �WÞ � 3ðV � âÞðW � âÞ�: (22)

The energy (22) is the same as the one obtained for the
interaction between two electric dipoles V andW placed at
the points a1 and a2, but with an overall minus sign, as
expected for a rank-2 field [20]. A similar situation occurs
for the scalar field where we have an overall minus sign in
comparing with the electromagnetic case.

So the source (9) can be interpreted as a kind of uniform
distribution of dipoles for the Kalb-Ramond field along the
branes which can be generalized to the case when the
branes are points.

For completeness, to conclude this section, we would
like emphasize the well known fact that the Kalb-Ramond
field is not compatible with pointlike time-independent
external sources with vanishing four-divergences which
describe true pointlike charges or pointlike dipoles, but
it is compatible with external sources which describe
uniform distributions of charges or dipoles along
D-dimensional branes if D � 1. Actually, being a 2-form

gauge potential, the Kalb-Ramond field can, consistently,
describe the interaction between extended one-
dimensional objects (strings) whose dynamics is associated
to world surfaces, rather than world lines. This fact can be
seen by considering the Lagrangian (1) in a space-time
with arbitrary space dimensions and the external source

J��ðx?Þ ¼ V��
dðx? � a1Þ þW��
dðx? � a2Þ; (23)

where V�� and W�� are rank-2 constant and uniform
skew-symmetric tensors satisfying V�� ¼ W�� ¼ 0 for
� ¼ 1; . . . ; d (or � ¼ 1; . . . ; d), what assures a vanishing
four-divergence for (23).
Notice that, ifD ¼ 0, the branes are points and the space

becomes d dimensional, so V�� ¼ W�� ¼ 0 for�, � � 0.
But, once V�� and W�� are skew-symmetric tensors, all
their components must be zero.
Following similar steps which led to (21), the source

(23) gives the interaction energy between the branes
located at a1 and a2 per unity of the brane’s area

E¼�V��W��

2

1

ð2�Þd=22
ðd=2Þ�2�ððd=2Þ�1Þa2�d; d�2

¼V��W��

2

1

2�
ln
a

a0
; d¼2: (24)

Each term in (23) can be interpreted as a charge density
for the Kalb-Ramond field. In the case where V��W�� > 0

the interaction energy (24) gives an attractive force be-
tween the branes, which means that the Kalb-Ramond field
has an opposite character in comparing with the electro-
magnetic field in what concerns the sign of the force
between charges distributions. We can say that, for the
Kalb-Ramond field, distributions of charges with equal
sign attract one another as expected for a 2-rank tensor.
The same analysis could be done for the rank-2 source

J��ðx?Þ¼V��v@

dðx?�a1ÞþW��w�@�


dðx?�a2Þ;
(25)

which describes true uniform dipole distributions along
parallel branes for the Kalb-Ramond field. In the above
source, v and w are two four-vectors and we must have
d � 1, so that the branes cannot be pointlike.

III. CREMMER-SCHERK-KALB-RAMOND
SOURCE

In this section, we study the so-called Cremmer-Scherk-
Kalb-Ramond model, whose Lagrangian is given by [7]

LCSKR ¼ 1

12
G���G��� � 1

4
F��F�� ��

4
	����H��F��

þ 1

2
J��H�� þ J�A�; (26)

where A� is the electromagnetic field, H�� is the Kalb-
Ramond field, G��� is the field strength for H�� defined
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in (2), F�� ¼ @�A� � @�A� is the field strength for A�

and � is the coupling constant among the Kalb-Ramond
and vector fields.

It can be shown that the Lagrangian (26) exhibits the
gauge symmetry (3) for the Kalb-Ramond field and the
usual gauge symmetry, A� ! A� þ @��, for the electro-
magnetic field. The external sources J�� and J� must have
vanishing divergence as dictated by the respective gauge
symmetries they are associated to. The Lagrangian (26)
can be seen as a generalization to 3þ 1 dimensions of the
Chern-Simons model [8].

Using standard Fadeev-Popov methods for gauge fields,
the generating functional for the Lagrangian (26) can be
written in the form

ZCSKR ¼
Z

DHDA exp

�
i
Z

d4x
1

12
G���G���

� 1

4
F��F�� ��

4
	����H��F��

� 1

2�G

ð@�H��Þð@�H�
�Þ � 1

2�G

ð@�A�Þð@�A�Þ

þ 1

2
J��H�� þ J�A�

�
; (27)

where �G and �G are gauge parameters.
Choosing the gauges with �G ¼ �1 and �G ¼ 1, and

performing some simple manipulations, the functional (27)
can be reduced to

ZCSKR ¼
Z

DHDAexp

�
i
Z

d4xH��

�
�1

8
ð������

�������Þ@�@�
�
H�� þ 1

2
J��H��

þ 1

2
A�ð���@�@

�ÞA� þ J�A�

��

4
H��	����@

�A� ��

4
A�	����@

�H��

�
: (28)

Defining the field X��;� and the current J��;�, with
matrix structures, as follows:

X ��;� ¼ H��

A�

� �
; J��;� ¼ J��=2

J�

� �
(29)

and the differential operator

K��;�;��;�ðxÞ

¼ � 1
4 ð������ � ������Þ@�@� � �

2 	����@
�

� �
2 	����@

� ���@�@
�

 !
;

(30)

we can rewrite the generating functional (28) in the form

ZCSKR ¼
Z

DX exp

�
i

2

Z
d4xXy��;�K��;�;��;�ðxÞX��;�

þ J��;�X��;�

�
; (31)

which exhibits a Gaussian form in the field X��;�.
Computing the Gaussian integral (31), we get

Z CSKR ¼ exp

�
� i

2

�
Z

d4xd4yJy��;�ðxÞK�1
��;�;��;�ðx; yÞJ��;�ðyÞ

�
;

(32)

where K�1
��;�;��;�ðx; yÞ is the inverse of the operator (30) in

the sense that

K��;�;��;�ðxÞK�1
�;�

��;�ðx; yÞ

¼
1
2 ð����� � �����Þ 0

0 ���

 !

4ðx� yÞ: (33)

The Green’s function K�1
��;�;��;�ðx; yÞ can be calculated

as a Fourier integral; the result is

K�1
�;�

��;�ðx; yÞ ¼
Z d4p

ð2�Þ4
~A��

�ðpÞ ~B��
�ðpÞ

~C��ðpÞ ~D�
�ðpÞ

0
@

1
A

� exp½�iðx� yÞ�; (34)

where

~A��
�ðpÞ ¼ 2

p2 ��2

�
��

½��
�
� �

2�2

p2
�½�

½�
p��p�
p2

�
;

~B��
�ðpÞ ¼ i�

1

p2

1

p2 ��2
	��

��p
�;

~C��ðpÞ ¼ i�
1

p2

1

p2 ��2
	���p

�;

~D�
�ðpÞ ¼ � 1

p2 ��2

�
��

� �
�2

p2

p�p�

p2

�
:

(35)

Once the sources J�� and J� do not depend on time, we
have that ZCSKR ¼ expð�iETÞ, where E is the energy of
the system. So, by using (32)

E ¼ 1

2T

Z
d4xd4yJy��;�ðxÞK�1

��;�;��;�ðx; yÞJ��;�ðyÞ: (36)

With the aid of (35) and (34), and performing similar
steps which led to Eq. (15), it can be shown that the energy
(36) is the sum of the following four parts:
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E1 ¼ 1

2

Z
d3xd3y

Z d3p

ð2�Þ3
J��ðxÞ

2
~A��;��ðpÞ J

��ðyÞ
2

� exp½ip � ðx� yÞ�;

E2 ¼ 1

2

Z
d3xd3y

Z d3p

ð2�Þ3
J��ðxÞ

2
~B��;�ðpÞJ�ðyÞ

� exp½ip � ðx� yÞ�;

E3 ¼ 1

2

Z
d3xd3y

Z d3p

ð2�Þ3 J
�ðxÞ~C�;��ðpÞ J

��ðyÞ
2

� exp½ip � ðx� yÞ�;

E4 ¼ 1

2

Z
d3xd3y

Z d3p

ð2�Þ3 J
�ðxÞ ~D�;�ðpÞJ�ðyÞ

� exp½ip � ðx� yÞ�: (37)

Now, in order to have a better insight on the meaning of
time-independent sources distributions for the Cremmer-
Scherk-Kalb-Ramond model, let us start by considering
sources that, in the reference frame we are performing the
calculations, are distributed along D-dimensional parallel
branes and specify our analysis to the following external
sources:

J��ðx?Þ ¼ 	����½V�@�

dðx? � a1Þ

þW�@�

dðx? � a2Þ�

J�ðx?Þ ¼ v�
dðx? � a1Þ þ w�
dðx? � a2Þ: (38)

where v� and w� are constant and uniform four-vectors
that, as discussed in Ref. [1], are restricted to the conditions
v1 ¼ w1 ¼ :: ¼ vd ¼ wd ¼ 0 in order to assure gauge
invariance for the vector sector.

The source J�� above is the same as the one given in
Eq. (13) and discussed in the previous section. Its role for
the model (26) shall be clearer at the end of the section. As
pointed out in Refs. [1,2], if we take v�, w� � ��0, the
external source J� defined in Eq. (38) describes two uni-
form electric charges distributions along the branes placed
at a1 and a2. So we have an external source for the Kalb-
Ramond and Maxwell fields at the branes a1 and a2, all of
them being time independent.

The space-time is 3þ 1 dimensional, so we must have
d ¼ 3, 2, 1, where the branes are points, lines and planes,
respectively.

The contribution E1 in (37) can be calculated following
similar steps we have used in the previous section,

E1 ¼ LD½ðV�W
�r2

a þ ðV � raÞðW � raÞ�

�
Z ddp?

ð2�Þd
1

p2
? þ�2

expðip? � aÞ

¼ LD½ðV�W
�r2

a þ ðV � raÞðW � raÞ�
� 1

ð2�Þd=2 �
d�2ð�aÞ1�ðd=2ÞKðd=2Þ�1ð�aÞ; (39)

where we defined a ¼ a1 � a2, assumed that � � 0, used
the fact that [1]

Z ddp

ð2�Þd
1

p2 þ�2
expðip � aÞ

¼ 1

ð2�Þd=2 �
d�2ð�aÞ1�ðd=2ÞKðd=2Þ�1ð�aÞ (40)

and discarded a-independent terms due to self interactions.
The quantityE1 is a contribution to the energy due solely

to the interaction between the two parts of the tensor source
J�� and does not involve the vector source J�.
The contribution E4 can be obtained with the aid of

Eqs. (35), (37), (38), and (40), and from the results pre-
sented in [1],

E4 ¼ LD v�w
�

ð2�Þd=2 �
d�2ð�aÞ1�d=2Kðd=2Þ�1ð�aÞ: (41)

It is due solely to the interaction between the two parts
of the vector source J� and does not involve the tensor
source J��.
Substituting the sources (38) in the contributions E2 and

E3 exposed in Eq. (37), proceeding as in the previous
section and using the result (40), we can write

E2 ¼ E3

¼ LD 1

ð2�Þd=2
�

2
ðw�V

� þ v�W
�Þ

��d�2ð�aÞ1�d=2Kðd=2Þ�1ð�aÞ: (42)

The contributions E2 and E3 come from the interaction
between the tensor source J�� and the vector source J�.
With the aid of (39), (41), and (42), using the fact that

@

@x
ðx1�ðd=2ÞKðd=2Þ�1ðxÞÞ ¼ �x1�ðd=2ÞKd=2ðxÞ

xKðd=2Þþ1ðxÞ � dKd=2ðxÞ ¼ xKðd=2Þ�1ðxÞ;
(43)

and performing some simple manipulations, we have the
total interaction energy density

E ¼ E

LD ¼ 1

LD ðE1 þ E2 þ E3 þ E4Þ

¼ 1

ð2�Þd=2 ½v�w
� þ�ðw�V

� þ v�W
�Þ

þ�2V�W
���d�2ð�aÞ1�d=2Kðd=2Þ�1ð�aÞ

� 1

ð2�Þd=2 ½ðV? �W?ÞKd=2ð�aÞ

� ðV � âÞðW � âÞ�aKðd=2Þþ1ð�aÞ��dð�aÞ�d=2:

(44)

Notice that, on the contrary to the Kalb-Ramond case,
the energy (44) exhibits dependence on the perpendicular
as well as on the parallel sectors of the vectors V� andW�.
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In the most interesting situation we have pointlike
branes, what corresponds to take D ¼ 0 and d ¼ 3, and
we must have v� ¼ v��0 and w� ¼ w��0. So the energy
(44) reads

E ¼ vw

4�

expð��aÞ
a

þ �

4�
ðwV0 þ vW0Þ expð��aÞ

a

þ�2V�W�

4�

expð��aÞ
a

� expð��aÞ
4�a3

½ð1þ�aÞðV �WÞ
� ð3þ 3�aþ�2a2ÞðV � âÞðW � âÞ�: (45)

From the result (45) we can see that the � parameter
accomplishes two roles: it acts like a mass for the field
X��;�, producing an exponential decay for the interaction
energy between the external sources and, also, produces
the interaction between the tensor and vector sectors of the
field X��;�. When � ¼ 0, the above energy reduces to a
coulombian interaction between the electric charges �v
and �w, which comes strictly from the electromagnetic
sector, and the interaction between the skew-symmetric
rank-2 sources, which comes strictly from the Kalb-
Ramond field and exhibits a dipolelike behavior.

If we have only electric charges involved, that is, when-
ever V� ¼ W� ¼ 0, the energy (45) reduces to the Yukawa
interaction between two electric charges, �v and �w,
intermediated by the massive vector field (Proca field).

A more interesting situation happens if we have only the
sources for the Kalb-Ramond field (v ¼ w ¼ 0). In this
case the energy (45) is the same as the one obtained for the
interaction between two pointlike dipoles intermediated by
a bosonic massive field [1,2] plus a Yukawa interaction. So,
for pointlike sources, in addition to describe a kind of
pointlike dipole for the skew-symmetric field, the source
(9) describes a kind of point-charge for this field as well.
This fact becomes clearer if we choose V0 andW0 in such a
way that V�W� ¼ 0, with v ¼ w ¼ 0, what brings
Eq. (45) to the form of a pure interaction energy between
pointlike dipoles intermediated by a massive bosonic field.

Taking V ¼ W ¼ 0 and v ¼ w ¼ 0 in Eq. (45) we have

E ¼ ð�V0Þð�W0Þ
4�

expð��aÞ
a

; (46)

which is a Yukawa potential between the Kalb-Ramond
charges �V0 and �W0. If we take, in Eq. (46), the limit
� ! 0 in such a way that ð�V0Þ ! finite and ð�W0Þ !
finite, we have the Coulomb potential.

The same analysis could be done for the energy density
(44), which is valid for d ¼ 1, 2, 3. The second line of (44)
has the same a dependence as the one exhibited by the
interaction energy density between two uniform charge
distributions along parallel branes [1]. The third and third
lines of (44) has the same a dependence as the one
exhibited by the interaction energy density between two

dipole distributions along parallel branes intermediated by
a bosonic field [1].
Result (44) corroborates the fact that the model (26) is

equivalent to a massive vector field, as pointed out in
Refs. [7,8]. However, as long as � � 0, our situation is
actually different from the purely Proca-like field, even
though � � 0 corresponds to the exchange of a neutral
massive spin gauge boson. This example points out that the
particular mass generation mechanism has non trivial con-
sequences on the interaction energy between the skew-
symmetric sources and the model described by (26) with
the source (9) is richer than the Proca field.

IV. CONCLUSIONS AND FINAL REMARKS

In this paper, we have carried out a study of the inter-
action between time-independent external sources interme-
diated by bosonic fields. Special attention has been paid to
skew-symmetric currents coupled to the so-called Kalb-
Ramond field. The interaction energy between two distri-
butions of generalized dipoles along parallel branes in
3þ 1 dimensions intermediated by their coupling to the
Kalb-Ramond field has been calculated. As a special result,
we have considered the interaction energy between two
pointlike generalized dipoles.
It has been shown that it is not possible to exist a true

pointlike static charge or true pointlike dipole for the Kalb-
Ramond field and the calculation of the interaction energy
between two charges distributions along two parallel lines
intermediated by this field in a space-time with arbitrary
space dimensions has been performed.
The interaction energies between skew-symmetric

charges (or dipole) distributions intermediated by the
Kalb-Ramond field has been worked out, and it turns out
to exhibit an overall minus sign in comparing with the
electromagnetic case. Thus we can say that, for the Kalb-
Ramond field, charges distributions with the same sign
attract one another as expected for a rank-2 tensor field.
It has also been calculated the interaction energy be-

tween two external time-independent sources distributed
along two parallel distinct branes in the Cremmer-Scherk-
Kalb-Ramond model, which consists in the interaction
between the Kalb-Ramond field and the electromagnetic
one and can be seen as an extension to 3þ 1 dimensions of
the Chern-Simons model. We have considered an external
time-independent source composed by two charges distri-
butions for the Maxwell field and two sources for the Kalb-
Ramond field placed at two distinct branes. We have shown
that, in the case where the branes are pointlike, in spite of
the considered model to be gauge invariant, when we have
only electromagnetic charges we have the Yukawa inter-
action between them. When we have only skew-symmetric
sources, the interaction between them is the one interme-
diated by a massive bosonic field and exhibits the same
behavior of the interaction between two dipoles plus a
Yukawa potential.
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So, from the charge-dipole interaction, we may conclude
that the coupled system Maxwell-Kalb-Ramond field is
selected as a way to endow a spin-1 gauge boson with a
nonzero mass.

The case of moving sources for the Kalb-Ramond field,
which is not considered in this paper, is a relevant and
vast theme that deserves to be investigated, also in the
context of the Cremmer-Scherk-Kalb-Ramond model.

For instance, the case of pointlike time-dependent sources
can be studied with the aid of Eq. (10).
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