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This paper is motivated by prospects for non-Abelian statistics of deconfined particlelike objects in

3þ 1 dimensions, realized as solitons with localized Majorana zero modes. To this end, we study the

fermionic collective coordinates of magnetic monopoles in 3þ 1-dimensional spontaneously-broken

SU(2) gauge theories with various spectra of fermions. We argue that a single Majorana zero mode of the

monopole is not compatible with cancellation of the Witten SU(2) anomaly. We also compare this

approach with other attempts to realize deconfined non-Abelian objects in 3þ 1 dimensions.

DOI: 10.1103/PhysRevD.84.065019 PACS numbers: 14.80.Hv, 03.65.Ge, 05.30.Pr, 73.20.�r

I. INTRODUCTION

Point particles in 3þ 1 dimensions cannot have non-
Abelian statistics because of the triviality of the topology
of their configuration space [1]. However, a particlelike
object with extra structure can have a configuration space
with more interesting homotopy. Inspired by ideas from
topological insulators [2], Teo and Kane [3] recently made
a specific proposal in this direction. The objects in question
are hedgehogs of a 3-component order parameter, coupled
to fermionic excitations that are gapped in the presence of a
nonzero order parameter. Freedman et al. [4] show that
these objects exhibit what they call projective ribbon sta-
tistics; the data needed to specify a configuration include
the preimage under the order parameter map of the north
pole and a nearby point.

The hedgehog defects support real fermionic zero
modes, and multiple hedgehogs are associated with a non-
local Hilbert space generated by the zero mode operators.
Motions of the hedgehogs implement unitary transforma-
tions in the nonlocal Hilbert space, a concept familiar from
topological quantum computing in 2þ 1 dimensions [5].
Because exchanging identical particles leads to a nontrivial
unitary transformation of the quantum state instead of
merely a phase, we say such objects have non-Abelian
statistics. The presence of Majorana zero modes and the
nontrivial configuration space are both crucial to this story.

Freedman et al. also point out the following problematic
feature of the model of Teo and Kane: if the order parame-
ter field has a nonzero stiffness, a single hedgehog is not
a finite-energy configuration. Configurations with zero
net hedgehog number can have finite energy, but there
will be a confining force between the hedgehogs due to
gradient energy in the order parameter field. This energy
cost will scale at least linearly with the separation between
the hedgehogs. The cost may be even higher in the absence
of full SU(2) symmetry for the order parameter (and
such symmetry is unlikely given that the order parameter
involves both superconducting and particle-number-
conserving terms). This makes it difficult to imagine adia-
batically moving these solitons around each other.

Putting aside the issues with using this proposal as a
platform for quantum computing (note further that braiding
of Majoranas does not provide a set of universal gates), we
would like to confront the conceptual question of whether
it is possible in principle to deconfine such non-Abelian
particles in 3þ 1 dimensions. We are also interested more
generally in what happens to Majorana zero modes when
the relevant order parameter field begins to fluctuate. If we
were able to deconfine non-Abelian particles in 3þ 1
dimensions, there would be profound practical and con-
ceptual implications.
One suggestion for removing the confining energy fol-

lows the analogous step in the study of vortices in two
dimensions: gauge the rotation symmetry in the order pa-
rameter space. If all directions are gauge equivalent, there
need not be a confining energy between the hedgehogs,
which in the resulting gauge theory are ’t Hooft-Polyakov
monopoles [6,7]. (There will be a magnetic Coulomb force
between the monopoles, but this falls off with their separa-
tion.) But 3þ 1 dimensional SU(2) gauge theory with the
requisite fermion content, namely, a single Weyl doublet
(i.e. eight Majorana fields), suffers from the Witten SU(2)
anomaly [8] (as [4] also observe). One implication of this is
that the gauge field partition sum vanishes identically.
Another pathology resulting from the anomaly is a violation
of fermion parity by the gauge dynamics. Specifically, an
instanton creates a single fermion in violation of fermion
parity. The addition of an adjoint Higgs field (relative to the
discussion of [8]) does not change the structure of the
fermion determinantwhich is responsible for the fatal factor
of �1 (which it acquires under the gauge transformations
which represent the nontrivial element of�4ðSUð2ÞÞ), as we
argue below in Sec. II A.
We will construct below a microscopically-consistent

theory which, in a range of energy scales, looks like this
Witten-anomalous SU(2) gauge theory in the Higgs phase
with a single Weyl doublet. The spectrum of fermionic
particles with E<MW is identical to that of the theory
described above; at these energies, the Witten anomaly is
cancelled by a certain Wess-Zumino-Witten term made
from the adjoint scalar and the gauge field. (This situation
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is similar, but not identical, to models discussed by d’Hoker
and Farhi [9,10].) However, this term is ill-definedwhen the
order parameter vanishes, as it does in the core of the
monopole, and we must provide a UV completion to ad-
dress the question of whether the monopole has a Majorana
zero mode. The simplest UV completion of this model
involves adding in another Weyl fermion doublet.

Before proceeding with an analysis of the SU(2) gauge
theory, we pause to consider an alternative possible route to
deconfine the localized objects hosting Majorana modes.
Instead of gauging the SU(2) symmetry that is spontane-
ously broken by the order parameter field in the Teo-Kane
model, we can consider disordering the broken phase into
a liquidlike phase without any broken symmetry [4,11].
Importantly, we must achieve this disordering without
proliferating the monopole defects that hosted Majorana
modes, otherwise we will trivially lose the localized
Majorana mode. The simplest-to-describe disordered
phase has a description in terms of an emergent U(1) gauge
field, and the hedgehog defects, assuming they have finite
energy, become magnetic monopoles in the U(1) gauge
theory: we are again led to a description in terms of
magnetic charges in an Abelian gauge theory. (We describe
other possibilities for disordered phases in the last section.)
Now the important question is do the Majorana modes
survive the disordering process, and if so, are the magnetic
monopoles in this theory deconfined (only interacting
via a long range Coulomb interaction) particles carrying
Majorana zero modes? Again the question of the survival
of the Majorana modes requires short-distance information
about the theory. Later we will return to this question for
the disordered state, arguing on general grounds that this
particular scenario is unlikely.

To clarify, our desiderata for deconfined non-Abelian
excitations in 3þ 1 dimensions are as follows. First, we
will discuss the desired form of the regulated theory at high
energies and then the form of the theory at low energies.
From the point of view of condensed matter physics, we
wouldmost like to have a microscopic lattice model involv-
ing only spinlike or electronlike degrees of freedom that
enters a phase where there are deconfined particles. We do
not accept as a valid realization a model that contains
Majorana fermion degrees of freedom in a microscopic
lattice model. We make this requirement because we do
not want to put the Majoranas in ‘‘by hand.’’ However, we
would permit a Majorana based lattice model provided we
could reinterpret it as an intermediate scale description
arising from a truly microscopic model of electrons, likely
in the presence of superconductivity (a bipartite lattice is a
sufficient condition). From the point of view of high energy
physics, we would like to have an anomaly free gauge
theory coupled to fermions and scalars that has a nonper-
turbative regularization of some type, be it lattice gauge
theory or string theory. In the high energy way of thinking,
we do not require the absence of gauge fields in the micro-

scopic description, for example, wewould accept an asymp-
totically free gauge theory interacting with Dirac fermions.
In the low energy theory, we have two general interests.

First, any putative non-Abelian particlelike excitations
should have a clearly defined configuration space. We
should have a clear understanding of the nonlocality in-
herent in this configuration space that permits otherwise
pointlike objects to have interesting statistics. Second, it
must be possible to perform motions of the non-Abelian
excitations without high energy cost, without dramatically
exciting other degrees of freedom, without violating cau-
sality or unitarity, and without producing decoherence in
the space of ‘‘protected’’ states. For example, decoherence
due to unscreened gauge fields limits our ability to super-
pose states with macroscopically different charge con-
figurations. We emphasize especially the issue of the low
energy configuration space. This space must be rich
enough to support representations of its fundamental group
that are nonlocal, as with non-Abelian anyon representa-
tions of the braid group in 2þ 1. The symmetric group is
known to be insufficient for this purpose [12,13], and in-
deed as a finite group its image in any unitary group must
be quite limited.
In this paper we study the possibility of non-Abelian

particlelike excitations in a 3þ 1 dimensional field theory.
In particular, we explore the apparent conflict between a
single Majorana zero mode of the ’t Hooft-Polyakov
monopole (we will refer to such an object as a
‘‘Majorana monopole’’) and microscopic consistency of
the SU(2) gauge theory.
The outline of the paper is as follows. In the next section

we generalize the classic analysis of Jackiw and Rebbi [14]
to construct the zero mode solution of the Dirac equation in
the Witten-anomalous theory described above. In Sec. III,
we discuss the cancellation of the Witten anomaly and its
effects on the zero mode structure of the monopole. In
Sec. IV, we discuss an instructive example in 4þ 1 dimen-
sions. In Sec. V, we provide general arguments for obstruc-
tions to Majorana monopoles in 3þ 1 dimensions
following the desiderata described above.
Related work appears in [15], which studies an interest-

ing fermion dimer model whose low energy physics in-
cludes Majorana monopoles interacting with gauge fields
as well as gapless fermionic degrees of freedom. Some
features of three-dimensional non-Abelian particles appear
to be realized in their model, but we emphasize that
their conclusions do not contradict our own; our analysis
suggests that the gapless fermions are essential.
Reference [15] also studies a five-dimensional model simi-
lar to the one discussed in Sec. IV.

II. MAJORANA MONOPOLES IN AN
ANOMALOUS THEORY

Consider an SU(2) gauge theory in 3þ 1 dimensions
with a scalar field � in the adjoint representation; we will
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suppose that the action for� is such that in the ground state
it breaks SU(2) down to U(1). Include also a single SU(2)
doublet of Weyl fermions, �; altogether there are 23 ¼ 8
real fermion degrees of freedom. This is half as many
fermion degrees of freedom as considered by Jackiw and
Rebbi in their 3þ 1-d discussion [14] and the same num-
ber as considered by Witten [8]. As we demonstrate next,
this theory suffers from the Witten anomaly—if we try to
quantize the gauge field, we get nonsense. Specifically, the
partition function vanishes and expectation values of
gauge-invariant observables are undefined. For the discus-
sion in this section the bosonic fields�, Awill therefore be
treated as background fields.

Consider the fermion Lagrange density

Lfermions¼�yi ���D���1

2
��Ti�2i�2 ~� � ~��þH:c: (2.1)

Here ��a is a (left-handed) Weyl doublet of SU(2): � ¼ 1,
2 is a spin index, a ¼ 1, 2 is a gauge index. ��� ¼
ð1;� ~�Þ�. The covariant derivative is defined as
ðD��Þ�a ¼ @���a � igA�ab��b, where A�ab is the

SU(2) gauge field. � is a complex coupling constant.
Note that because � is in a pseudoreal representation of
both the SU(2) gauge group and the Lorentz group, the
object �C � �Ti�2i�2 transforms in the conjugate repre-
sentation of both groups. There is no nonvanishing, gauge-
invariant and Lorentz-invariant mass term (not involving
the Higgs field�) with this field content. Wewill comment
in Sec. III D on the effect of Lorentz-breaking terms of the
form �y�.

This theory has two independent mass scales: the mass
of the W bosons, mW ¼ gv (v is the vev of the adjoint
Higgs field, g is the SU(2) gauge coupling at the scalemW),
and the mass of the fermion �v.

A. Persistence of Witten anomaly

The addition of the adjoint scalar � and its coupling to
the fermion doublet does not modify the anomalous trans-
formation law of the fermion determinant. That this is the
case can be seen by embedding the theory in an SU(3)
gauge theory with a perturbative gauge anomaly as in
[16–18]. The relevant theory has an SU(3) adjoint scalar
~�, an SU(3) triplet of Weyl fermions ~�, and an SU(3)
triplet of scalars �, with the coupling

LSUð3Þ � ~�a�b�abc ~�cd ~�d; (2.2)

where a ¼ 1, 2, 3 is a triplet index. Condensing the scalar
triplet h�i ¼ � breaks the SU(3) down to SU(2), and the
coupling (2.2) reduces to the desired coupling between
the Weyl fermions charged under the unbroken SU(2)
and the adjoint scalar in (2.1). The form of the perturbative
SU(3) anomaly is unaffected by the addition of scalars and
so the calculation of the variation of the fermion measure
by integrating the SU(3) anomaly [16–18] is unmodified
compared to the theory without scalar fields.

B. The Majorana zero mode

The Dirac equation which results from varying (2.1) is

0 ¼ 	 ��Sfermion ¼ �i ���D��þ �yi�2� � �i�2�?: (2.3)

We consider this Dirac equation in the background of the ’t
Hooft-Polyakov monopole solution,

AB
0 ¼ 0; AB

i ¼ �ijBr̂
jAðrÞ; �B ¼ r̂B
ðrÞ (2.4)

(B ¼ 1, 2, 3 is an adjoint index) with

AðrÞ �r!1
1=r; 
ðrÞ �r!1

v: (2.5)

A zero-energy solution of (2.3) is of the form ��a ¼
i�2�agðrÞ (where � is the spin index and a is the SU(2)
index). This is the same ansatz as in equation A4 of [14].
With this substitution, the zero mode equation reduces to

ð@i þ 2r̂iAÞgþ i�
r̂ig
? ¼ 0: (2.6)

By rephasing the � field, we can assume WLOG that � is
real and positive. The solution for g is then

gðrÞ ¼ ce��i=4e�
R

rð�
�2AÞ; (2.7)

where c is a real constant. We emphasize that the phase of
the normalizable solution is determined by normalizability
of the solution at large r.
Quantizing this fermionic collective coordinate gives a

Majorana fermion acting on the monopole Hilbert space,
which is represented by a unique state. This leads inevita-
bly to non-Abelian statistics for the monopoles, in the same
manner as expected for vortices in pþ ip superconductors
or the Pfaffian quantum Hall state [5,19–22]. Briefly, two
widely-separated monopoles will have two Majorana zero

modes, which can be combined into c ¼ �1þi�2

2 , with

fc; cyg ¼ 1; this algebra must be represented by a two-state
system. Interchanging the monopoles adiabatically imple-
ments the operator

U1Ð2 ¼ exp

�
�

4
�1�2

�
¼ exp

�
i
�

4
ð1� 2cþcÞ

�
:

With two pairs of monopoles we could perform operations
which do not commute with each other.
We note that the coupling of � to the gauge field does not

play a crucial role in generating this zero mode; since
[by (2.5)] the dominant term in the exponent of (2.7) at
large r comes from the scalar profile, the gauge field can be
set to zero without interfering with the zero mode. The
existence of the zero mode solution without the gauge field
essentially follows from the analysis of [3].
If only this were a consistent quantum system. We

describe one pathology of this system. Recall that in the
case of a Dirac fermion there is a complex fermion zero
mode in the ungauged theory. Once the SU(2) symmetry is
gauged, the low energy gauge group is U(1) and hedgehog
configurations become magnetic monopoles. Now what
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happens to the two states living on a hedgehog in the
ungauged theory? In fact [14], they become bosonic, hav-
ing charge �1=2 under the unbroken U(1) due to the low
energy U(1) theta term of �. To see this, assume that the
charge�1=2 state is bosonic, then when we add a fermion
in the zero mode of charge 1 we reach a state of charge 1=2
which would appear to differ in spin by 1=2 from the
bosonic state. But we have forgotten the gauge field which
adds extra angular momentum. Indeed, a unit charge orbit-
ing a minimal monopole leads to a gauge field configura-
tion with angular momentum given by a half integer. This
extra half integer angular momentum when combined with
the bare half integer angular momentum of the fermion
leads again to a bosonic state. In fact, we can check from
the structure of the zero mode that the position and spin of
the fermion are correlated so that no matter where the
fermion is measured its spin will always compensate the
r̂ angular momentum contribution coming from the field.

Now the puzzle: in the case of a single Weyl fermion, we
found that the complex fermion was replaced by a real zero
mode, but what should happen when we turn on the gauge
field? Heuristically, we should obtain half of the pair of
states with charges �1=2. Let Oþ1 be an operator that
moves us from the �1=2 to the 1=2 charge state so that
Oþ1 carries charge 1. By analogy with the definition of the
Majorana fermion, an apparently interesting combination

to consider is Oþ1 þOy
þ1, but this operator creates states

that decohere in the presence of the fluctuating U(1) field;
we can identify no candidate for the pointer states into
which they should decohere. Is the Witten anomaly to
blame? The simplest resolution of the Witten anomaly,
namely, adding a second identical Weyl doublet, removes
the spectre of decoherence by adding an extra real zero
mode in the monopole core allowing for complex solu-
tions, as we will see next.

To summarize, we found an SU(2) gauge theory where
magnetic monopoles of an unbroken U(1) gauge field
appear to carry Majorana zero modes. However, this theory
suffers from the Witten anomaly rendering all gauge-
invariant observables ill-defined. Related pathologies in-
clude a violation of fermion number by instantons and
decoherent U(1) charge superpositions. In what follows,
we try to cure the Witten anomaly while preserving the
zero mode structure of the monopole.

III. CANCELLING THE WITTEN ANOMALY

It is possible to cancel the Witten anomaly by adding to
the action a certain functional of the adjoint scalar. To see
that this is the case, consider integrating out a Weyl fer-
mion �2 coupled to the scalar field as above:

ln
Z

D�2 expðiSferm½�2�Þ ¼ �½�; A�
þ nonuniversal stuff: (3.1)

The functional � defined by this equation is well behaved
because of the gap in the fermion spectrum. The both-hand
side of Eq. (3.1) must shift by � (mod 2�) under an SU(2)
gauge transformation representing the nontrivial class of
�4ðSUð2ÞÞ. The fact that the nonuniversal, short-distance
stuff on the right-hand side (rhs) does not accomplish this
shift follows because it is not sensitive to the topology of
spacetime.
It is difficult to give an explicit expression for the func-

tional �. Naively, the WZW term for SU(2) vanishes
identically. However, our term is not quite the usual
WZW term since it arises from a Pfaffian rather than a
determinant, i.e. it is invariant under only real-linear basis
changes. A similar situation with different fermion repre-
sentations arises in [9,10], where the effective action con-
tains terms taking the form of the gauge variation of our
functional �. In Sec. II A, we have determined the anoma-
lous transformation of � by embedding into a theory with a
perturbative anomaly; this trick does not immediately de-
termine the form of � itself. It would be useful to find an
explicit expression for this functional.
One thing about �, however, is certain: it is ill-defined

when the order parameter � is not invertible. A simple
argument for this is that only when � is invertible are the
fermion degrees of freedom gapped. Therefore, in any field
configuration where � vanishes, such as the core of
the magnetic monopole, a model where the Witten anom-
aly is cancelled by the variation of �½�� requires a UV
completion.
The simplest way to do this is obviously to integrate in

the second Weyl doublet �2 by which we proved the
existence of �; we study this possibility next. Are there
other ways? In the final section, we will argue that the
answer is ‘‘no’’.

A. Generic couplings in the two-Weyl-doublet theory

Consider the fermion lagrangian density

L2fermions ¼ �Iyi ���D��I � �IJ�T
I i�

2i�2 ~� � ~��J þ H:c:

�mIJ�T
I i�

2i�2�J þ H:c: (3.2)

Here �I�a are a pair of (left-handed) Weyl doublets of
SU(2): I ¼ 1, 2 is a flavor index, � ¼ 1, 2 is a spin index,
a ¼ 1, 2 is a gauge index. Altogether there are now 23 ¼ 8
complex fermion degrees of freedom. This is the same set
of fermion degrees of freedom considered by Jackiw and
Rebbi and twice as many as considered by Witten.
We now comment on symmetries of this action and

simplifications that can be made by field redefinitions of
the fermions. The Yukawa coupling term is more explicitly
written as

�IJ�T
I i�

2i�2 ~� � ~��J þ H:c: ¼ �IJ�T
I i�

2i�2 ~� � ~��J

þ �yIJ�y
I ~� � ~�i�2i�2�?

J :
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The matrix � is symmetric, �IJ ¼ �JI by Fermi statistics.
A general complex symmetric matrix is not diagonalizable
but rather has different right and left eigenvalues. A com-
plex symmetric matrix has a singular value decomposition
(SVD) (called Takagi decomposition) of the form

� ¼ WdWT; (3.3)

where d is diagonal with real, positive entries

d ¼ �1 0
0 �2

� �
;

and W is unitary.
Rephasing the fermion fields by a unitary rotation

U ¼ ðU�1Þy
�I ! UJ

I�J (3.4)

changes the coupling matrix � by

� ! U�UT ¼ UWdWTUT: (3.5)

Choosing U ¼ W�1 gives � ¼ d.
By Fermi statistics, the Dirac mass matrix mIJ is anti-

symmetric, mIJ ¼ m�IJ. The effect of the rephasing (3.7)
on the Dirac mass is therefore mIJ ! mIJ detU. Having
fixed our freedom to rephase the fermions, the phase of the
Dirac mass m will be significant. Global symmetries can
constrain the phase of m. In particular, with a Hermitian
mass matrix,m ¼ my, the model preserves aCP symmetry
which acts by � � i�2i�2�?.

When � is purely off-diagonal

� ¼ 0 �0

�0 0

� �

the system admits an extra U(1) symmetry under which

�1 � ei��1; �2 � e�i��2: (3.6)

When the Dirac mass vanishes, the resulting model is
identical to the model studied in [14]. To see this, construct
from the two left-handed Weyl doublets a single Dirac
fermion

� �
�

�1

�?
2 i�

2i�2

�
: (3.7)

Then the action (3.2), with � off diagonal and �0 � �R
0 þ

i�I
0, is

L2fermions ¼ ��i 6D�� ��ð�R
0 þ i�I

0�
5Þ ~� � ~��þm ���:

(3.8)

Returning to the SVD form of the action, this is equivalent
to the case where the diagonal entries are equal �1 ¼ �2. In
this basis, the U(1) symmetry acts as the SO(2) rotation

�1 þ i�2 � ei�ð�1 þ i�2Þ: (3.9)

The general two-Weyl-doublet theory now has three
mass scales: the mass of the W bosons, mW ¼ gv, and
the masses of the two Weyl fermions �1;2v. In the regime

�1v � mW � �2v (3.10)

we have a large window of energies in which the bulk
spectrum is that of the Witten-anomalous theory studied
above.
We note that the theory with two Weyl doublets admits

a Lorentz-violating (but gauge-invariant and rotation-
invariant) mass term of the form

LNR ¼ MIJ�y
I �J: (3.11)

We will comment below in Sec. III D on its effects on the
zero mode structure.

B. FZMs in the two-Weyl-doublet theory

The Dirac equation is now

0 ¼ 	 ��I
Sfermion

¼ �i ���D��I þ �y
IJi�

2� � �i�2�?
J þmy

IJi�
2i�2�J:

(3.12)

When the Dirac mass m ¼ 0, in the basis where � is
diagonal, the zero mode equations for �1;2 decouple, and

each is of the form of (2.7). There are then two real
solutions:

�I�aðrÞ ¼ i�2�agI; gI ¼ cIe
��i=4e�

R
rð�I
�2AÞ: (3.13)

C. Effect of the Dirac mass

With a nonzero Dirac mass, the zero mode equations
for �1;2 are coupled. A nonzero Dirac mass requires any

putative zero mode solution to include also a triplet com-
ponent, i.e. to have the more general form

�a�I ¼ i�2a�gI þ ið�2�iÞa�giI: (3.14)

The zero-energy Dirac equation is

0 ¼ i ~� � ~D�� �~� � ~�i�2i�2�? þmi�2i�2�?: (3.15)

Here we have assumed my ¼ þm, and more specifically

� ¼ �1 0
0 �2

� �
m ¼ i

0 �
�� 0

� �
(3.16)

with �1;2; � real and positive. The reality of � (which

implies that the Dirac mass matrix is Hermitian) is not
fully general; we return to this point anon.
Following [14], let

��aI ¼ M�bIi�
2
ba ¼ ð	�bgI þ �i

�bg
i
IÞ�ba: (3.17)

This decomposition incorporates the breaking of
SUð2Þgauge 	 SUð2Þspin and decomposes � 2 ð2; 2Þ into

irreps of the unbroken SU(2). It reduces the Dirac equation
to the two equations:
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0 ¼ i ~rg� 2ir̂Ag� 3 ~g	 r̂Aþ �yg?
r̂�my ~g?

þ i ~r	 ~gþ �
r̂	 ~g?

0 ¼ i ~r � ~gþ 2i ~g � r̂A� �y ~g? � r̂
þmyg?: (3.18)

The last term in (3.18) forces us to include a nonzero ~g
when m � 0. The equations for g, ~g are (not too surpris-
ingly) similar to [14] equation A7a, b, with extra terms
coming from the Dirac mass.

We make an ansatz of the form ~g ¼ r̂grðrÞ. This elim-
inates the curl terms in the Dirac equation, leaving

0 ¼ i ~rg� 2ir̂Ag� �yg?
r̂�my ~g?

0 ¼ i ~r � ~gþ 2iA ~g � r̂þ �y ~g? � r̂
þmyg?:
(3.19)

We choose the phases of g, gr so that ig ¼ g?

g � �h; gr � ��1hr; � � e��i=4: (3.20)

The Dirac equation becomes

0 ¼ ~rh� 2r̂Ahþ �yh
r̂þ�� ~h (3.21)

0 ¼ ~r � ~h� 2A ~hþ �y ~h � r̂
���h: (3.22)

In (3.21) and (3.22), all complex phases are explicit. With
the assumption (3.16), we have �y ¼ � is diagonal. The �
symbol acts on the IJ flavor indices and is the only thing
which does.

The particular solution of (3.22) for ~h given the
source h is

hr ¼ þ��r�2e� ~H
Z r

s2e
~HhðsÞ; (3.23)

where ~H � R
rð~�
� 2AÞ and ~� has the property that

~�m ¼ m�; (3.24)

which in turn requires

~� ¼ �2 0
0 �1

� �
: (3.25)

Plugging the solution (3.23) into (3.21) (and remembering
that �2 ¼ �1) gives

@rhþ ð�
� 2AÞh ¼ þ�2r�2e
~H
Z r

dss2e� ~Hh: (3.26)

Substituting h ¼ e�H� with H � R
rð�
� 2AÞ gives

r2@r� ¼ �2eH� ~H
Z r

dss2e
~H�H�: (3.27)

Differentiating (3.27) (and thereby introducing an extra
integration constant) gives the linear second-order ODE
for �:

r�2@re
~H�Hr2@r� ¼ �2e

~H�H�: (3.28)

We know the asymptotic behavior of the solutions at large
and small r. At small r, H, ~H ! 0, and the Eq. (3.28)
reduces to the Helmholtz equation

r2� � r�2@rr
2@r� ¼ �2�; (3.29)

whose solutions are

� �r!0
cð�Þ e

��r

r
þ cðþÞ e

þ�r

r
: (3.30)

The combination of these solutions which also solves the
integro-differential Eq. (3.27) in the small-r regime has

cðþÞ ¼ �cð�Þ � �c:

� �r!0 c

r
ðe��r � eþ�rÞ: (3.31)

Note that only the combination ~H�H ¼ �T1
R
r 


(where 1IJ � 	IJ; �T ¼ �1 � �2) enters this equation.
We emphasize that there is one such solution for each
value of the flavor index I ¼ 1, 2 belled by a real integra-
tion constant cI:

�I �r!0 cI
r
ðe��r � eþ�rÞ: (3.32)

In the special case where the eigenvalues of � are degen-
erate, �T ¼ 0, the equation for � is exactly the Helmholtz
equation. In this case, the solution (3.32) is exact.
At large r, 
ðrÞ�r!1 v and AðrÞ�r!1 a0

r . Therefore

H �r!1 �1vr 0
0 �2vr

� �
; ~H �H �r!0

�Tvr1: (3.33)

To discuss the normalizability of the solutions at large r,
we distinguish various parameter regimes.
(i) If � ¼ 0, both solutions �I in (3.32) are normal-

izable for all �1;2. Varying the signs or phases of �1;2

is innocuous; it merely changes the overall phase of
the zero mode solution and can be absorbed in a field
redefinition.

(ii) For small �,

�<
1

2
j�1 � �2jv; (3.34)

both zero modes are still normalizable.
(iii) Since the zero mode wave functions involve prod-

ucts of exponentials of the form e�re��vr, one
might have thought (pantingly) that one zero mode
would become non-normalizable, e.g. for � in be-
tween the two Yukawa-induced fermion masses

�1v <�< �2v: (3.35)

This hope is not realized—there is no change in the
normalizability of the modes at � ¼ �1v.

(iv) For � larger than the geometric mean of the fer-
mion masses,
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ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
v <�; (3.36)

bothmodes are non-normalizable. There is no value
of the parameters for which an odd number of
Majorana modes are normalizable.

It is interesting to note that we are free to tune the
effective sizes of the two real zero modes independently
of each other. By adjusting �1 and �2 we can produce a
shell-like configuration of zero modes. More precisely, by
making one of the fermion masses very heavy, we can
arrange [in the parameter regime (3.35)] for only one
zero mode to have a sizable wave function until very close
to the monopole core, as shown in Fig. 1. Whether this
separation of scales could in principle allow for interesting
physical effects is not clear to us.

Note that the variation of the bulk fermion spectrumwith
� corroborates the understanding of the normalizability
properties of the zero modes presented above. The product
of the bulk fermion masses is the determinant of the
fermion mass matrix

M ¼ v� 
 �3 þm 
 1

¼
�1v i� 0 0
�i� �2v 0 0
0 0 ��1v i�
0 0 �i� ��2v

0
BBB@

1
CCCA (3.37)

which is

detM ¼ ð�1�2v
2 ��2Þ2: (3.38)

Comparing (3.38) to the condition for normalizability of
the zero modes on the monopole, (3.36), we see that
precisely when the zero modes become marginally normal-
izable, there is a massless fermion in the bulk. For� above
the critical value, the zero modes leak out of the monopole
core and join the bulk states.

If m is not Hermitian, any rephasing analogous to (3.20)
produces overconstraining equations: the solutions are
forced to have nonzero energy. As we discussed above, a
CP symmetry can enforce Hermiticity of m.

D. Nonrelativistic mass

The nonrelativistic mass m�y� appears in the Dirac
equation in precisely the same way as the energy. In fact,
this term is nothing but a chemical potential for the chiral
symmetry, and thus it clearly breaks Lorentz invariance
while preserving rotational symmetry. As the full chiral
symmetry is anomalous, this term produces a finite density
of fermions carrying a nonconserved charge. This symme-
try is also explicitly broken by the scalar coupling, and so
even without the anomaly the chiral symmetry is broken as
in a superconductor. As the fermion spectrum remains fully
gapped in the presence of the scalar coupling, we expect
that the nonrelativistic mass does not seriously affect the
zero-mode spectrum. This must be true in the ungauged

theory of a single Weyl doublet coupled to a scalar field in
the adjoint, as such a theory has only a single Majorana
mode on a hedgehog that cannot pair and disappear.

IV. FIVE-DIMENSIONAL REALIZATION

Consider SU(2) Yang-Mills theory in 4þ 1 dimensions
with a five-dimensional Dirac fermion in the doublet rep-
resentation, and an adjoint scalar in its condensed phase.
Identify the fourth spatial dimension y ’ yþ 2�R.
Consider a kink-antikink configuration of the five-
dimensional Dirac mass MðyÞ of the fermion, with the
kink and antikink on opposite sides of the circle, that is

M ¼ þm; y 2 ð0; �RÞ; M ¼ �m; y 2 ð�R; 2�RÞ:
(4.1)

The kink and antikink each support a four-dimensional
massless Weyl fermion (for a useful review, see [23]).
We can arrange for the four-dimensional coupling to the
scalar field that we have been considering by using the fact
that spinor representations in five-dimensions are also
pseudoreal (the Lorentz group is equivalent to a symplectic
group which has a real invariant form). Using the four-
dimensional chiral basis, a five-dimensional spinor may be
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FIG. 1 (color online). Top: The profile of the zero mode
solution for � ¼ 0. Bottom: One of the profiles in the parameter
range (3.35), exhibiting the ringlike structure.
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written � ¼ ½c L; c R�T . The combination c T
Li�

2c L þ
c T

Ri�
2c R is manifestly invariant under four-dimensional

Lorentz transformations. The extra four transformations
in the five-dimensional Lorentz group, generated by
½�4; ���, act infinitesimally like 	c L ¼ ���c R and
	c R ¼ �� ���c L. The invariance under five-dimensional
Lorentz transformations then follows from the identity
ð��ÞTi�2 þ i�2 ��� ¼ 0. (That is, the symplectic invariant
of SOð4; 1Þ is � � �1�3.) The full coupling is then

c T
Li�

2i�2�c L þ c T
Ri�

2�2�c R ¼ �Ti�2���:

Wewould like to view this model in analogy with lattice
realizations of a single 2þ 1-dimensional Dirac fermion
on the boundary of a 3þ 1-dimensional lattice. The extra
dimension allows one to evade the lattice doubling no-go
theorems [24–26]. The Witten anomaly seems to be can-
celled by inflow from the bulk. The precise meaning of the
previous sentence could be clarified given an explicit ex-
pression for the WZW functional �½A;��.

This model is unsatisfactory in at least three ways. First,
its five-dimensional nature may make it hard to realize in
the laboratory. Secondly, five-dimensional Yang-Mills the-
ory is not asymptotically free and must be completed at
short distances somehow (string theory gives interesting
ways to do this, e.g. [27]; this model can also be latticized).
Thirdly, if we allow the profile of the mass to fluctuate, the
kink and antikink can annihilate each other. Nevertheless,
the model is instructive.

The model has many mass scales: the W-boson mass
MW , the Kaluza-Klein scale R�1, the Dirac mass m, the
inverse thickness of the kink, and an extreme UV cutoff
above which the gauge theory succumbs to higher-energy
physics. The last two we suppose to be inaccessibly high.

At energies E � 1=R, this model reduces to the two-
doublet theory studied in the previous section.

Having added an extra spatial dimension, monopoles
(whose topological charge is characterized by a nontrivial
element of �2ðS2Þ) now become stringlike objects which
we refer to as ‘‘monopole strings’’. Consider a monopole
string winding around the fifth dimension at some point in
three-dimensional space, ~r ¼ 0. From a four-dimensional
point of view, this appears to be a magnetic monopole.
This follows from the fact that the monopole string current
J
�
M sources the five-dimensional U(1) field strength
via dF ¼ JM. Where the vanishing loci of the order pa-
rameter � and the five-dimensional Dirac mass intersect,
the five-dimensional Dirac equation will support localized
Majorana zero modes.

This model demonstrates that the two Majorana modes
need not pair up. Here their wave functions are separated in
the extra dimension. In the regime m � R�1, their overlap
is exponentially small.

To illustrate the physics of this five-dimensional con-
struction, we consider a configuration of four monopole
strings each parallel to the compact direction and wrapping

once around it. Each of the i ¼ 1; . . . ; 4 monopole strings
intersects each of the a ¼ 1, 2 domain walls once for a
total of 4 � 2 ¼ 8Majorana modes that we label �ia. These
operators satisfy the algebra f�ia; �jbg ¼ 2	ij	ab and are

real �þ
ia ¼ �ia. From the point of view of four-dimensional

physics, a natural basis for this space of states comes by

forming complex fermions ci ¼ �i1þi�i2

2 made from

Majoranas at the same point in the noncompact directions.
Using these fermion operators we can build a space of 24

states which further subdivides into an eight-dimensional
subspace of even fermion parity and an eight-dimensional
subspace of odd fermion parity.
Three important questions must now be answered. First,

what states can be produced by creation of such a system
from the vacuum state (or any other state without such a
configuration of monopole strings)? Second, what opera-
tions on the monopole strings can be carried out without
large energy cost? Third, what decoherence-free super-
positions are possible?
The first question has two immediate answers. The

simplest local (from the four-dimensional point of view)
vacuumlike state is the state annihilated by all the ci
defined above. The Majorana modes �i1 and �i2 can be
viewed as the ends of a ‘‘quantum wire’’ as in [28], and it is
quite natural from the four-dimensional point of view to
pair up these Majoranas. The second immediate answer
comes from thinking about the creation process by which
such a monopole string configuration could be formed. For
example, we could take monopoles 1 and 4 to have mag-
netic charge 1 and monopoles 2 and 3 to have magnetic
charge�1. Then we could pair create 1, 2 and 3, 4 from the
vacuum state. With this process in mind, and remembering
that the Majorana wave function overlap in the compact
direction can be made exponentially small, a natural initial
state would be that state annihilated by complex fermions
formed from Majoranas on neighboring monopoles (inde-
pendently for each domain wall). This state also has even
fermion parity but is not equal to the state annihilated by all
the ci.
As for low energy operations, we must at least require no

macroscopic stretching of the monopole strings beyond
that required to have the monopole wrap the compact
direction. If T is the monopole tension, then the mass of
the monopole string is 2�T R. In order to perform opera-
tions on the zero mode Hilbert space, we would like to
entertain motions of the monopole strings. However, we
must move an entire monopole string at once in order to
avoid a large energy cost associated with stretching the
monopole string. This always means exchanging pairs
(coming from the two domain walls) of Majorana modes.
For example, consider exchanging monopole strings
2 and 3 in the configuration above. This implements the
operator

U2Ð3 ¼ exp

�
�

4
ð�21�31 þ �22�32Þ

�
;
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but this operation can be reexpressed in terms of the ci as

U2Ð3 ¼ exp

�
�

2
ðc2cþ3 þ cþ2 c3Þ

�
:

This operator acts trivially on states with cþ2 c2 ¼ cþ3 c3
and exchanges pairs of states with cþ2 c2 ¼ 1� cþ3 c3mod2.
In other words, it simply moves around local fermions
from the four-dimensional perspective. Note also that we
have not included the dynamics of the gauge field during
this exchange process. We note in passing that there is
interesting physics associated with the dynamics of the
gauge field, particularly the role of instantons; for example,
an instanton localized along a line in five-dimensional
spacetime describes a conduit via which fermions tunnel
from onewall to the other. Since the four-dimensional local
basis effectively stacks the two Weyl fermions on top of
each other, the physics should be qualitatively similar to
the case of a single Dirac fermion in four-dimensions
discussed above. In particular, once the gauge field motions
are included, we find that the states built from the ci
operators are actually all bosonic because of the extra
angular momentum coming from the gauge field.

Finally, what about decoherence-free superpositions?
The four-dimensional local basis ci seems naively deco-
herence free, but another regime is possible where the
smallest scale is R�1. In this regime, the Abelian gauge
field resulting from the Higgsing of SU(2) looks five
dimensional and may even decohere the fermions in the
four-dimensional local basis generated by the ci. However,
in this case we are faced with the question: decohere to
what? There seems to be no local basis once the gauge field
is allowed to fluctuate in the 5th dimension. There is also
no superconductivity to justify forming decoherence-free
superpositions of different charge states. In fact, there is
an even simpler configuration that can cause concern.
Consider a single monopole string forming a closed loop
which does not wrap the extra dimension but still punctures
one of the domain walls twice. Now this configuration may
cost a lot of energy and be unstable, but assuming we could
hold the monopole string in place, we appear to have two
Majorana modes on a single domain wall but again with no
obvious local basis to decohere into. We are again faced
with the question: decohere to what?

To resolve these issues, we need to bring in a thus-far
neglected piece of the puzzle. In four-dimensions the
SU(2) monopole has a collective coordinate, a rotor degree
of freedom corresponding to the unbroken U(1) charge.
The excitations of the rotor generate the familiar dyon
states of the monopole. In the five-dimensional model we
have a new complication: instead of a single quantum
mechanical rotor, we are faced with a rotor degree of
freedom for each point on the monopole string. Thus the
monopole string supports a finite-size realization of the
1þ 1 dimensional XY model, a c ¼ 1 conformal field
theory. These gapless degrees of freedom can significantly
affect the physics. Charge will be dynamically screened by

the gapless rotor degrees of freedom living in the monopole
string core. In the parameter regime where the compact
radius is large, we have five-dimensional U(1) gauge the-
ory, and the only configurations of the Majorana zero
modes that remain decoherence free are those connected
by a single rotor string, and they are still linearly confined
by the monopole string tension. Thus for strings wrapping
the compact direction the decoherence-free subspace is
always the four-dimensional local basis and we recover
the low energy physics of the Dirac fermion coupled to a
scalar in four-dimensions as we must. We can also consider
monopole strings as above that intercept only one domain
wall, but here the Majorana zero modes are bound by the
monopole string stretching between them, the same string
that screens their gauge charge.

V. CONCLUSIONS AND GENERAL ARGUMENTS

Despite a promising attempt, we have not found a con-
sistent field theory with Majorana monopoles that are not
linearly confined. We would like to argue that this con-
clusion is general and will do so from a variety of points of
view.

A. Monopole configuration space

If we had found a consistent gauge theory with unpaired
Majorana operators on the cores of monopoles, we would
have been in serious trouble. Indeed, the fundamental
group of the bare N-monopole configuration space is pre-
cisely SN , and we know that this group has no interesting
nonlocal representations [1,12,13,29].1 The existence of
extended magnetic field lines does not help since the static
magnetic field configuration is completely specified by the
positions of the monopoles via the magnetic Gauss law.
One might have hoped that the Dirac string, which is the
remnant of the ribbon that proved so essential in the
ungauged theory [4], could play a similar role here.
However, this string is unphysical as its position can be
moved using gauge transformations. For example, in lattice
U(1) gauge theory the Dirac string is completely mean-
ingless and undefined. Thus the only remaining possibility
is the existence of some subtle topological information
encoded in the existence of the Dirac string (but not its
precise position) in certain UV completions of U(1) gauge
theory. We can find no such data and although we do not
prove it cannot be found, we regard this possibility as quite
remote. The main point is simply that the configuration of
monopoles in a Coulomb phase is insufficient to support
non-Abelian particles. One would have to add extra data
beyond the monopole positions in any model that realized
non-Abelian particlelike excitations.

1Deligne’s theorem [29] proves that replacing the braid group
by the symmetric group gives ‘‘local’’ theories called RepðG;�Þ.
We have bosons (� ¼ 1) or fermions (� ¼ �1) with a local
‘‘internal’’ symmetry G.
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B. Callias index and anomaly

Here we make a precise connection between the
Majorana number mod two and the Witten anomaly.
Roughly, we can relate the Witten anomaly to the chiral
anomaly mod two; in turn we can relate the chiral anomaly
mod two to the Majorana number of the monopole.

In a theory with a Witten anomaly, a chiral rotation by �
is an element of the gauge group [30,31], i.e. ð�1ÞF acts in
precisely the same way as a gauge rotation ei��3 for some
gauge generator �3. One way to think about this statement
is that there are no gauge-neutral excitations which carry
unit fermion number; this means that the fermion number
and the gauge charge are the same mod two. The chiral
anomaly mod two is therefore in fact a gauge anomaly
[30,31]. In the Witten-anomalous theory, the chiral anom-
aly—i.e. the fact that an instanton violates the chiral charge
by one unit (destroys a rh fermion or creates a left-hand
(lh) fermion)—means that the instanton must also violate
the gauge symmetry (despite the fact that there is no local
gauge anomaly).2

The chiral anomaly mod two in turn is related by
(a generalization of) Callias’ index theorem [34] to the
number of real fermion zero modes of the monopole. The
result proved by Callias counts the index of a complex-
linear Dirac operator; this is the number of complex zero
modes weighted by some version of chirality. Because of
the coupling to the Higgs field �, our Dirac operator is
only real-linear, and we wish to count its real zero modes
(in a monopole background), mod two. This kind of zero
mode counting has been considered in [35], and they
concluded that the Chern number indeed counts the
Majorana number mod two. Thus it seems that within the
setup of microscopic fermions coupled to an SU(2) gauge
field and an adjoint scalar, the existence of an unpaired
Majorana zero mode in the ungauged theory is unavoidably
related to the presence of the Witten anomaly in the gauge
theory.

C. More arguments from low energy

More generally, we could ask if deconfinement is pos-
sible via the disordering route mentioned in the introduc-
tion. This scenario has at least two problems. First, as we

argued above, the configuration space of monopoles is too
trivial to support non-Abelian particles. It appears we must
gauge away the ribbon data or disorder it away. Second,
given the unbroken global SU(2) symmetry in the disor-
dered phase, the quantum numbers of local excitations
should be consistent with the unbroken symmetry. It is
hard to see how we can build a sensible real zero mode
without doing violence to the SU(2) group structure.
This question can be addressed in more detail using the

slave particle techniques which have been developed for
the study of spin liquids (i.e. disordered ground states of
quantum spin systems). In the disording scheme described
in the introduction, we write the order parameter in terms
of bosons z� as ni ¼ zþ�iz. In a fractionalized phase with
unbroken SU(2) symmetry the doublet fermions will be
screened by z and become SU(2)-neutral; however, the
resulting SU(2)-singlet fermions will carry an internal
U(1) gauge charge. As before, for any hope of success
we must disorder the n field without condensing hedge-
hogs. Assuming we can do this, hedgehogs will become
monopoles of the emergent U(1) gauge field. It appears
difficult to form the necessary decoherence-free superpo-
sitions of fermions charged under the internal U(1) to
produce Majorana zero modes on the monopole cores.
We also still have the problem of the monopole configura-
tion space. Thus we argue that such a phase is either
impossible or the number of Majorana zero modes on the
monopole changes across the phase transition.
It is possible for theUð1Þ gauge symmetry to be found in

a Higgs phase; in this case the Majorana solitons are
monopoles in a superconductor which again are linearly
confined by magnetic flux tubes, and it is perfectly con-
sistent to have localized states of indefinite charge.
We can consider other possibilities where there is no

Uð1Þ gauge symmetry at any energy scale. For example,
one could try to decompose the order parameter as ni ¼
bTi�2�ib with b a two component complex doublet of
bosons. Now the disordered phase will only have an emer-
gent Z2 gauge field, but the original order parameter has an
extra U(1) symmetry associated with b ! ei�b (whereas

the SU(2) transformation is b ! ei��
3
b. In other words, n

must be complex. Even if we break this symmetry in the
Hamiltonian we can still unwind hedgehog configurations
using the extra scalar degrees of freedom. This is to be
expected since the hedgehog would have turned into a
localized object in the Z2 gauge theory, but there is no
local object in such a theory in 3þ 1 dimensions (the
vortex from 2þ 1 is now a vortex line in 3þ 1).
The possibility remains that a 3þ 1-dimensional lattice

model exists with deconfined Majorana monopoles, i.e.
that the continuum limit (our starting point) fails to capture
some crucial element. Certain kinds of lattice models that
begin with Majorana fermions may, not surprisingly, more
easily produce Majorana excitations. If these models can-
not be realized with a ‘‘proper’’ regularization involving

2We note in passing that the fermion-number violation by
instantons seems to be a symptom of the Witten anomaly, rather
than an equivalent statement. We say this for the following
reason. Recently [32,33] it has been argued that it is possible
to modify gauge theories by restricting the instanton sum, for
example, to even instanton numbers. This would make the
partition function � periodic in � solve the obstruction given
in Eqs. (18, 19) of [31]. However, applying the path-integral
method for accomplishing this modification given in [33] to a
Witten-anomalous theory does not change the fact that the
fermion determinant faithfully represents �4ðSUð2ÞÞ and there-
fore does not prevent the gauge field path integral from
vanishing.
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only complex fermions coupled to superconductivity, then
we are tempted to regard them as too artificial. We can
easily design a network of Kitaev quantum wires in three
spatial dimensions that reproduce the topological aspects
of the Teo-Kane model; however, there is no SU(2) sym-
metry (it is reduced to a discrete subgroup), and the con-
finement is still linear. Without the full SU(2) symmetry we
cannot gauge the model. Furthermore, there can be no four-
dimensional lattice realization of the Teo-Kane model with
full SU(2) symmetry since such a lattice model, when
attached to the surface of the five-dimensional model
above, would produce a trivial surface. Put differently, if
such a lattice model did exist it could be trivially gauged,
and we would face the Witten-anomalous gauge theory
again.

We started from a desire to produce deconfined
non-Abelian particlelike excitations in 3þ 1 dimensions.
Specifically, we were interested in localized objects dis-
playing what could be called Majorana statistics. The
perhaps simplest route to deconfinement led to an anoma-
lous gauge theory. In attempting to cure the anomaly, we
found repeatedly that deconfinement requires the number
of Majorana zero modes to be even, giving ordinary
statistics. We have made many attempts: high energy fer-
mionic matter, extra dimensions, disordered phases exhib-
iting emergent gauge fields, but none led to deconfined
non-Abelian particles. This is all completely consistent

with general expectations about the nature of particle ex-
citations in three-dimensional space. We conclude with a
few comments for future work. We always find linear
confinement, but this may not be the most general situ-
ation. For example, we can argue that gauging only a
subgroup of the full SU(2) symmetry still leaves linear
confinement intact. So how strongly bound must such
non-Abelian particles be in general? Finally, there remains
the prospect that with the right low energy data, deconfined
non-Abelian particles would be possible. Although we
have ruled out many promising paths to this goal, it would
be very exciting to see such a possibility realized
elsewhere.
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