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We enlarge the usual D ¼ 3 N ¼ 1 supergraph techniques to include the case of (explicitly or

spontaneously) broken supersymmetric gauge theories. To illustrate the utility of these techniques, we

calculate the two-loop effective potential of the SQED3 by using the tadpole and the vacuum bubble

methods. In these methods, to investigate the possibility of supersymmetry breaking, the superfields must

be shifted by �� dependent classical superfields (vacuum expectation values), what implies in the explicit

breakdown of supersymmetry in the intermediate steps of the calculation. Nevertheless, after studying the

minimum of the resulting effective potential, we find that supersymmetry is conserved, while gauge

symmetry is dynamically broken, with a mass generated for the gauge superfield.
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I. INTRODUCTION

Supersymmetry (susy), if it exists in nature, must be a
broken symmetry since up to now mass degenerate Bose-
Fermi supermultiplets have never been observed. So, every
realistic model must include a mechanism of susy break-
down [1]. On the other hand, the superfield formalism
developed for exactly supersymmetric theories is a power-
ful technique for doing calculations, and its possible ex-
tension to broken susy is welcome.

The usual way of studying supersymmetry breakdown is
by treating the breaking terms in the Lagrangian (of qua-
dratic or of higher number of fields) as interaction vertices
to be incorporated as perturbations into the supersymmetry
preserving theory. Still, in the works [2,3], the superfield
formalism forN ¼ 1was enlarged to softly broken super-
symmetric models (in which no quadratic ultraviolet
divergences are triggered by the breaking terms) in 3 and
4 dimensions of space-time, by treating on an equal footing
all bilinear terms. The main difficulty to overcome in
this extension is to calculate the inverse of the kernel
of the bilinear part of the Lagrangian to obtain the
superpropagators.

In this paper, we will focus on the construction of this
extension for treating spontaneously broken supersymmet-
ric gauge models in three dimensions. This situation in-
volves bilinear breaking terms of forms different from that
studied in [2], besides symmetry breaking monomials with
higher number of fields. In fact, for studying the possibility
of spontaneous breaking of susy, we must translate the
fields by their vacuum expectation values, including ��
coordinate dependent terms. The kernel of the resulting
bilinear part of the Lagrangian is more general than that in
[2], and by using their operator algebra to obtain the super-
propagator of the spinorial gauge superfield, we learned
that it needs a completion. In effect, in [2], the authors

present an algebra of six antisymmetric plus six symmetric
bi-spinor operators, as a basis on which the bi-spinor
superpropagators (of the spinorial gauge potential) could
be expanded. It is interesting to note that these 12 operators
have a closed algebra, even if they fail as a basis for the
more general form of superpropagators that we find in the
example to be discussed below. We show that two other
operators are required to complete a basis in the more
general case.
The paper is organized as follows. In Sec. II the Super-

symmetric Quantum Electrodynamics in 3D (SQED3) is
defined in the superfield language, the algebra of operators
needed to invert the kernel of the bilinear part of
the Lagrangian is developed, and the superpropagators of
the shifted SQED3 are derived. In Sec. III we compute the
zero-, the one- and the two-loop corrections to the effective
potential. The Conclusions, Sec. IV, contain some discus-
sions of the results. Details of the calculations of the
effective potential are given in the Appendices.

II. THE MODEL AND THE ALGEBRA
OF OPERATORS IN 3D

In the notation of [4] (see also our Appendix A), the
N ¼ 1 SQED3 is defined by the action

S ¼
Z

d5z

�
1

2
W�W� � 1

2
r��r��þM ���

�
; (1)

where �, � ¼ 1, 2 are spinorial indices. The UV finiteness
of this model to all loop orders was studied in [5]. The
basic elements involved in (1) are the complex (matter)
scalar superfield,

�ðx; �Þ ¼ 1ffiffiffi
2

p ð�þ i�Þ ¼ ’ðxÞ þ ��c �ðxÞ � �2FðxÞ;
(2)

where � and � are real superfields and the component
fields’, c � and F are, respectively, a complex scalar field,
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a Dirac field and a complex scalar auxiliary field. The
spinor gauge potential is given by

A�ðx; �Þ ¼ ��ðxÞ � ��BðxÞ þ i��V��ðxÞ
� �2½2��ðxÞ þ i@���

�ðxÞ�; (3)

where �� and B are auxiliary fields, �� is the photino field
and Va � ð�aÞ��V�� (a, b ¼ 0, 1, 2 are Lorentz indices)

the 3-vector electromagnetic potential. The gauge super-
field strength is defined as W� ¼ 1

2D
�D�A� and has, as

one of its component fields, Fab ¼ @aVb � @bVa, the elec-
tromagnetic 3-tensor field strength.

The susy covariant spinorial derivative is given byD� ¼
@� þ i��@�� and the susy and gauge covariant derivative

by r� ¼ D� � ieA�. The action (1) is invariant under the
following gauge transformations:

� ! �0 ¼ eieK� A� ! A0
� ¼ A� þD�K; (4)

where e is the gauge coupling constant and Kðx; �Þ is a real
scalar superfield. Under these transformations, the electro-
magnetic field strength and the covariant derivative go in

W� ! W 0
� ¼ W� r� ! r0

� ¼ eieKr�e
�ieK:

We choose to work with the Lorentz-like gauge fixing
term,

SFG ¼
Z

d5z

�
� 1

4�

�
D�A�D

2D�A�; (5)

where � is a dimensionless parameter. With this gauge
choice, the ghosts are free and can be ignored. By adding

(5) to (1), writing � in terms of � and �, and integrating
by parts, the full action reads

S¼
Z
d5z

�
1

2
A�

�
�1

2
D2D�D�þ 1

2�
D2D�D�

�
A�

þ1

2
�ðD2þMÞ�þ1

2
�ðD2þMÞ�

þe

2
ð�D��A���D��A�Þ�e2

2
A2ð�2þ�2Þ

�
: (6)

In order to compute the effective potential of nonsusy
theories, one counts on three popular methods: the
Coleman andWeinberg [6], the tadpole [7] and the vacuum
bubble [8] methods. In principle, all these methods can be
implemented in both superfields and component fields of
supersymmetric gauge theories. In four dimensions, the
one-loop effective potential of the supersymmetric QED
model (along with other two susy models) was evaluated
by implementing the Coleman-Weinberg method in the
superfield formalism [9]. However, the implementation of
this method is cumbersome or even impossible beyond the
one-loop order. On the other hand, the other two methods
are simpler and will be used to compute the effective
potential of the SQED3 model.
To this end, we must shift the superfield � in (6) by a

classical superfield �ð�Þ: � ! �þ �ð�Þ. As we want to
study the possibility of susy breaking, this classical field
�ð�Þ must include a non zero (component) auxiliary field
�2, that is, we must consider

�ð�Þ ¼ �1 � �2�2: (7)

The resulting expression for the shifted action is

S0½�1; �2; �;�; A�� �
Z

d5z

�
1

2
A�

�
� 1

2
D2D�D� þ 1

2�
D2D�D� þ e2

2
�2ð�ÞC��

�
A� þ 1

2
�ðD2 þMÞ�

þ �A�

�
e

2
ð�ð�ÞD� �D��ð�ÞÞ

�
�þ 1

2
�ðD2 þMÞ�þ e

2
ð�D��A� ��D��A�Þ � e2�ð�ÞA2�

� e2

2
A2ð�2 þ�2Þ þ ðD2�þM�Þ�þ 1

2
�ðD2 þMÞ�

�
: (8)

Furthermore we introduced the parameter � (to be made � ¼ 1 at the end of the calculations) in front of the mixing ðA�;�Þ
terms to allow to track the effects of the mixture in the intermediate steps of the calculations.

The bilinear part of the action, with external source terms added, reads

Sbil ¼
Z

d5zd5z0
�
1

2
A�ðzÞO��ðz; z0ÞA�ðz0Þ þ 1

2
�ðzÞOðz; z0Þ�ðz0Þ þ �A�ðzÞO�ðz; z0Þ�ðz0Þ

þ 1

2
�ðzÞOðz; z0Þ�ðz0Þ þ JðzÞ�ðzÞ þ 	�ðzÞA�ðzÞ þGðzÞ�ðzÞ

�
; (9)

where the kernel operatorsO are functions, not only of the susy covariant operatorsD� and @�� (and their square powers),
but also of �� and �2:
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O��ðz; z0Þ ¼
�ð1� �Þ

2�
i@��D

2 þ 1

2

�
� 1þ �

�
hþ e2�2

1

�
C�� � e2�1�2C���

2

�

5ðz� z0Þ (10a)

Oðz; z0Þ ¼ ½MþD2�
5ðz� z0Þ (10b)

O�ðz; z0Þ ¼
�
� e�2

2
�� � e�1

2
D� þ e�2

2
�2D�

�

5ðz� z0Þ: (10c)

It must be noted that the mixing between the gauge field
and the matter field represented in O� can, in general,
be avoided by using an R� gauge. This is not true when

�2 � 0. In this case the mixture is unavoidable and the use
of the Lorentz-like gauge fixing term has the advantage of
having a decoupled ghost sector.

From this action, the superpropagators can be calculated
in the usual way. We start by considering the generating
functional Z½J; 	�:

Z ½J; 	� ¼ N
Z

D�D�DA� expðiSbilÞ; (11)

change the superfields by

�ðzÞ!�ðzÞ�
Z
d5z0��ðz;z0ÞGðz0Þ;

�ðzÞ!�ðzÞ�
Z
d5z0f�ðz;z0ÞJðz0Þþ��ðz;z0Þ	�ðz0Þg;

A�ðzÞ!A�ðzÞ�
Z
d5z0fJðz0Þ��ðz0;zÞþ��

�ðz;z0Þ	�ðz0Þg;
(12)

and determine the superpropagators 4 by imposing that
the terms which mix fields with currents add to zero. With
these conditions, the integration in the shifted superfields
can be carried out, leaving Z½J; 	� as a functional of the
sources:

Z½J; 	� ¼ exp

�
i
ZZ

d5zd5z0
�
� 1

2
	�ðzÞ��

�ðz; z0Þ	�ðz0Þ

� 1

2
JðzÞ�ðz; z0ÞJðz0Þ � JðzÞ��ðz; z0Þ	�ðz0Þ

� 1

2
GðzÞ��ðz; z0ÞGðz0Þ

��
: (13)

From this expression, it follows that the superpropagators
are given by

hTA�ðzÞA�ðz0Þi¼ i���ðz;z0Þ¼ i��1
��ðz;z0Þ; (14a)

hT�ðzÞ�ðz0Þi¼ i�ðz;z0Þ
¼ iO�1ðz;z0Þþ i�2

ZZ
z1;z2

O�1ðz;z1Þ
�Hðz1;z2ÞO�1ðz2;z0Þ; (14b)

hT�ðzÞA�ðz0Þi¼ i��ðz;z0Þ
¼ i�

ZZ
z1;z2

O�1ðz;z1ÞO�ðz2;z1Þ
���1

��ðz2;z0Þ; (14c)

hT�ðzÞ�ðz0Þi¼ iO�1ðz;z0Þ (14d)

with

���ðz; z0Þ ¼ O��ðz; z0Þ þ �2Q��ðz; z0Þ;
Hðz; z0Þ ¼

ZZ
z1;z2

O�ðz1; zÞ��1
�
�ðz1; z2ÞO�ðz2; z0Þ;

Q��ðz; z0Þ ¼
ZZ

z1;z2

O�ðz; z1ÞO�1ðz1; z2ÞO�ðz0; z2Þ: (15)

To explicitly find these superpropagators, we develop
the algebra of operators used for calculating the inverse of
the matrices O. Let us begin by considering the scalar
sector. Any scalar operator O ¼ Oð��;D�; i@��Þ can be

expanded in terms of six scalar operators,

O ¼ X5
i¼0

piPi; (16)

defined in [2] as

P0 ¼ 1; P1 ¼ D2; P2 ¼ �2;

P3 ¼ ��D�; P4 ¼ �2D2; P5 ¼ i@���
�D�;

(17)

which form a basis in this sector. The coefficients pi are, in
general, functions of the d’Alembert operator h, the pa-
rameters of the theory (masses, coupling constants, etc.)
and of the components �1 and �2 of the classical
superfield.
The product of the operators Pi is presented in Table I.

In addition, one has the trivial results P0Pi ¼ PiP0 ¼ Pi,
with i ¼ 0; . . . ; 5.
Working with this basis, the inversion of O follows

immediately. Since O�1 ¼ P
i ~piPi in the basis fPig, the

requirement O�1O ¼ 1 leads, after using the Table I, to a
soluble system of six equations for the six unknown co-
efficients ~pi.
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For the inversion of O�� we need a basis of bi-spinor

operators. In [2] a ‘‘basis’’ of 12 bi-spinor operators,

R��
i ¼ i@��Pi; S��i ¼ C��Pi; (18)

was introduced.
According to the authors, any bi-spinor operator may be

expanded in terms of Ri and Si, that is,

O�� ¼ X5
i¼0

ðriRi;�� þ siSi;��Þ; (19)

where as before ri ¼ riðh; cÞ and si ¼ siðh; cÞ, with c
labeling all the parameters of the theory. The (closed)
operator algebra obeyed by Ri and Si is reproduced in
Table II. In these tables we have defined Pij ¼: PiPj, where

the expansion of the result of the multiplication PiPj in

terms of the six Pi must be read on Table I.
Even though (19) works for the operators O�� found in

[2], it does not work for the inversion of the more general
form of O�� that we have. It should be noted that any

antisymmetric bi-spinor operator S�� has only one inde-
pendent component and can always be written as S�� ¼
C��½� 1

2S
�
��, where S�� is a scalar operator that can be

expanded in terms of the six Pi. However, not all symmet-
ric bi-spinor (which have three independent components)
can be written as a product of i@�� ¼ 1

2 ½D�D� þD�D��
by a scalar operator expandable in terms of the six Pi. In
fact, up to two supercovariant (spinorial) derivatives, one
has the independent symmetric operator

M�� ¼: ��D� þ ��D�: (20)

That M�� is independent of the R��
i can be seen by

explicitly applying M, or a linear combination of the six
Ri operators, to an arbitrary superfield and verifying that
there is no way of choosing the coefficients of the linear

combination of Ri to get the same result. More easily, let us
see an example of inconsistency that appears if we assume
that M is a superposition of the Ri. Suppose that

��D� þ ��D� ¼ X5
i¼0

riRi;��: (21)

The coefficients ri can be determined by contracting the
two sides with i@��. Using the relations ���� ¼ �C���

2

and @��@�� ¼ 
�
�h, along with the above definitions and

multiplication tables, this expression reduces to

��D� þ ��D� ¼ � 1

h
R5;��: (22)

If we now multiply both sides of (22) on the left by ��, we
get the inconsistency

3�2D� ¼ �2D�; (23)

showing that the assumption (21) is incorrect.
Now, by starting with M�� we can define six new

operators M��
i ¼: PiM

�� with at most three spinorial co-
variant derivatives (in the N ¼ 1 superfield formalism in
3 dimensions, the product of three or more covariant
spinorial derivatives can be reduced to products of two or
less spinorial covariant derivatives D� and the (also susy
covariant) space-time derivative i@��). After a little alge-

braic work we can see thatM��
i ¼ 0, for i ¼ 2, 3, 4 and 5,

and so, the only new operator, aside from M��
0 ¼ M��, is

M��
1 ¼ D2M��. For convenience, instead of usingM1, we

will work with

N��¼: i��@��D�þ i��@��D�¼�M��
1 þ2R��

0 : (24)

The multiplication table of the operators M and N with
the 12 (R, S) ones, that complements the Table II, is shown
in the Table III.
Therefore, the consistent expansion ofO�� that replaces

(19) is given by

TABLE II. Partial multiplication table in the gauge sector,

ðXYÞ�� ¼ X��Y�
� .

Rj Sj

Ri hSij Rij

Si Rij Sij

TABLE I. Multiplication table in the scalar sector.

P1 P2 P3 P4 P5

P1 h �P0 þ P3 þ P4 2P1 þ P5 �P1 þhP2 � P5 hð�2P0 þ P3Þ
P2 P4 0 0 0 0

P3 �P5 2P2 P3 � 2P4 2P4 2hP2 þ P5

P4 hP2 �P2 2P4 �P4 �2hP2

P5 �hP3 0 �2hP2 þ P5 0 hðP3 þ 2P4Þ
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O�� ¼ X5
i¼0

ðriRi;�� þ siSi;��Þ þmM�� þ nN��; (25)

where the set of 14 operators fRi; Si;M;Ng forms a basis in
the gauge sector. The inverse operator O�1 is obtained

from its definition O�1;��O�� ¼ 
�
� and the fact that

O�1 must have a expansion similar to that of O, (25),
with coefficients f~ri; ~si; ~m; ~ng to be determined.
The bilinear mixing terms in (8) give rise to a spinorial

mixing superpropagator hT�ðzÞA�ðz0Þi. As mentioned ear-
lier, this is a consequence of the translation of the scalar

TABLE III. Partial multiplication table in the gauge sector (X ¼: M� S3 and Y ¼: N � R3 þ S5).

N M

S0 N M
S1 �hMþ 2R1 �N þ 2R0

S2 0 0

S3 N � 2R4 M� 2R2

S4 2R4 2R2

S5 �hð�Mþ 2R2Þ þ 2R5 N � 2R3 � 2R4

R0 hðMþ S3Þ þ R5 N � R3 � S5
R1 �hðN � R3 � 2S1 � S5Þ �hðM� 2S0 þ S3Þ � R5

R2 0 0

R3 �hð�M� S3 þ 2S4Þ þ R5 N � R3 � 2hS2 � S5
R4 2hS4 2hS2
R5 �hð�Y þ 2hS2Þ �hð�Xþ 2S4Þ þ R5

N �hð�4R2 þ S3 þ 6S4Þ � 2R5 2R3 þ 4R4 � 6hS2 þ S5
M �2N � 4R4 þ 6hS2 � 3S5 �2M� 4R2 þ 3S3 þ 6S4

S0 S1 S2 S3 S4 S5

N N hM 2R2 N � 2R4 2R4 �hðM� 2R2Þ
M M N 0 Mþ 2R2 0 �N � 2R4

R0 R1 R2 R3 R4 R5

N �hX� R5 �hY 2hS2 �hðX þ 2S4Þ � R5 2hS4 hðY þ 2hS2Þ
M �Y �hX� R5 0 �Y þ 2hS2 0 �hð�Xþ 2S4Þ þ R5

TABLE IV. Multiplication table in the mixing sector.

T1
� T2

� T3
� T4

�

T1
� �S2 �R2 �S4 �R4

T2
� R2 hS2 R4 hS4

T3
�

1
2 ðM� S3Þ � S4 �R4 � 1

2 S5 � 1
2N �hS2 þ 1

2S5 þ 1
2N � 1

2hðM� S3 þ 2R2Þ
T4
� R3 þ 1

2S5 � 1
2N þ R4

1
2hðMþ S3 þ 2S4Þ þ R5 � 1

2hðMþ S3 � 2R2Þ � R5 hðhS2 � R3 � 1
2 S5 þ 1

2NÞ
T5
� � 1

2 ðMþ S3Þ þ S0 R0 � R3 þ 1
2S5 þ 1

2N � 1
2N þ S1 þ 1

2S5
1
2hðM� S3Þ þ R1 þ R5

T6
� �R0 � 1

2S5 þ 1
2N � 1

2hðM� S3 þ 2S0Þ � R5
1
2hðMþ S3Þ � R1 hðR3 � 1

2S5 � 1
2N � S1Þ

T7
� S2 R2 S4 R4

T8
� �R2 �hS2 �R4 �hS4

T5
� T6

� T7
� T8

�

T1
�

1
2 ðM� S3Þ � 1

2 ðN þ S5Þ 0 0

T2
� R3 þ 1

2S5 � 1
2N

1
2hðMþ S3Þ þ R5 0 0

T3
� � 1

2N � 1
2S5

1
2hðM� S3Þ �R2 þ 1

2S3 þ S4 � 1
2M R4 �hS2 þ 1

2S5 þ 1
2N

T4
�

1
2hðMþ S3Þ þ R5 hðR3 þ 1

2 S5 � 1
2NÞ �R3 � 1

2S5 þ 1
2N � R4 þhS2 hðR2 � 1

2S3 � S4 � 1
2MÞ � R5

T5
� R0 � S1 hS0 � R1 R2 � 1

2S3 � S4 þ 1
2M �R4 þhS2 � 1

2S5 � 1
2N

T6
� R1 �hS0 hðS1 � R0Þ þR3 þ R4 �hS2 þ 1

2S5 � 1
2N hð�R2 þ 1

2S3 þ S4 þ 1
2MÞ þ R5

T7
� R2 � S4 hS2 � R4 0 0

T8
� R4 �hS2 hðS4 � R2Þ 0 0
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superfield by its vacuum expectation value. So, it is also
convenient to define, for the expansion of O�, the basis of
eight spinorial operators

T1
� ¼ �� T2

� ¼ i@���
� T3

� ¼ ��D
2

T4
� ¼ i@���

�D2 T5
� ¼ D� T6

� ¼ i@��D
�

T7
� ¼ �2D� T8

� ¼ i@���
2D�

(26)

The results of their multiplications are presented in
Table IV.

In the momentum space (i@�� ! k��) and after an

extensive use of these multiplication tables, the superpro-
pagators (14a)–(14d) can be written as

hTA�ðk; �ÞA�ð�k; �0Þi ¼ i

�X5
i¼0

ðriRi;�� þ siSi;��Þ

þmM�� þ nN��

�

2ð�� �0Þ;

(27a)

hT�ðk; �Þ�ð�k; �0Þi ¼ i

�X5
i¼0

aiPi

�

2ð�� �0Þ; (27b)

hT�ðk; �ÞA�ð�k; �0Þi ¼ i

�X8
i¼1

biT
i
�

�

2ð�� �0Þ; (27c)

hT�ðk; �Þ�ð�k; �0Þi ¼ i½c0P0 þ c1P1�
2ð�� �0Þ: (27d)

The coefficients ri � � � c1 are listed in the Appendix B. In
the rest of the paper we shall study the symmetry properties
of the vacuum of the SQED3 model, by calculating the
effective potential up to 2-loops in the perturbation theory.
For the 1-loop calculation, we use the tadpole method [7],
while for the 2-loop one, we use the vacuum bubble
method [8]. As we will see, susy remains unbroken up to
2-loops, while the internalUð1Þ gauge symmetry is broken.

III. THE EFFECTIVE POTENTIAL
UP TO TWO-LOOPS

A. THE CLASSICAL POTENTIAL

The classical effective action can be read from (8). The
terms depend only on the classical field � are

�cl ¼
Z

d5z
1

2
�ðD2 þMÞ� � �

Z
d3xUclð�1;�2Þ;

where the second equality defines the Classical Potential.
After integrating in the � variables we get Uclð�1; �2Þ ¼
� 1

2�
2
2 �M�1�2. The classical potential can also be ob-

tained by integrating the tree-level � supertadpole (8):

�ð�Þ
cl ¼

Z
d5z�ðD2�þM�Þ (28)

where, in component fields, � ¼: �1ðxÞ þ ����ðxÞ �
�2ðxÞ�2. Starting from this tadpole we have two

alternatives for computing the classical potential. We can
work in the superfield approach and adopt the superfield
Miller’s recipe [10,11] or we can jump to the component
approach. We choose the last option because it is simpler in
the calculations at 1-loop level (next section). Substituting
� in terms of its component fields in (28) and integrating
in �, we obtain

�ð�Þ
cl ¼

Z
d3x½M�2�1ðxÞ þ ðM�1 þ �2Þ�2ðxÞ�:

From this expression we can easily recognize the tree-
level �1ð�2Þ tadpoles and set up the tadpole equations:

@Ucl

@�1
¼ �M�2 (29)

@Ucl

@�2
¼ �ðM�1 þ �2Þ: (30)

By integrating these equations, we get, as before,

Uclð�1; �2Þ ¼ � 1

2
�2

2 �M�1�2: (31)

B. ONE- AND TWO-LOOPS CONTRIBUTIONS
TO THE EFFECTIVE POTENTIAL

Having determined the explicit form of the shifted
superpropagators, we are ready to compute the one- and
the two-loops contributions to the effective potential. Since
the coefficients of the superpropagators are merely func-
tions of k2 (and of the parameters of the shifted theory) we
do hide their intricate structures in the intermediate stages
of the computations. This is possible because the
Grassmann calculus needed to reduce the � integrations
to a single � integration involves only ð��;D�; k��Þ
manipulations.

1. One-loop contribution

At the one-loop order, we use the tadpole method.
Figure 1 shows the two contributions to the tadpoles.
Their corresponding integrals are

�1 ¼
Z

d2�
Z d3k

ð2�Þ3
�
ehD��ðk; �ÞA�ð�k; �Þi

þ e

2
h�ðk; �ÞD�A�ð�k; �Þi

� e2

2
�ð�ÞhA�ðk; �ÞA�ð�k; �Þi

�Z
d3x�ðx; �Þ (32)

As discussed in [12] and reproduced in our previous
paper [13], to study the possibility of susy breaking it is
enough to calculate the radiative corrections to the effec-
tive potential up to linear dependence in �2. So, in the
following we will restrict our calculations to this approxi-
mation. Inserting the superpropagators (27) and integrating
by parts, one obtains
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�1¼ i
Z
d2�

Z d3k

ð2�Þ3 ½ðeb5ðkÞ�2eb3ðkÞþe2�1s1ðkÞÞ

þðeb7ðkÞ�e2�2s1ðkÞþe2�1s4ðkÞÞ�2�
Z
d3x�ðx;�Þ;

(33)

which, after integrating in the � variables, gives

�1 ¼ i
Z d3k

ð2�Þ3
�
ðeb5ðkÞ � 2eb3ðkÞ þ e2�1s1ðkÞÞ

�
Z

d3x�2ðxÞ � ðeb7ðkÞ � e2�2s1ðkÞ þ e2�1s4ðkÞÞ

�
Z

d3x�1ðxÞ
�
: (34)

From this expression we can directly read the tadpole
equations for the components �1 and �2:

@U1

@�1

¼ i
Z d3k

ð2�Þ3 ½eb7ðkÞ � e2�2s1ðkÞ þ e2�1s4ðkÞ�
(35)

@U1

@�2

¼ i
Z d3k

ð2�Þ3 ½�eb5ðkÞ þ 2eb3ðkÞ � e2�1s1ðkÞ�:
(36)

The coefficients bi and si, which are functions of �1 and
�2, are given up to a linear dependence in �2 and in � (this
last restriction is for simplicity of calculation) in the

Appendix B. Solving this pair of equations (in the �- and
�2-linear approximation), we get

U1ð�1; �2Þ ¼ ��e2M�1�2

2
i2
Z d3k

ð2�Þ3
1

k2ðk2 þM2Þ
¼ ���

8�
e2�1�2; (37)

a result that depends on the gauge parameter � and is zero
in the Landau gauge (� ¼ 0). From (37) we see that neither
susy nor gauge symmetry are dynamically broken at one-
loop order. This outcome has already been obtained long
ago in [12].
We should emphasize that the gauge dependence of the

effective potential is a well known fact [14–17]. In spite of
this fact, the Nielsen Identities show that the value of the
potential at its minimum and the values of the generated
masses are independent of the gauge parameter �. So, the
conclusions about breakdown of symmetries, got from the
analysis of the minimum of the effective potential, are in
fact gauge independent. Let us now extend our study to the
two-loop level.

2. Two-loop contributions

At this order we use the vacuum bubble method [8].
The seven supergraphs that contribute to the effective
potential are depicted in Fig. 2. Nevertheless, once the
integration over the � variables have been carried out
[18], only the diagrams 2(a), 2(c) and 2(d) survive in
our approach (linear contribution in � and �2). The
corresponding integrals are shown in the Appendix C.

(a) (b) (c) (d)

(e) (f) (g)

FIG. 2. Two-loop vacuum bubbles for the shifted SQED3. Solid lines stand for � scalar superpropagators.

(a) (b)

FIG. 1. One-loop contributions to the � tadpole of the shifted SQED3. Double-solid line represents the � scalar superpropagator,
solid-wavy line the h�Ai mixed superpropagator, and wavy line the gauge superpropagator.
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The integrations over the internal momenta were done
(with dimensional regularization) using the results in
[19,20]. The result exhibits the following structure

U2ð�1; �2Þ ¼ �1�2½Fðm2
1;M

2Þ þ �Gðm2
1;M

2Þ�e4; (38)

where m2
1 ¼ e2�2

1=2. However, for convenience of the
analysis of the minimum of the effective potential, we
rewrite this result in the form

U2ð�1; �2Þ ¼ �2

�
f

�
e�1

M

�
þ �g

�
e�1

M

��
e3

64�2
; (39)

where the finite functions fðxÞ and gðxÞ are given by

fðxÞ ¼ 1

x
þ 1ffiffiffi

2
p 1

1þ x=ð2 ffiffiffi
2

p Þ �
ffiffiffi
2

p

1þ ffiffiffi
2

p
x

þ 2

x3
ln

�
1þ ffiffiffi

2
p

x

ð1þ xffiffi
2

p Þ2
�

(40)

and

gðxÞ ¼ � 2x

ð2þ ffiffiffi
2

p
xÞ2

þ �

�
� 2

ffiffiffi
2

p
x2

x2 þ 3
ffiffiffi
2

p
xþ 4

þ 4x ln

�
2

ffiffiffi
2

p þ xffiffiffi
2

p þ x

��

þ �2

�
� 4xð6þ ffiffiffi

2
p

xÞ
ð4þ ffiffiffi

2
p

xÞ2 þ x ln

�
2

ffiffiffi
2

p þ xffiffiffi
2

p þ x

��
; (41)

At this point a remark is in order. Even if susy or gauge
symmetry is broken, a phase (rotational) symmetry is
preserved [6] in the effective potential. In our variables �
and � (real and imaginary components of the superfield
�), the rotational gauge symmetry can be recovered by
the substitutions �2

1 ! �2
1 þ �2

1, �2
2 ! �2

2 þ �2
2 and

�1�2 ! �1�2 þ �1�2 in the results (31), (37), and (38).
Here �1 and �2 are the components of the translation
� ¼ �1 � �2�2 in the field � (which for simplicity we
did not considered). This symmetry is not evident when the
two-loop contribution to the effective potential is written in
the form (39).

By collecting the results of zero-, one- and two-loops,
and by choosing, for simplicity, the Landau gauge (� ¼ 0),
the effective potential turns out

Ueffð�1; �2Þ ¼ � 1þ 
z

2
�2

2 � ðMþ 
MÞ�1�2

þ e3

64�2
f

�
e�1

M

�
�2: (42)

In this result we have introduced two counterterms: the
matter field wave function renormalization counterterm 
z
and the mass renormalization counterterm 
M. They must
be fixed by the renormalization prescriptions on the effec-
tive potential. It must be noted that both one- and two-loop
contributions (in dimensional regularization) are finite.

Despite its appearance, fðxÞ is a finite monotonically de-
creasing function,

fðxÞ ¼ 1ffiffiffi
2

p � 7

8
ffiffiffi
2

p x2 þ 133

96
x3 � 223

64
ffiffiffi
2

p x4

þOðx5Þ for x � 1; (43)

running from fðx ¼ 0Þ ¼ 1=
ffiffiffi
2

p
to fðx ¼ 1Þ ¼ 0.

As the radiative corrections are finite, their effects in
the redefinition of the mass and the wave function normal-
ization are finite and we can adopt for convenience a
‘‘minimal subtraction renormalization prescription’’: 
z ¼

M ¼ 0, resulting that, up to two loops, the renormalized
effective potential is given by

Ueffð�1; �2Þ ¼ � 1

2
�2

2 � �2

�
x�

�
e2

8�M

�
2
fðxÞ

�
M2

e
:

(44)

where x ¼ e�1=M.
From the Euler Lagrange equation for �2, that is,

@Ueffð�1; �2Þ=@�2 ¼ 0, we get

�2 ¼
��

e2

8�M

�
2
f

�
e�1

M

�
� x

�
M2

e
: (45)

After inserting this result into the expression for
Ueffð�1; �2Þ, one obtains

Ueff ¼ M4

2e2

�
x�

�
e2

8�M

�
2
fðxÞ

�
2
; (46)

which satisfies Ueff � 0. Its minimum ðUeff ¼ 0Þ occurs
for

e�1

M
¼

�
e2

8�M

�
2
f

�
e�1

M

�
; (47)

which also implies �2 ¼ 0. In perturbation expansion, by
hypothesis e2=8�M � 1, and the Eq. (47) has the solution

�1 ffi e3=
ffiffiffi
2

p
64�2M � 0. In short, the minimum of the

effective potential is Ueff ¼ 0 and occurs at �2 ¼ 0 and
�1 � 0. This result means [12,13] that supersymmetry is
preserved, but the gauge symmetry is dynamically broken,

with a mass m1 ¼ ð e2

8�MÞ2 M
2 � 0 generated for the gauge

superfield. By only making the shift � ¼ �1, in paper [21],
the breakdown of the gauge symmetry was studied with a
similar conclusion. As a result of these corrections the
gauge superpropagator (B1) is given by

hTA�ðk; �ÞA�ð�k; �0Þi

¼ i

2ðk2 þm2
1Þ
�
�C�� þ k��D

2

k2

�

2ð�� �0Þ:

By the component decomposition of A�, presented in
the Appendix A, we obtain for the component field propa-
gators
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hT��ðkÞ��ð�kÞi ¼ ik��

2k2ðk2 þm2
1Þ

hT��ðkÞ��ð�kÞi ¼ � ik��

2ðk2 þm2
1Þ

hT��ðkÞ��ð�kÞi ¼ � iC��

2ðk2 þm2
1Þ

hTVaðkÞVbð�kÞi ¼ � 2i

k2 þm2
1

�
	ab � kakb

k2

�

a; b ¼ 0; 1; 2

hTBðkÞBð�kÞi ¼ 0:

where Va � ð�aÞ��V�� is the 3-vector electromagnetic

potential.

IV. CONCLUDING REMARKS

In this paper, we developed the algebra of spinorial
operators involved in the calculation of the superpropaga-
tors for gauge and matter field models in 3D. This algebra
is useful in the presence of shifts of the superfields by �
spinorial dependent expectation values, as needed to cal-
culate the effective potential to study the possibility of
dynamical supersymmetry breakdown. As an example,
this algebra is applied in the calculation of the superpropa-
gators of the supersymmetric quantum electrodynamics
SQED3. The shift of superfields with such a � dependent
part implies in bilinear mixing of the gauge and matter
fields that cannot be eliminated by using an R� gauge

fixing term. The inversion of the quadratic part of the
Lagrangian results very arduous in component or in the
superfield formalism. The use of this algebra systematizes
the calculation of the superpropagators, and it is helpful in
the calculation of the superpropagators of any N ¼ 1
supersymmetric model in 3D. The effective potential for
SQED3 is calculated up to two loops, with the conclusion
that supersymmetry is preserved, but gauge symmetry is
dynamically broken with the generation of mass for the
gauge superfield.
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APPENDIX A: THE SUPERFIELD EXPANSIONS

In component fields the matter and gauge superfields
can be written as [4]:

�ðx;�Þ¼�1ðxÞþ������2�2ðxÞ; �;�¼1;2 (A1a)

�ðx;�Þ¼�1ðxÞþ��	���2�2ðxÞ (A1b)

A�ðx;�Þ¼��ðxÞ���BðxÞþ i��V��ðxÞ
��2½2��ðxÞþ i@���

�ðxÞ� (A1c)

W�ðx;�Þ¼��ðxÞþ��f��ðxÞþ�2i@���
�ðxÞ (A1d)

with f��ðxÞ¼�1
2ð@��V��þ@��V��Þ. In addition, the usual

(vector) gauge potential is given by va � ð�aÞ��V��, and

the (tensor) gauge field strength by Fab � @avb � @bva ¼
i
2 2abc ð�cÞ��f��.

APPENDIX B: THE SUPERPROPAGATOR
COEFFICIENTS

In order to calculate the superpropagators (27) we start
with the matrices (10a)–(10c) and go through all the op-
erations indicated in formulae (14a)–(14d). These manipu-
lations involve a lot of algebraic calculation using the
operator algebra presented in Sec. II. The complete result
is very cumbersome. In the results shown below, we only
kept the terms up to linear dependence in the field compo-
nent�2, which are enough to discuss the possibility of susy
breakdown [12,13]. We will also limit our calculations of
the effective potential to the Landau gauge (� ¼ 0) and so,
for simplicity, in the calculation of the superpropagators
we restrict ourselves to linear terms in �.
The gauge superpropagator hAAi is given by

hTA�ðk; �ÞA�ð�k; �0Þi

¼ i
X5
i¼0

ðriRi;�� þ siSi;�� þmM�� þ nN��Þ
2ð�� �0Þ;

(B1)

with

r0 ¼ �r3 ¼ � 1

2
r4 ¼ 1

2k2
s2 ¼ � �1�2e

2

4k2ðk2 þm2
1Þ2

;

r2 ¼ s3 ¼ s4 ¼ 0;

r5 ¼ � �2��1�2e
2M

2k4ðk2 þm2
1Þðk2 þM2Þ ;

s0 ¼ � �

2k2
� 1

2ðk2 þm2
1Þ
;

s1 ¼ s5 ¼ ��1�2e
2ðk2ð1� �2Þ þM2Þ

2k4ðk2 þm2
1Þðk2 þM2Þ � �1�2e

2

4k2ðk2 þm2
1Þ2

:

r1 ¼ 1

2k2ðk2 þm2
1Þ

� �½ðM2 þm2
1Þk2 þ ðk2Þ2 þMðMm2

1 þ e2�2�1�2Þ�
2ðk2Þ2ðk2 þM2Þðk2 þm2

1Þ
n ¼ 0 m	Oð�2Þ;
where m2

1 ¼ e2�2
1=2.
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The scalar superpropagator h��i exhibits the following structure

hT�ðk; �Þ�ð�k; �0Þi ¼ i

�X5
i¼0

aiPi

�

2ð�� �0Þ; (B2)

where

a0 ¼ M

k2 þM2
þ �2��1e

2ðk2ð2M�1 þ �2Þ �M2�2Þ
2k2ðk2 þM2Þ2 ; a1 ¼ � 1

k2 þM2
þ �2��1e

2ðMðM�1 þ 2�2Þ � k2�1Þ
2k2ðk2 þM2Þ2 ;

a2 ¼ 2k2a5 ¼ � 2�2��1�2e
2M

ðk2 þM2Þ2 ; a3 ¼ 1

2
a4 ¼ �2��1�2e

2ðk2 �M2Þ
2k2ðk2 þM2Þ2 :

The superpropagator h�Ai takes the form

hT�ðk; �ÞA�ð�k; �0Þi ¼ i
X8
i¼1

biT
i
�


2ð�� �0Þ; (B3)

where

b1¼�e�2M½ð�þ1Þðk2þM2Þþ2m2
1��

2�
2ðk2þm2

1Þðk2þM2Þ2 ;

b3¼b2¼��e�2½2k4þ2k2½�ð�2�1Þm2
1þM2��2�ð�2þ1Þm2

1M
2�

4k2ðk2þm2
1Þðk2þM2Þ2 ;

b4¼�e�2M½ð��1Þk2ðk2þM2Þ�2�m2
1½ð�2�1Þk2�M2��

2k4ðk2þm2
1Þðk2þM2Þ2

b5¼���eðM�1þ�2Þ
2k2ðk2þM2Þ ; b7¼�Mb8¼M�2

�1

b6¼ eM���2

2k2ðk2þM2Þ :

These coefficients are not exact, they only exhibit the contributions up to linear terms in � and in �2, what is enough for
our purposes. The exact results are rather cumbersome, even if their calculation do not present any technical difficulty.

Finally, the superpropagator h��i is given by

hT�ðk; �Þ�ð�k; �0Þi ¼ i½c0P0 þ c1P1�
2ð�� �0Þ; (B4)

where

c0 ¼ M

k2 þM2
; c1 ¼ � 1

k2 þM2
:

APPENDIX C: TWO-LOOP CALCULATIONS

The supergraphs contributing to the effective potential at two-loop order, in the vacuum bubble method [8], are shown in
Fig. 2. To study the possibility of supersymmetry breaking it is enough to calculate the effective potential up to linear order
in the component �2 of the classical value of the matter superfield (7). Only diagrams (a), (c) and (d) in Fig. 2 have
contributions starting linearly in�2 and also, independent or linear in the gauge parameter �. Using the expressions for the
superpropagators and performing the D-algebra with the help of the SusyMath package [18], we get the UV finite results:

U2ðaÞ ¼ 1

2

Z d3k

ð2�Þ3
d3q

ð2�Þ3
�

��2�1�2e
4M½M2 � ðkþ qÞ2�k2

ðk2 þm2
1Þ2ðkþ qÞ2ðM2 þ q2Þ½ðkþ qÞ2 þM2�2

þ �1�2e
4M½��2k:qþ ðkþ qÞ2�

ðk2 þm2
1Þ2ðkþ qÞ2ðM2 þ q2Þ½ðkþ qÞ2 þM2�

�
(C1)

U2ðcÞ ¼ ���1�2Me4
Z d3k

ð2�Þ3
d3q

ð2�Þ3
ðkþ qÞ2

k2ðk2 þM2ÞðM2 þ q2Þ½ðkþ qÞ2 þm2
1�2

(C2)
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U2ðdÞ ¼ 1

4

Z d3k

ð2�Þ3
d3q

ð2�Þ3
1

ðk2 þm2
1Þ2ðq2 þM2Þ½ðkþ qÞ2 þm2

1�2

�
�
�1�2Me4ðk2 þ k � qÞ½2ð1� 2�Þk4 � 4�m2

1k
2 � 2�m4

1�
2k4

� ��1�2Mm4
1e

4ðk2 þ k � qÞ
ðkþ qÞ4

� �1�2Mm2
1e

4ð2�k2 þm2
1Þðk2 þ k � qÞ

k2ðkþ qÞ2
�

(C3)

The other supergraph contributions are of order �2 or �2
2, that is, U2ðbÞ ¼ Oð�2; �2Þ, U2ðeÞ ¼ Oð�2; �2

2Þ,
U2ðfÞ ¼ U2ðgÞ ¼ Oð�;�2

2Þ.
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