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(Received 11 August 2010; revised manuscript received 11 July 2011; published 6 September 2011)

We build quantum field theory on the thermodynamic master equation for dissipative quantum systems.

The vacuum is represented by a thermodynamic equilibrium state in the low-temperature limit. All

regularization is consistently provided by a friction mechanism; with decreasing friction parameter, only

degrees of freedom on shorter and shorter length scales are damped out of a quantum field theory.

No divergent integrals need to be manipulated. Renormalization occurs as a tool to refine perturbation

expansions, not to remove divergences. Relativistic covariance is recovered in the final results. We

illustrate the proposed thermodynamic approach to quantum fields for the ’4 theory by calculating the

propagator and the � function, and we offer some suggestions on its application to gauge theories.
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I. INTRODUCTION

Renormalization plays a key role in quantum field the-
ory. The renormalization group is intrinsically related to
the successive elimination of degrees of freedom and
should hence be expected to result in coarse-grained equa-
tions. Quantum field theory hence belongs into the world of
multiscale modeling and coarse graining of dynamic sys-
tems. The field idealization implies the need to bridge a
wide range of length scales and, in relativistic quantum
field theory, clearly also in time scales. We hence need a
proper framework to implement dynamic renormalization-
group theory.

The proper setting for multiscale modeling and coarse
graining is statistical nonequilibrium thermodynamics. We
hence propose to make use of the powerful machinery of
nonequilibrium thermodynamics instead of inventing a set
of sophisticated rules to eliminate various kinds of infin-
ities from an approach designed for reversible systems.

As a result of the thermodynamic approach, we avoid
the possible concern that renormalization ‘‘is simply a way
to sweep the difficulties of the divergences of [quantum]
electrodynamics under the rug,’’ as expressed by Feynman
in a catchy metaphorical statement in his Nobel lecture
(1965). Or, in the words of the insistent critic Dirac [1],
‘‘the quantum mechanics that most physicists are using
nowadays [in quantum field theory] is just a set of working
rules, and not a complete dynamical theory at all.’’
Whereas Dirac felt the need for a different type of
Hamiltonian, we here suggest to address the intrinsic irre-
versibility associated with the field idealization and renor-
malization in an appropriate manner. Maybe such a
thermodynamic approach introducing irreversibility into
quantum field theory could eventually provide ‘‘some
really drastic changes’’ in the equations, as demanded by
Dirac (see pp. 36–37 of [2]).

We start by introducing some relevant background in-
formation: The quantum master equation required to for-
mulate the dissipative dynamics of quantum systems and
the renormalization-group approach employed to refine the
results of perturbation theory. We then develop the ther-
modynamic approach for a scalar quantum field with
quartic interactions. It is shown how the interactions can
be handled by a straightforward, thermodynamically con-
sistent perturbation theory that takes detailed balance into
account; first and second-order results for the propagator
and a four-point correlation are calculated and discussed in
great detail. The steps required to generalize the dissipative
approach from scalar to more complicated fields, such as
Yang-Mills gauge fields, are sketched in a further section.
We conclude with a brief summary and some further re-
marks on the coarse-graining approach to quantum field
theory. Useful details are compiled in a number of appen-
dices. Throughout this paper, we use units with ℏ ¼ c ¼ 1
where ℏ is the reduced Planck constant and c is the speed
of light.

II. QUANTUM MASTER EQUATION

In this section, we compile the equations required to
describe the mixed reversible-irreversible evolution of
quantum systems so that we can later formulate a dissipa-
tive smoothing mechanism for quantum field theories.
After introducing the general framework, we focus on the
equations obtained by linearization around an equilibrium
state, on detailed balance, and the resulting guidance for
the development of perturbation theory.

A. Thermodynamic master equation

A standard approach to quantum dissipation is based on
linear quantum master equations for density matrices [3,4].
The form of the most general linear quantum master equa-
tion that is guaranteed to preserve the trace and positive-
semidefiniteness of any initial density matrix has been
determined by Lindblad [5]. However, master equations*hco@mat.ethz.ch; URL: http://www.polyphys.mat.ethz.ch/
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of the Lindblad form are not applicable to arbitrarily low
temperatures. As we wish to construct quantum field
theories in the limit of zero temperature and vanishing
dissipation rate, we need to pay attention to the thermo-
dynamic consistency of the quantum master equation to
render it applicable for low temperatures and weak fric-
tion [6].

Motivated by a failure of the ‘‘quantum regression
hypothesis,’’ Grabert revisited the standard projection-
operator derivation of quantum master equations [7] with
a relevant density matrix of the exponential form, where
the deviation from the Hamiltonian in the exponent can be
interpreted as the thermodynamic force operator conjugate
to the density matrix. In the Markovian limit, the resulting
equation for the evolution of the density matrix or statis-
tical operator � is of the nonlinear form (see Eq. (5.22)
of [8]),

d�

dt
¼ i½�;H� �X

j;k

�jk½Qj;K�½Qk;H��

� kBTe

X
j;k

�jk½Qj; ½Qk; ���: (1)

The reversible first term on the right-hand side of Eq. (1)
has the well-known representation in terms of the commu-
tator and the Hamiltonian H. The additional irreversible
term is formulated in terms of a suitable matrix of damping
coefficients �jk describing the strength of the dissipation

and the observables Qj describing the interaction between

the quantum subsystem and its environment which, in the
case of quantum field theory, is a bath representing the
unresolvable or eliminated small-scale features. As usual,
kB is Boltzmann’s constant and Te is the temperature.
Nonlinearity arises from the superoperator

K �A ¼
Z 1

0
�uA�1�udu; (2)

which adds a factor of � to the observable A with a proper
treatment of ordering problems. Note that the temperature
Te is the only parameter characterizing the state of the
environment, which can hence be regarded as a heat bath.
Equation (1) may be addressed as a thermodynamic master
equation because it has been derived with a relevant den-
sity matrix characterized in terms of a thermodynamic
force operator and because, as a consequence, it is consis-
tent with the fluctuation-dissipation theorem.

The quantum master equation (1) and its generalization
for the coupling to arbitrary classical nonequilibrium sys-
tems as environments has recently been obtained in [9].
Starting point is the geometric formulation of classical
nonequilibrium thermodynamics in terms of Poisson and
dissipative brackets [10–12]. The quantum generalization
is obtained by Dirac’s method of classical analogy [13]:
Poisson brackets are replaced by commutators, dissipative
brackets are replaced by canonical correlations of commu-
tators. The appealing properties of the nonlinear quantum

master equation (1) have been discussed in [14]. As the
purely phenomenological and formal projection-operator
approaches to quantum dissipation lead to the same non-
linear thermodynamic master equation applicable in the
low-temperature regime, we have a save starting point for
our dissipative approach to quantum field theory.

B. Linearized master equation

In order to clarify the nonlinear nature of the thermody-
namic quantum master equation (1) and to linearize it
around its equilibrium solution

�eq ¼ e��H

tre��H
; (3)

at inverse temperature � ¼ ðkBTeÞ�1, we introduce the
thermodynamic driving force operator,

� ¼ kBTeðln�� ln�eqÞ: (4)

We can then write

K �½Qk;H� ¼ K�½Qk;�� � kBTe½K�Qk; ln��: (5)

With this simple consequence of the definition of the
thermodynamic driving force operator and the useful
identity

½A; �� ¼ ½K�A; ln�� ¼ K�½A; ln��; (6)

which follows from looking at arbitrary matrix elements
formed with the eigenstates of the density matrix and
performing the elementary integration over u in Eq. (2),
we can rewrite the quantum master equation (1) in the
more compact form

d�

dt
¼ i½�;H� �X

j;k

�jk½Qj;K�½Qk;���: (7)

In view of the logarithmic form of � given in Eq. (4), this
equation is clearly nonlinear in �. It moreover justifies the
interpretation of � as a thermodynamic driving force
operator.
In linearizing around equilibrium, the driving force � is

small so that K� in Eq. (7) can be evaluated with the

equilibrium density matrix; in that case, we use the symbol
K. From the linearized relationship between the deviation
from the equilibrium density matrix and the thermody-
namic driving force operator,

� ¼ expfln�eq þ ��g � �eq þK��; (8)

we finally obtain the linearized thermodynamic master
equation in the form

d�

dt
¼ i½�;H� � kBTe

X
j;k

�jk½Qj;K½Qk;K�1���: (9)

Note that the master equation (9) is not of the Lindblad
form [5]. For large deviations from equilibrium, positive-
semidefiniteness of the density matrix is only guaranteed
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by the nonlinear terms. For small deviations from equilib-
rium, we can safely use Eq. (9).

C. Adjointness properties

For the general development of the theory of linearized
thermodynamic quantummaster equations, it is convenient
to look at the time evolution of the observable �̂ ¼ K�1�.
In other words, �̂ is the relative deviation of the density
matrix � from its equilibrium form, �eq. By operating with

K�1 on the linearized quantum master equation (9), the
evolution equation for the observable �̂ is given by

d�̂

dt
¼ L�̂ ¼ i½�̂; H� � kBTe

X
j;k

�jkK�1½Qj;K½Qk; �̂��:

(10)

Of course, �̂ ¼ 1 is found to be the steady state solution of
this equation.

The average of any observable A can be obtained as

tr ðA�Þ ¼ trðAK�̂Þ ¼ hA; �̂i; (11)

where the second identity is the definition of the equilib-
rium canonical correlation (see Eq. (4.1.12) of [15] or
Eq. (3) of [9]). The time evolution of an average can be
obtained from the master equation (9) for the evolution of
� or from Eq. (10) for �̂. According to the property

hA;LBi ¼ h �LA;Bi; (12)

where the adjoint operator �L follows from an elementary
calculation,

�LA¼�i½A;H��kBTe

X
j;k

�kjK�1½Qj;K½Qk;A��; (13)

there exists a third possibility to obtain the evolution of an
average: one can use the time-dependent observable A

obtained from dA=dt ¼ �LA and a constant initial density
matrix � or �̂ in Eq. (11). The reversible contribution to the
evolution equation for A corresponds to the usual

Heisenberg equation for observables. The operator �L is
the adjoint ofL in canonical correlations and the adjoint of
the operator appearing on the right-hand side of the quan-
tum master equation (9) under the plain trace operation.
For symmetric matrices �jk, the only difference between

the operators L and �L is in the sign of the reversible term.
The adjointness property (12) establishes a relationship

or consistency between time evolution and canonical equi-
librium correlations. It may hence be regarded as a
detailed-balance condition that ensures the proper symme-
try of two-time canonical correlations.

D. Detailed balance

The usual construction of multitime correlations relies
on the possibility of introducing a Heisenberg picture, that
is, on the use of time-dependent operators averaged with a

time-independent density matrix [3]. For a nonlinear mas-
ter equation governing the evolution of the density matrix
in the Schrödinger picture, the passage to a Heisenberg
picture is no longer possible. We are hence faced with a
serious problem when we wish to study multitime correla-
tions. Even for the linearized master equation, one needs to
be careful with employing the Heisenberg-like picture to
define multitime correlations. To discuss this problem in
more detail, we start from the identity

tr ð½A; B��Þ ¼ trfðK�AÞ½B; ln��g; (14)

which follows from Eq. (6). When applied to the equilib-
rium density matrix (3), we obtain the relation

h½A; B�i ¼ i�hA;LrevBi ¼ i�h �LrevA;Bi; (15)

between equilibrium averages and canonical correla-

tions, where Lrev and �Lrev ¼ �Lrev are the reversible

contributions to the superoperators L and �L defined in

Eqs. (10) and (13). After replacing A by e
�LtA, we obtain

the rigorous identity

h½e �LtA; B�i ¼ i�h �Lreve
�LtA;Bi: (16)

For purely reversible dynamics, �L ¼ �Lrev, we finally ob-
tain

h½e �LtA; B�i ¼ i�
d

dt
he �LtA;Bi; (17)

which is known as a fluctuation-dissipation relation be-
tween a response function and a correlation function (see,
for example, [8] or Eq. (4.2.18) of [15]). As it has been
derived for from the fundamental Hamiltonian equation of

motion, where AðtÞ ¼ e
�LtA is the time-evolving operator

of the Heisenberg picture, the fluctuation-dissipation rela-
tion (17) should be respected by all coarse-grained evolu-
tion equations, for example, the quantum master equation.

For �L � �Lrev, it is not allowed to define various

two-time correlations naively by inserting e
�LtA because

Eq. (16) would then imply a violation of the fluctuation-
dissipation relation. This subtlety is known as the failure
of the quantum regression hypothesis [8,14,16,17]. It is
related to the fact that an adjointness property like in
Eq. (12) does not generally exist for the average of com-
mutators,

h½ �LA; B�i � h½A;LB�i ¼ i�ðh �Lrev
�LA;Bi � hA;LrevLBiÞ

¼ i�hA; ðLLrev �LrevLÞBi; (18)

which follows from Eqs. (15) and (12). Adjointness, or
detailed balance, in commutator averages can be guaran-
teed only for purely reversible dynamics.

E. Perturbation theory

In the following, we are interested in frequency-
dependent correlations rather than in the time-dependent
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correlation function (17). We hence introduce the super-
operator

�Rð!Þ ¼
Z 1

0
eð �L�i!Þtdt: (19)

If necessary for convergence, the frequency ! can have a
small negative imaginary part. For nontrivially interacting
systems, we would like to calculate such correlation func-
tions by means of perturbation theory. We hence assume

that the total Hamiltonian can be written as a sum, H ¼
Hð0Þ þHð1Þ, where for the superoperator �Lð0Þ obtained for

Hð0Þ instead of H in the definition (13) (note that also K
involves H through the canonical equilibrium density
matrix), but with the same coupling operators Qk, the
frequency-dependent superoperator characterizing the
free evolution,

�R ð0Þð!Þ ¼
Z 1

0
eð �L

ð0Þ�i!Þtdt; (20)

can be evaluated explicitly. The operator Rð0Þð!Þ is de-

fined in the same way in terms of Lð0Þ. These definitions
imply the useful identities

L ð0Þ þ ½Rð0Þð!Þ��1 ¼ �Lð0Þ þ ½ �Rð0Þð!Þ��1 ¼ i!: (21)

We now consider the straightforward formal second-
order perturbation series for the frequency-dependent ca-
nonical correlation,

h �Rð!ÞA;Bi¼ h �Rð0Þð!ÞA;Biþh �Rð0Þð!Þ �L0 �Rð0Þð!ÞA;Bi
þh �Rð0Þð!Þ �L0 �Rð0Þð!Þ �L0 �Rð0Þð!ÞA;Biþ . . .

(22)

where we have introduced the following pair of superop-
erators describing interaction effects,

L 0 ¼ L�Lð0Þ; �L0 ¼ �L� �Lð0Þ: (23)

Whereas the adjointness property (12) implies that the
exact result is equal to hA;Rð!ÞBi, such detailed balance
properties do not exist for the individual terms of the
perturbation expansion. The construction of a proper per-
turbation theory is even more subtle than the implementa-
tion of the fluctuation-dissipation relation because the
perturbation expansion involves multitime correlations.
In order to arrive at a more symmetric formulation, we
need to find a suitable adjointness property involving L0

and �L0. From Eqs. (12) and (21), we obtain the adjointness
property

h �L0 �Rð0Þð!ÞA;Rð0Þð!ÞBi þ h �Rð0Þð!ÞA;Bi
¼ h �Rð0Þð!ÞA;L0Rð0Þð!ÞBi þ hA;Rð0Þð!ÞBi: (24)

MovingL0 to the other side is linked with movingRð0Þð!Þ
to the other side in a lower-order term. The structure
of terms of successive orders in perturbation theory

becomes coupled. After moving the first factor �Rð0Þð!Þ
in the highest-order term of Eq. (22), the adjointness
property (24) allows us to rewrite the perturbation expan-
sion in the more symmetric form

h �Rð!ÞA;Bi¼ h �Rð0Þð!ÞA;Biþh �L0 �Rð0Þð!ÞA;Rð0Þð!ÞBi
þh �Rð0Þð!Þ �L0 �Rð0Þð!ÞA;L0Rð0Þð!ÞBiþ . . .

(25)

The occurrence of superoperators acting on A and B is now
balanced.
In practical calculations, averages of commutators are

more convenient than canonical correlations. By analogy
with Eq. (25) we hence introduce the following correlation
function guided by symmetry in time,

C ABð!Þ ¼ h½ �Rð0Þð!ÞA; B�i þ h½ �L0 �Rð0Þð!ÞA;Rð0Þð!ÞB�i
þ h½ �Rð0Þð!Þ �L0 �Rð0Þð!ÞA;L0Rð0Þð!ÞB�i þ . . .

(26)

For Hamiltonian dynamics, with L ¼ Lrev, this pertur-
bation expansion can be obtained in exactly the same
way as Eq. (25) because Eq. (18) provides the required
adjointness property. For general master equations, with
L � Lrev, we proceed as for the fluctuation-dissipation
relation and postulate that the balanced perturbation ex-
pansion (26) still must be applicable. The validity of this
postulate can be verified in the applications of Eq. (26) in
Secs. IVE and IV F.
A more rigorous approach to time-reversal and detailed

balance properties in perturbation theory will be of
particular importance if one is interested in multitime
correlations, such as Wilson loops. We need a general-
ization of the discussion of time-reversal symmetry and
detailed balance for the fluctuation-dissipation relation in
Secs. 4 and 6 of [8]. For our purposes, however, the bal-
anced second-order perturbation expansion (26) turns out
to be fully satisfactory.
The averages in Eq. (26) are still for the interacting

theory. In the following, we need the first-order expansion
(see, for example, Eq. (4.1.10) of [15], or Eq. (5.1.9) of [7])

hAi ¼ hAið0Þ � �hhA;Hð1Þiið0Þ þ . . . ; (27)

where the notation hh�; �iið0Þ implies that, in the evaluation
of the free canonical correlation by means of Wick’s

theorem, at least one contraction between A andHð1Þ needs
to be present. In other words, the contributions from a
product of averages is suppressed so that we might call

hh�; �iið0Þ a canonical covariance.

III. RENORMALIZATION GROUP

Renormalization is sometimes perceived as a tricky
toolbox to remove annoying divergences from quantum
field theory. The present section emphasizes that the
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renormalization group should rather be considered as a
profound tool to refine perturbation expansions which
would actually be useless without renormalization. We first
try to develop some intuition in the context of polymer
physics where no divergences are present. We then present
a few equations that provide practical recipes for refining
perturbation expansions and allow us to calculate the fa-
mous � function for the running coupling constants of
renormalization-group theory.

A. Intuitive example

Plain perturbation theory is clearly not appropriate for
problems involving a large number of interactions.
However, if a problem exhibits self-similarity on different
length scales, perturbation theory can be refined to obtain
useful results by successively accounting for infinitely
many interactions. This refinement may be considered as
a kind of generalized exponentiation procedure guided by a
renormalization-group analysis.

Nice illuminating examples of refined perturbation ex-
pansions can be found in the theory of linear polymer
molecules. The beauty of polymer physics actually stems
from the self-similarity of polymers [18]. If we model
polymer molecules in dilute solution as linear chains of
beads connected by springs, hydrodynamic interactions
between the beads arise because each bead perturbs the
solvent flow around it and, after propagation of the pertur-
bation, it affects the motion of the other beads. The bead
friction coefficient determines the strength of such
hydrodynamic-interaction effects.

The beads of such mechanical polymer models, how-
ever, are fictitious objects consisting of many monomers. If
one uses larger beads, hydrodynamic interactions between
the smaller beads inside a larger bead have to be incorpo-
rated into the effective friction coefficient of the larger
beads. This consideration offers the possibility of incorpo-
rating more and more interactions by passing to succes-
sively larger beads. Small increments in bead size implying
only few interactions inside the larger beads can be
handled by perturbation theory and renormalization-group
theory allows us to accumulate a very large number of
interactions via many small steps. A number of static and
dynamic properties of polymers in solution have been
computed by these ideas [19–24]. The transformation be-
havior between effective interaction strengths on different
length scales contains important information, in particular,
about the critical exponents associated with self-similarity
and the limiting value of the effective coupling strength on
large scales. With the large-scale model, one can finally
perform a perturbative calculation of any quantity of inter-
est. A comparison with the scaling expressions for these
quantities following from self-similarity allows us to refine
the results of plain perturbation theory even further (see,
for example, the behavior of various material functions at
high shear rates discussed in [25]).

Note that divergences are not an issue in the above
discussion of hydrodynamic interactions in dilute polymer
solutions. They would only arise if, to establish contact
with field theory, we considered the limit of an infinitely
large number of infinitesimally small beads. In the next
section, we show how the intuitive ideas of this section can
be translated into tractable equations.

B. Basic equations

Let us introduce a small length scale ‘, which could be a
bead size, a lattice spacing, an inverse cutoff for momen-
tum or frequency, or the characteristic length scale of
dissipative smoothing. If some model of interest contains
a dimensional coupling constant �, say the strength of
some interaction, the proper choice of which typically
depends on ‘, we first introduce the dimensionless cou-
pling constant

~�ð‘Þ ¼ ‘��ð‘Þ; (28)

with suitable exponent � obtained from dimensional analy-
sis. The intuitive ideas described in the preceding subsec-
tion are implemented by constructing a perturbation theory

of the rate of change of ~�ð‘Þ with ‘ rather than for ~�ð‘Þ
itself. We hence assume that there actually exists a pertur-
bation expansion of the function describing the rate of
change of the dimensionless coupling constant,

�ð~�Þ ¼ �‘
d~�

d‘
; (29)

that is, for the standard � function for the running coupling
constant of quantum field theory. We always display the �
function with its argument to avoid confusion with the
inverse temperature. If the free theory remains free on all
length scales, �ð0Þ ¼ 0, the most general second-order
expansion of the � function is given by

�ð~�Þ ¼ ��~�

�
1�

~�

��

�
; (30)

where the parameters � and �� remain to be determined.
According to Eq. (29), the second-order perturbation the-
ory (30) for � implies the following nontrivial dependence
of the running coupling constant on the length scale,

�ð‘Þ ¼ ��‘���

‘� þ c
: (31)

Note that the combination

��

c
¼ ‘����ð‘Þ

�
1� ‘��ð‘Þ

��

��1
(32)

is a constant. Any invariant property P must be some
function of this constant and, as a polynomial in ��=c
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and eventually in �ð‘Þ, must possess a second-order
perturbation expansion of the form

P0 þ P1‘
����

�
1þ ‘��

��

�
þ P2‘

2ð���Þ�2: (33)

We will later find the identity � ¼ � so that the perturba-
tion expansion (33) takes an even simpler form. Then,
Eq. (31) shows that �ð0Þ corresponds to ��=c, and
�ð‘Þ ¼ ‘���� for large ‘.

Of course, these arguments can be generalized to con-
struct the most general form of higher-order perturbation
expansions of observable quantities. Generalizing Eq. (32),
a polynomial expansion of the � function leads to a non-
polynomial form of the constant,

�̂ ¼ C‘�� exp

�
��

Z ~� d~�0

�ð~�0Þ
�
; (34)

where the integration constant C is to be chosen such that

�̂ ¼ � for small ‘. The integral of the rational function

1=�ð~�0Þ can actually be performed in closed form, but only

an expansion in ~� is required. Any invariant quantity P

must be a function of �̂ and hence possesses a perturbation
expansion of the form

P ¼ P0 þ P1�̂þ P2�̂
2 þ P3�̂

3 . . . ; (35)

where the expanded form of Eq. (34) has to be inserted,

�̂ ¼ �þ B2‘
��2 þ B3‘

2��3 . . . : (36)

The combined expansion is of the form

P ¼ P0 þ P1�þ ðP2 þ P1B2‘
�Þ�2

þ ðP3 þ 2P2B2‘
� þ P1B3‘

2�Þ�3 . . . : (37)

Note that this expansion contains the various corrections
from the small length scale ‘. The coefficients Pj can

easily be read off from the terms of order ‘0 of such an
expansion. The coefficients Bj characterizing the � func-

tion can then be read off in various places; in the language
of Feynman diagrams, this possibility corresponds to the
occurrence of the same subdiagrams in infinitely many,
increasingly complicated diagrams. The consistency of the
results and their independence of the particular quantity P
expresses the renormalizability of the theory.

Note that the dependence of � on ‘ is obtained from
the analysis of the perturbative prediction of large-scale
properties. The parameters ð�ð‘1Þ; ‘1Þ and ð�ð‘2Þ; ‘2Þ with
‘2 > ‘1 imply the same large-scale properties (on length
scales large compared to ‘2), but the model with parame-
ters ð�ð‘2Þ; ‘2Þ typically cannot accommodate all proper-
ties of the model with parameters ð�ð‘1Þ; ‘1Þ on length
scales of order ‘2. In other words, the underlying model
serves as a minimal model for a universality class without
being close to some fixed-point model. If we want to refine
our perturbation theory for some observable P, however,

we only have the option to translate the coupling constant �
from small scales to some physical length scale, say an
inverse mass m, and to use the corresponding translated �

as �̂ in the expansion (35). An even simpler refinement is
obtained if we assume that, at the length scales of interest,
~� has reached its fixed-point value �� with �ð��Þ ¼ 0,

which implies the choice �̂¼m��� in the expansion (35),
or � ¼ m��� and ‘ ¼ 0 in the expansion (37).
Keeping the large-scale physics invariant when letting

the length scale ‘ of the underlying model go to zero
implies that the underlying model has to approach a critical
point with diverging correlation length in units of ‘. This
well-known relationship between field theory and critical
phenomena, including the calculation of critical exponents,
has been discussed extensively, for example, in the nice
classical review articles [26,27].

IV. ’4 THEORY

With the tools of quantum dissipation at hand, we can
now formulate quantum field theory with small-scale
smoothing by a dynamic friction mechanism. Our ap-
proach may be considered as a generalization of the ca-
nonical quantization procedure to include dissipation. We
present the free field theory and construct the propagator
and a four-point correlation of the interacting theory in
second-order perturbation theory. In a final step, we refine
perturbation expansions by means of renormalization-
group theory and construct the � function.

A. Quantization procedure

Quantization procedures are traditionally based on a
canonical Hamiltonian formulation of the evolution equa-
tions for the underlying classical systems. In the canonical
approach to quantummechanics, rooted in Dirac’s pioneer-
ing work, the canonical Poisson brackets of classical me-
chanics are replaced by the commutators of quantum
mechanics [28]. This procedure has been adapted to quan-
tum field theory (see, for example, Secs. 11.2 and 11.3 of
[29] or Sec. I.8 of [30]). Even in the path-integral approach
to quantum field theory, the justification of the proper
action needs to be supported by the canonical approach
(see, for example, the introduction to Sec. 9 of [31]).
Although there rather exists a give-and-take relation be-
tween the canonical and path-integral approaches (for
example, gauge invariance is easier to implement in the
path-integral approach and has highly nontrivial implica-
tions for the proper construction of the Hamiltonian in a
particular gauge, as discussed below in Sec. VA), under-
standing its Hamiltonian structure is crucial for quantizing
a system.
In classical mechanics, one has the choice between

the Lagrangian and Hamiltonian formulations; both
formulations can also be used for classical field theories
(see, for example, Chaps. 2, 8, and 12 of [32]). The
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Lagrangian approach is based directly on the variational
principle for the action which is obtained as the time
integral of the Lagrangian. In contrast, the equivalent
Hamiltonian approach needs two structural elements, the
Hamiltonian and a Poisson bracket required to turn the
gradient of the Hamiltonian into the vector describing
time evolution. The canonical Poisson structure, which in
the nondegenerate case is also known as symplectic struc-
ture, is the key to formulating the proper commutators in
the quantization procedure. It is important to note that
the Hamiltonian and the Poisson structure are two separate
elements. In particular, once one has identified a funda-
mental Poisson structure, one can easily change the
Hamiltonian. To understand the equivalence of the
Lagrangian and Hamiltonian formulations of classical field
theory, one should realize that the existence of a nonde-
generate Poisson structure is crucial to establish an under-
lying variational principle [33].

If one changes the system, one needs to change the
Lagrangian and hence one needs to begin from scratch in
the Lagrangian approach. In the Hamiltonian approach,
one needs to change the Hamiltonian but one may keep
the Poisson structure, where the latter is the key to quan-
tization. Of course, one might ask whether we actually
want to change the system. This indeed happens when
we consider the noninteracting and interacting systems in
parallel, say for constructing a perturbation theory. The
logical separation of canonical Poisson structures and
Hamiltonians is also very useful when one wishes to quan-
tize systems involving nontrivial constraints. Indeed, the
proper handling of the constraints resulting from gauge
invariance is a major obstacle to quantizing the Yang-Mills
and gravitational fields. Note that the Lagrangian and
Hamiltonian approaches are closely related to path-integral
and canonical quantization, respectively.

As nonequilibrium thermodynamics is built on a
Hamiltonian formulation of reversible dynamics, the quan-
tization of dissipative systems is obtained as a general-
ization of the canonical quantization procedure. As an
additional step, one needs to formulate the proper form
of the frictional coupling to a heat bath in the quantum
master equation.

B. Fields and Hamiltonian

We consider a scalar quantum field ’ðxÞ and its canoni-
cal conjugate �ðxÞ in d space dimensions. Throughout this
paper, we denote the dimensions of space and spacetime by
d andD ¼ dþ 1, respectively. The bosonic field operators
’ðxÞ at all positions x commute among each other, and so
do the conjugate operators �ðxÞ. The only nontrivial com-
mutation relations are of the canonical form

½’ðxÞ; �ðx0Þ� ¼ i	ðx� x0Þ: (38)

We assume that the total Hamiltonian of our system is
given by

H ¼
Z �

1

2
½�2 þ ðr’Þ2 þm2’2� þ 1

24
�’4

�
ddx; (39)

where the quadratic contribution in �ðxÞ and ’ðxÞ de-
scribes a free massive scalar field with mass parameter m
and the quartic contribution is the interaction term of the
’4 theory. The parameter �, often referred to as a coupling
constant, describes the strength of the interaction. A di-
mensional analysis of Eq. (39) shows that ’2m1�d and
�md�3 are dimensionless.
The self-adjoint position-dependent canonical field var-

iables can be expressed in Fourier representations of the
form (see, for example, Sec. I.8 of [30] or Sec. 12.1 of [29])

’ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þdp Z ddkffiffiffiffiffiffi

!k
p ðayk þ a�kÞe�ik�x; (40)

and

�ðxÞ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þdp Z

ddk
ffiffiffiffiffiffi
!k

p ðayk � a�kÞe�ik�x: (41)

The only requirement for the function !k occurring in this
representation is that it assumes equal values for k and�k.
With these Fourier representations, we have introduced the

adjoint operators ayk and ak creating and annihilating field

quanta of momentum k 2 Rd, respectively, as primary
variables. All creation operators commute among each
other, and so do the annihilation operators. The only non-
trivial commutation relations for the boson creation and
annihilation operators are

½ak; ayk 0 � ¼ 	ðk� k0Þ: (42)

We assume that the collection of all states created by

multiple application of all the operators ayk for all k 2 Rd

on a ground state (which is annihilated by any ak) is
complete. The full Hilbert space factorizes into spaces

obtained by repeated application of ayk for each mode k
(see, for example, Secs. 1 and 2 of [34] or Secs. 12.1 and
12.2 of [29] for more details on the construction of such
Fock spaces). The field quantization based on Eq. (42) for
creation and annihilation operators is an equivalent alter-
native to the canonical quantization procedure based on
Eq. (38).

We next write the total Hamiltonian as the sum H ¼
Hð0Þ þHð1Þ and express the quadratic free Hamiltonian

Hð0Þ and the quartic interaction term Hð1Þ in terms of
creation and annihilation operators. Neglecting an irrele-
vant constant contribution, the free Hamiltonian can be
expressed in the simple form

Hð0Þ ¼
Z

!ka
y
kakd

dk; (43)

provided that the momentum-dependent frequencies !k

are given by the relativistic dispersion relation
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!2
k ¼ k2 þm2: (44)

Once more neglecting constant terms, the interaction term
of the ’4 theory is given by

Hð1Þ ¼ �

96

1

ð2�Þd
Z Y4

j¼1

ddkjffiffiffiffiffiffiffiffi
~!kj

q 	ðk1þk2þk3þk4Þ

ða�k1a�k2a�k3a�k4 þ4ayk1a�k2a�k3a�k4

þ6ayk1a
y
k2
a�k3a�k4 þ4ayk1a

y
k2
ayk3a�k4

þayk1a
y
k2
ayk3a

y
k4
Þ

þ�z
Z ddk

2 ~!k

ðaka�kþ2aykakþayka
y
�kÞ; (45)

where we have chosen to use the normal ordered form of

Hð1Þ, that is, all creation operators are moved to the left, all
annihilation operators are moved to the right. Normal
ordering will be very convenient for the subsequent calcu-
lations. By inserting the Fourier transform (40) into the
Hamiltonian (39), we would actually obtain ~!k ¼ !k and
z ¼ zno with

zno ¼ 1

4

1

ð2�Þd
Z ddq

2 ~!q

¼ 1

4
md�1I1; (46)

where the integral I1 (for ~!q ¼ !q) and its Lorentz invari-

ance are discussed in Appendix A [see Eq. (A1)].
We have introduced the generalization from !k to ~!k

with the idea to modify the frequency at very large jkj to
guarantee the convergence of all integrals occurring in
intermediate steps of the calculation and to allow us a
direct comparison with more traditional regularization
procedures. The details of this regularization of the
Hamiltonian at large wave vectors, which should be
distinguished from the dissipative regularization intro-
duced in this paper, are irrelevant to the present approach.
Note that the passage from !k to ~!k does not change the
Hamiltonian structure (only the Hamiltonian), but it de-
stroys the Lorentz invariance of the system.

It is very convenient to allow for values of z that are
different from the value occurring naturally from the
normal-ordering procedure, zno given in Eq. (46). To fix
the value of z in a more convenient way, we look at the
most fundamental correlation function (26) obtained for

A ¼ ak and B ¼ ay
k0 , that is, for a field quantum created

with momentum k0 and later annihilated with momentum
k. We introduce the correlation function Ckð!2Þ by

Cakayk0
ð�!Þ � Cakayk0

ð!Þ
2!

¼ Ckð!2Þ	ðk� k0Þ; (47)

where momentum conservation has been taken into ac-
count and, in view of its symmetry in !, a dependence of
Ck on !2 has been anticipated. By choosing z such that the
moment condition,

C 0ð!2Þj!2¼0 ¼ m2 @C0ð!2Þ
@!2

��������!2¼0
(48)

is fulfilled, we have a well-defined relationship between
the mass parameter m and a physical correlation function
of the interacting system in the limit of small freq-
uencies and zero wave vector. With this choice of z, the
physical meaning of mass is not affected by interactions.
This leads to a nicely organized perturbation theory in �
that can be refined very conveniently by a renormalization-
group analysis and corresponds to the usual mass-
renormalization procedure. Allowing for z � zno results
in what is usually achieved by a counterterm. We assume
that z possesses a perturbation expansion in �. It turns out
below that this perturbation expansion of z can be con-
structed very easily, in particular, if we rewrite it in the
equivalent form

C 0ð0Þ ¼ � 1

m2

@

@!2
ð!2 �m2Þ2C0ð!2Þj!2¼0: (49)

We further introduce the factor Z by the condition

C 0ð0Þ ¼ ZCð0Þ0 ð0Þ; (50)

so that we can preserve the normalization in the pre-
sence of interactions by rescaling the field operators or,
equivalently, the creation and annihilation operators.
Equation (50) offers an explicit recipe for calculating Z.
In particular, a perturbation theory for the two-time corre-
lations on the left-hand side of Eq. (50) directly provides an
explicit perturbation expansion for Z. Note that, in the
thermodynamic approach, a change in the normalization
of the fields in the Hamiltonian can trivially be absorbed in
a change of the coupling constant � and an overall factor to
be included into the definition of temperature.

C. Friction mechanism

We now apply the linearized thermodynamically con-
sistent master equation (10) to the treatment of quantum
field theory. With the coupling operators

Qj;Qk � r2’ðxÞ;r2’ðyÞ; (51)

which favor dissipation and smoothing of small-scale fea-
tures through the occurrence of the Laplacian r2 as the
simplest scalar differential operator, and the local relaxa-
tion rates

�jk � 2�	ðx� yÞ; (52)

we arrive at the preliminary quantum master equation

d�̂

dt
¼ i½�̂; H� �

Z
ddk

�k

�!k

�K�1½ayk þ a�k;K½ay�k þ ak; �̂��; (53)

where �k ¼ �jkj4 with the friction parameter �. Note
that the occurrence of jkj4 is natural because the scalar
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coupling operator, which involves the Laplacian, occurs
quadratically in the quantum master equation.

The quantum master equation (53) is obtained under the
assumption that only the Laplacian of the fields should be
used for the dissipative coupling, not the Laplacian of their
canonical conjugates. A more symmetric coupling to the
fields and their conjugates leads to the simpler final equa-
tion

d�̂

dt
¼ L�̂ ¼ i½�̂; H� �

Z
ddk

�k

�!k

�K�1ð½ayk ;K½ak; �̂�� þ ½ak;K½ayk ; �̂��Þ: (54)

Such a symmetric coupling also arises for the damping
of electromagnetic field modes inside a cavity (see
Eq. (3.307) of [3]). For single creation or annihilation
operators, Eqs. (2), (6), and (42) lead to the remarkably
simple results

L ayk ¼ �i

�
1� i

�k

!k

�
½H; ayk �; (55)

and

�Lak ¼ �i

�
1� i

�k

!k

�
½ak; H�: (56)

The quantum master equation (54) is our fundamental
equation of quantum field theory obtained by a general-
ization of the canonical quantization procedure for dissi-
pative systems. In addition to the usual reversible evolution
given by the commutator with the Hamiltonian, local de-
grees of freedom are damped by an irreversible friction
mechanism expressed in terms of a double commutator.
The cutoff of a quantum field theory is realized as a spatial
smoothing achieved by a dissipative dynamical mechanism
where smoothing over short distances takes place very
quickly.

D. Free field theory

In this section, we consider the calculation of equilib-
rium averages and the evolution equations for the free
theory with � ¼ 0. To generalize Wick’s theorem for
evaluating complicated moments to the case of finite tem-
peratures, we use the ideas of the chapter ‘‘field theory at
finite temperature’’ (Chap. 7) of [34] (see also the theory of
temperature Green’s functions in Sec. 5.6 of [15]). Note
that equilibrium averages are not affected by the fact that
we use a quantum master equation with dissipation rather
than a purely reversible Hamiltonian evolution.

In the spirit of Eqs. (24.32) and (24.36) of [34], we
obtain for averages performed with the free Hamiltonian

Hð0Þ for an arbitrary observable A:

haykAið0Þ ¼
h½A; ayk �ið0Þ
e�!k � 1

; hakAið0Þ ¼ h½ak; A�ið0Þ
1� e��!k

: (57)

Wick’s theorem (57) is theworking horse for evaluating the
free averages containing an increasing number of creation/
annihilation operators and hence plays a crucial role in
perturbation theory.
In the following, it is often convenient to consider ob-

servables of the normal ordered form,

A ¼ ay
k01
. . . ay

k0J
ak1 . . . akK : (58)

In particular, we are interested in the free evolution of such
a normal ordered operator A. We study the ingredients to
the reversible and irreversible contributions in the evolu-
tion equation separately.
The reversible part of the free evolution is obtained from

the commutation relations

½Hð0Þ; ayk � ¼ !ka
y
k ; ½Hð0Þ; ak� ¼ �!kak: (59)

These commutation relations imply the more general result

½Hð0Þ; A� ¼ !AA; (60)

where the frequency

!A ¼ XJ
j¼1

!k0j �
XK
j¼1

!kj (61)

has been associated with the operator A.
By following the change with u, we obtain as a useful

consequence of Eq. (60)

e�uHð0Þ
AeuH

ð0Þ ¼ e�u!AA; (62)

for arbitrary complex u. The normal ordering of the op-
erators in Eq. (58) is actually irrelevant for the above
results (60) and (62). We further obtain

K ð0ÞA ¼ wð!AÞA�ð0Þ ¼ wð�!AÞ�ð0ÞA; (63)

where �ð0Þ is the equilibrium density matrix (3) for the free
field theory and the function wð!Þ is defined as

wð!Þ ¼ 1� e��!

�!
: (64)

Equation (63) follows from Eqs. (2) and (62) by explicit
integration over u. From Eq. (63) we further obtain

hA;Bið0Þ ¼ wð�!AÞhABið0Þ ¼ wð!BÞhABið0Þ; (65)

and, with the additional help of Eq. (62),

h½A; B�ið0Þ ¼ ��!AhA;Bið0Þ ¼ �!BhA;Bið0Þ; (66)

so that all kinds of free equilibrium averages are related by
simple factors. Note that Eq. (66) can also be obtained as a
simple special case of the much more general result (15)
for the interacting system.
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The irreversible part of the evolution superoperator of
the free theory can now be evaluated by means of the
identity (63). As a first step, we obtain the useful identities

Kð0Þ�1½A;Kð0ÞB�

¼ �!A

wð!AÞwð!BÞ
wð!A þ!BÞ BAþ wð!BÞ

wð!A þ!BÞ ½A; B�

¼ �!A

wð!AÞwð!BÞ
wð!A þ!BÞ ABþ wð!BÞe��!A

wð!A þ!BÞ ½A; B�: (67)

After using Eqs. (60) and (67) in Eq. (54), the total free
evolution superoperator resulting as the sum of the revers-
ible and irreversible contributions is found to be

Lð0ÞA ¼ �i!AA�
Z

ddk
�k

wð!AÞ
�

�
wð!A �!kÞwð!kÞayk ½ak; A�

þ wð!A þ!kÞwð�!kÞ½A; ayk �ak
� e��!k

�!k

wð!A �!kÞ½½ak; A�; ayk �

� 1

�!k

wð!A þ!kÞ½ak; ½A; ayk ��
�
: (68)

Note that the double commutators in the last two terms in
Eq. (68) are actually equal. According to the first two terms
under the integral in Eq. (68), the decay rate �A for an
operator A is given by

�A ¼ XJ
j¼1

�k0jWð!k0j ; !A �!k0jÞ

þ XK
j¼1

�kjWð�!kj ; !A þ!kjÞ; (69)

with

Wð!;!0Þ ¼ wð!Þwð!0Þ
wð!þ!0Þ : (70)

The function W has the useful symmetry properties,

Wð!;!0Þ ¼ Wð!0; !Þ; Wð!;!0Þ ¼ Wð�!;�!0Þ:
(71)

By simplifying the result (68) for normal-ordered products
(58) of creation and annihilation operators, the fundamen-
tal evolution operator of the free theory can now be rewrit-
ten in the compact form

L ð0ÞA ¼ �ði!A þ �AÞAþ �A; (72)

where the term �A consists of all the contributions obtained
by deleting one creation and one annihilation operator
from A. The explicit normal ordered form of �A is given by

�A ¼
Z

ddk
�k

�!k

1

wð!AÞ fwð!A þ!kÞ

þ e��!kwð!A �!kÞg½ak; ½A; ayk ��: (73)

When exponentially small terms are neglected in the low-
temperature limit, Eq. (73) for!A � 0 can be simplified to

�A ¼
Z

ddk
�kj!Aj

�!kð!k þ j!AjÞ ½ak; ½A; a
y
k ��: (74)

Some examples of �A for normal ordered products of
up to three creation/annihilation operators are given in
Appendix B.
From the identity (21) and the explicit expression (72),

we obtain the result

R ð0Þð!ÞA ¼ 1

i!þ i!A þ �A

½AþRð0Þð!Þ�A�; (75)

by which the calculation of Rð0Þð!ÞA can be reduced to
successively simpler products of creation and annihilation
operators. We similarly have

�R ð0Þð!ÞA ¼ 1

i!� i!A þ �A

½Aþ �Rð0Þð!Þ�A�: (76)

E. Propagator

We are now ready to analyze the fundamental correla-
tion function Ckð!2Þ introduced in Eq. (47) for an interact-
ing system. If we introduce the equilibrium averages

h½½ak; Hð1Þ�; ay
k0 �i ¼ Xk	ðk� k0Þ; (77)

and

h½ �Rð0Þð!Þ½ak; Hð1Þ�; ½Hð1Þ; ay
k0 ��i ¼ iYkð!Þ	ðk� k0Þ;

(78)

and use the results (55), (56), (75), and (76), then Eqs. (26)
and (47) lead to

C kð!2Þ ¼ i

!2 � ð!k � i�kÞ2
þ 2ið!k � i�kÞ2

!2
k½!2 � ð!k � i�kÞ2�2

�½!kXk þ ð!k � i�kÞYþ
k ð!Þ�

� ið!k � i�kÞ2½!2 þ ð!k � i�kÞ2�
!2

k½!2 � ð!k � i�kÞ2�2
Y�
k ð!Þ
!

;

(79)

where Yþ
k ð!Þ and Y�

k ð!Þ are the symmetric and antisym-

metric contributions to Ykð!Þ.
The exact results for Xk and Ykð!Þ for any temperature

are given in Appendix D. Eqs. (D1) and (D3) allow us to
see explicitly how the limits of low temperature and weak
friction can be performed. Neglecting exponentially small
terms at low temperatures, we find
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Xk ¼ �z

~!k

; (80)

and

Ykð!Þ ¼ 2�2z2

~!2
k

!k

ð!� i�kÞ2 �!2
k

� �2

96 ~!k

1

ð2�Þ2d
Z ddk1d

dk2d
dk3

~!k1 ~!k2 ~!k3

� 	ðk1 þ k2 þ k3 þ kÞ
� rð!;!k1 þ!k2 þ!k3 ; �k1k2k3Þ; (81)

with the damping rate

�k1k2k3 ¼
!k1 þ!k2 þ!k3

�

�
�k1

!k1ð!k2 þ!k3Þ

þ �k2

!k2ð!k1 þ!k3Þ
þ �k3

!k3ð!k1 þ!k2Þ
�
; (82)

and the rational kernel function

rð!; �!; ��Þ ¼ 1

!þ �!� i ��
� 1

!� �!� i ��
: (83)

The occurrence of i �� in Eq. (83) implies specific rules
for the treatment of the poles in the integrations of Eq. (81).
The i �� hence plays a similar role as the i" in the usual
approach (see, for example, Eqs. (A1) and (A8) and the
comments offered there). The usual i" resolves infrared
problems by clarifying causality issues. In our approach
based on irreversible equations, there is a natural arrow of
time and a large-scale decay of correlations that leads to
convergent integrals. Therefore, the small friction coeffi-
cient simultaneously resolves infrared problems by ensur-
ing a decay of correlations on large scales and ultraviolet
problems by dissipative smoothing of the fields on small
scales.

As the averages in Eqs. (77) and (78) need to be eval-
uated by means of Wick’s theorem, we can introduce
Feynman diagrams to keep track of the contraction struc-
ture of the various contributions. The contribution Xk

corresponds to the diagram in Fig. 1(a), whereas the con-
tribution Ykð!Þ consists of two terms represented by the
Feynman diagrams in Figs. 1(b) and 1(c). The diagram in
Fig. 1(a) looks like a first-order contribution, as also the
factor of � in Eq. (80) suggests. Note, however, that this
contribution stems from the quadratic part of the inter-
action Hamiltonian (45) arising in the normal-ordering
procedure and that it hence contains a factor of z, which
is shown as an important reminder in the Feynman dia-
grams. This factor z still needs to be determined from
Eq. (48) or (49). It turns out that z itself is of order � so
that the diagrams in Figs. 1(a) and 1(b) actually represent
second- and fourth-order contributions, respectively. The
contribution in Fig. 1(c) clearly is a genuine second-order

term as suggested by the factor �2 in front of the triple
momentum integral in Eq. (81).
In the limit of vanishing friction, in which we switch

off the dissipative regularization mechanism and expect
to recover standard results, we can set �k ¼ 0 in
Eqs. (79) and (81). Equation (79) becomes

ð!2 �!2
kÞ2Ckð!2Þ ¼ ið!2 �!2

kÞ þ 2i!k½Xk þ Yþ
k ð!Þ�

� ið!2 þ!2
kÞ
Y�
k ð!Þ
!

: (84)

In simplifying Eq. (81) we need to be more careful with
�k1k2k3 because this quantity keeps all integrals finite,

which expresses the regularizing character of the smooth-
ing friction mechanism. To simplify the kernel function
occurring in Eq. (81), we consider the following expansion
in !,

rð!; �!; ��Þ ¼ X1
n¼0

�
1

ð �!þ i ��Þnþ1
þ ð�1Þn

ð �!� i ��Þnþ1

�
!n: (85)

After neglecting the regularizing friction mechanism in
all convergent integrals (where, for simplicity, we assume
d < 3, so that the integrals converge for n � 2), we obtain
the simplified expansion

rð!; �!; ��Þ ¼ 1

�!þ i ��
þ 1

�!� i ��
þ !

ð �!þ i ��Þ2

� !

ð �!� i ��Þ2 þ 2
X1
n¼1

!2n

�!2nþ1
: (86)

We next analyze the terms proportional to ! in Eq. (86).
Note from Eq. (82) that the regularizing parameter is �=�,
and dimensional analysis hence implies that the corre-
sponding smoothing length scale is given by

‘ ¼
ffiffiffiffiffiffi
2�

�

s
; (87)

where the factor 2 is introduced for later convenience.
Each of the resulting two contributions to Yk proportional

to ! diverges as ‘�ð2d�5Þ (for d < 5=2, the terms are
convergent and cancel each other in the limit of zero

FIG. 1. Feynman diagrams potentially contributing to the
propagator in second-order perturbation theory.
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friction). For symmetry reasons, the divergent terms (for
5=2< d< 3) cancel each other and the corrections, when
expanded in terms of the dimensionless parameter ‘m,
vanish in the limit of small friction. We can hence rewrite
the kernel function (86) as

rð!; �!; ��Þ ¼ 2 �!

�!2 þ ��2
þ 2

X1
n¼1

!2n

�!2nþ1
; (88)

implying Yþ
k ð!Þ ¼ Ykð!Þ and Y�

k ð!Þ ¼ 0 for the symmet-

ric and antisymmetric contributions to Ykð!Þ. At the ex-
pense of losing the convergence of the integral of each
individual term, Eq. (88) can formally be resummed into a
simple rational function of !2 and a constant term with
prefactor ��2,

rð!; �!; ��Þ ¼ 2 �!

�!2 �!2
� 2 ��2

�!ð �!2 þ ��2Þ : (89)

After simplifying the kernel function, we are now in a
position to discuss the propagator in more detail. For the
second-order expansion Y0ð!Þ ¼ Y þ Y0!2, the condi-
tions (49) and (50) for the correlation function (84) imply

X0 ¼ �ðY þm2Y0Þ; (90)

and

Z ¼ 1þ 2mY0: (91)

Note that the value of z following from Eqs. (90), (80), and
(81) with the kernel function (88), for which we obtain the
straightforward result

z ¼ �

48

1

ð2�Þ2d
Z ddk1d

dk2d
dk3

~!k1 ~!k2 ~!k3

	ðk1 þ k2 þ k3Þ
!k1 þ!k2 þ!k3

� ð!k1 þ!k2 þ!k3Þ2 þm2

ð!k1 þ!k2 þ!k3Þ2 þ �2
k1k2k3

; (92)

turns out to be small, more precisely, only of first order in
�. If we rely on dimensional regularization and use the
assumptions of vanishing friction and ~!kj ¼ !kj , we find

Z ¼ 1þ 1

6
ð�md�3Þ2I3; (93)

and

z ¼ �

12
m2d�4ðI2 � I3Þ; (94)

in terms of the integrals introduced in [35] and reproduced
in Eq. (A7). The result (93) for the normalization factor Z
coincides with the one given in Eqs. (11.64) and (11.69) of
[35]. The quantity z is usually taken into account through
mass renormalization. More precisely, we have verified
explicitly that Z½1þ 2�ðz� znoÞ=m2� coincides with the
mass-renormalization factor Zm of [35].

For presenting the results of the perturbation theory, it is
convenient to ‘‘amputate the external legs’’ associated with

free propagators (see, for example, p. 55 of [30]). We hence
introduce the usual amplitude

M kð!2Þ ¼ � 1

Z
ð!2 �!2

kÞ2Ckð!2Þ: (95)

From Eqs. (84) and (91), we obtain for the second-order
perturbation series

Mkð!2Þ ¼ �ið!2 �!2
kÞ

� 2i½!kYkð!Þ �mY � ð!2 � k2ÞY0� (96)

with nicely Lorentz invariant correction terms due to the
constants Y and Y0. The Lorentz invariance of

!kYkð!Þ ¼ ��2

96

1

ð2�Þ2d
Z ddk1d

dk2d
dk3

~!k1 ~!k2 ~!k3

� 	ðk1 þ k2 þ k3 þ kÞ
� rð!;!k1 þ!k2 þ!k3 ; �k1k2k3Þ; (97)

is less obvious. Note that we have assumed ~!k ¼ !k for
the externally fixed momentum (regularization is only
relevant in integrals). To establish the Lorentz invariance
of !kYkð!Þ, we need to pass from space to spacetime
integrals. If we neglect all regularization effects by assum-
ing also ~!kj ¼ !kj and by considering the limit of vanish-

ing friction,

rð!; �!; 0Þ ¼ 2 �!

�!2 �!2
; (98)

we find !kYkð!Þ ¼ �2Ikð!2Þ=12 in terms of the integral
defined in Eq. (A9). Equivalent forms of the integral Ikð!2Þ
are given in Appendix A. The representation in Eq. (A8)
demonstrates the invariance of !kYkð!Þ, clearly exhibits
the structure of a product of three free spacetime propa-
gators, and reproduces the standard result for Mkð!2Þ as,
for example, given in Eq. (III.3.2) of [30]. Equation (A6)
finally leads us to the Euclidean time version of the second-
order perturbation series for the propagator given in
Eqs. (11.36) and (11.38) of [35].
Regularization mechanisms often destroy the Lorentz

invariance, although a covariant formulation of friction
within a not manifestly covariant thermodynamic frame-
work may be possible (see, for example, [36–38]). After
neglecting the regularization mechanism for establishing
Lorentz invariance, we next look at Eq. (92) or at Eq. (97)
with the kernel function (88) to see how integrals become
regularized. In the traditional approach, one has �k1k2k3 ¼ 0

and the convergence of integrals is achieved by an en-
hanced increase of the frequencies ~!kj at large wave

vectors kj. In the present approach, we can use ~!kj ¼!kj

because the occurrence of �2
k1k2k3

keeps all integrals finite.
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F. Four-point correlation

Our next goal is to obtain the� function for the coupling
constant from a second-order perturbation theory of the
form (33). As a first-order term is missing in the perturba-
tion series (96) for the propagator, we cannot determine the
fixed-point value �� of the dimensionless coupling con-
stant. We hence consider a four-point correlation which, to
leading order, is given by the interaction strength � of ’4

theory.
As a second example, we hence apply our basic pertur-

bation formula (26) to A ¼ ak1ak2 and B ¼ ay
k0
1
ay
k0
2
. The

result is of little direct interest because two particles are
created at exactly the same time and later annihilated also
at exactly the same time. Nevertheless, we will be able to
produce a perturbation series from which we can read off
the parameter �� and the � function (30). It is actually
sufficient to do the calculations in the limit of vanishing
frequency ! and wave vectors kj, k

0
j.

According to Eq. (76), the zeroth-order contribution in
Eq. (26) factorizes into two propagators. After subtracting
a suitable product of propagators, we are interested only in
contributions corresponding to connected Feynman dia-
grams. As we restrict ourselves to the limits of vanishing
frequency and friction (except for the regularization effect
in integrals), we consider the property

� ¼ h½ �L0
revA; B�i þ h½ �Rð0Þð0Þ �L0

revA;L0
revB�i: (99)

With the explicit form of ½½A;Hð1Þ�; B� given in Eq. (C9),
we obtain

h½ �L0
revA; B�i ¼ �ih½½A;Hð1Þ�; B�i ¼ �i�

F
4
; (100)

with

F ¼ 1

ð2�Þd
	ðk1 þ k2 � k01 � k02Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!k1 ~!k2 ~!k0
1
~!k0

2

q ; (101)

where we have omitted all terms that vanish exponentially
at low temperatures and all products of two propagators
corresponding to particles that do not interact with each
other. Note that no second-order corrections resulting from
the expansion (27) have survived in Eq. (100).
According to Eqs. (C3) and (C4), there are two types

of contributions associated with the second-order term in
Eq. (99). They can be represented by the Feynman dia-
grams shown in Fig. 2. For the contribution associated with
Fig. 2(a), we have the explicit formula

h½ �Rð0Þð0Þ½ak1 ; ½ak2 ; Hð1Þ��; ½½Hð1Þ; ay
k0
1
�; ay

k0
2
��i ¼ �2

32

F
ð2�Þd

Z ddq1d
dq2

~!q1 ~!q2

	ðk1 þ k2 þ q1 þ q2Þ

�
�

1

ið!q1 þ!q2Þ þ �a�q1
a�q2

þ 1

ið!q1 þ!q2Þ � �ayq1a
y
q2

�
; (102)

where the expressions (C5) and (C6) andWick’s theorem (57) have been used to arrive at this integral expression. A typical
contribution associated with Fig. 2(b) is given by

h½ �Rð0Þð0Þ½ak1 ; Hð1Þ�ak2 ; ayk01½H
ð1Þ; ay

k02
��i ¼ �2

32

F
ð2�Þd

Z ddq1d
dq2

~!q1 ~!q2

	ðq1 þ q2 þ k1 � k01Þ
ið!q1 þ!q2 þ!k0

1
þ!k2Þ þ �a�q1

a�q2
ak0

1
ak2

; (103)

where the evaluation is based on Eqs. (C1) and (C2). In
total, there are four contributions of the type (103) because
k1 and k2 can be exchanged, as well as k

0
1 and k

0
2. All other

terms are exponentially small.
Upon setting k1 ¼ k2 ¼ k01 ¼ k02 ¼ 0 in the integrals of

Eqs. (102) and (103) and inserting them into Eq. (99), we
obtain the simple perturbation expansion

Im� ¼ F
4

�
��þ �2

4

1

ð2�Þd
Z ddq

2 ~!2
q!qð1þ �02

q Þ

þ �2

2

1

ð2�Þd
Z ddq

2 ~!2
qð!q þmÞð1þ �002

q Þ
�
; (104)

with

FIG. 2. Feynman diagrams contributing to the interaction vor-
tex in second-order perturbation theory.
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�0
q ¼ 2�q4

�!2
q

; �00
q ¼ 2�q4

�!qð!q þ 2mÞ : (105)

In evaluating �a�q1
a�q2

, �ayq1a
y
q2

, and �a�q1
a�q2

ak0
1
ak2

, we have

once more neglected exponentially small terms at low
temperatures. In the definition of the four-point correlation,
we have not included a factor 1=Z2 because it would affect
only third-order terms.

For d < 3, the integrals in Eq. (104) are nicely conver-
gent without any regularization. For ~!q ¼ !q and � ¼ 0,

these integrals have been expressed in terms of the �
function in Eqs. (A4) and (A5). By evaluating the
leading-order corrections resulting from small values of
the friction parameter �, we arrive at

Im� ¼ F
4

�
��þ 1

4
�2md�3ðI01 þ 2I001 Þ

� 3

8
�2‘3�d 1

ð2�Þd
Z qddq

1þ q4

�
; (106)

where the smoothing length scale ‘ has been defined in
Eq. (87). We finally have a perturbation expansion with a
first-order term to compare to the general form (33) and we
find a perfect match in structure. After using Eq. (A2), the
remaining one-dimensional integral can be evaluated in
closed form (for example, with 3.241.2 of [39]). From
the comparison of the general form (33) with our pertur-
bation expansion (106), we then obtain the exponents

� ¼ � ¼ 3� d; (107)

and the fixed-point value

�� ¼ 16

3
2d�

�
d

2

�
�ðd�2Þ=2 sin

�
ð3� dÞ�

4

�
� 16

3
�2�:

(108)

In one and two space dimensions, we obtain �� ¼ 32=3

and �� ¼ 32
ffiffiffi
2

p
=3, respectively; in three space dimensions,

we recover the free theory on large scales. The nontrivial
dependence of �� on the space dimensionality d, which is
deeply related to the dissipative smoothing mechanism, is
shown in Fig. 3. Note that the occurrence of q4 in the
denominator of the integrand in Eq. (106) is a direct
consequence of using the Laplacian as the simplest
and most natural scalar differential operator in defining
the coupling operators in Eq. (51). It is quite remarkable
that the detailed form of this integral leads to a vanishing
�� in three space dimensions and to the well-known
leading-order coefficient in the � expansion of ��.
Equations (107) and (108) moreover lead to an explicit
result for the � function (30) which agrees with the famous
result for the ’4 theory as, for example, given in
Eq. (11.17) of [35] or in Eq. (18.5.7) of [40].

V. REMARKS ON GENERALIZATIONS

Our development of the quantum theory of a scalar field
in d space dimensions has been based on pairs of adjoint

operators ayk and ak creating and annihilating field quanta

of momentum k 2 Rd. We here consider generalizations

based on collections of adjoint operators aJyk and aJk creat-
ing and annihilating field quanta of momentum k, where J
is an additional index labeling the different types of quanta
and the Fock space needs to be extended accordingly. For
vector instead of scalar fields, as the simplest example, J
labels the different spatial components.
For bosonic fields, all creation operators commute

among each other, and so do the annihilation operators.
The only nontrivial commutation relations are

½aJk; aJ
0y

k0 � ¼ 	JJ0	ðk� k0Þ: (109)

In terms of creation and annihilation operators, the
Hamiltonian of the free field theory in the generalized
setting is assumed to be of the form

Hð0Þ ¼
Z

!ka
Jy
k aJkd

dk; (110)

where a summation over the index J is implied by
the Einstein summation convention and !k is a non-
negative real-valued function with the symmetry property
!�k¼!k. The standard form is given by the relativistic
energy-momentum relationship (44), with a mass parame-
ter m. For massless fields, we simply have !k ¼ jkj. The
fact that we assume !k to be independent of J (or that it
depends in a restricted manner on J) expresses an under-
lying symmetry of the theory. In the same spirit, we can
implement symmetry properties in the friction mechanism
(however, Lorentz invariance would still be violated).

A. Pure Yang-Mills fields

For Yang-Mills fields, the label J for the field quanta
consists of a spatial index and an additional label associ-
ated with the infinitesimal generators of an underlying Lie

1.0 1.5 2.0 2.5 3.0
d

5

10

15

FIG. 3. Fixed-point value �� of the dimensionless coupling
constant resulting from second-order perturbation theory as a
function of space dimensionality d.
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group, where we use the letters a, b, c for this kind of index
[assuming 3 values for SUð2Þ corresponding to the Wþ,
W�, and Z0 bosons mediating weak interactions, 8 values
for SUð3Þ corresponding to the gluon ‘‘color octet’’ medi-
ating strong interactions, and N2 � 1 values for general
SUðNÞ]. More precisely, for Yang-Mills fields, the compo-
nents are associated with the base vectors Ta of the Lie
algebra of the underlying linear Lie group (we here con-
sider matrix groups only [41]). We assume the orthonor-
mality conditions

2 trðTaTbÞ ¼ 	ab: (111)

The most famous example are the three Pauli matrices as
base vectors Ta of the Lie algebra of SUð2Þ, which need to
be divided by 2 to satisfy Eq. (111). The base vectors Ta

are traceless matrices.
In Yang-Mills theories, we deal with vector fields. The

index J hence is of the form J ¼ ð|aÞ where | is a spatial
index and a labels the base vectors of the Lie algebra.
We use the amputated symbol | instead of j to emphasize
that this spatial index takes only d� 1 instead of d values.
It is typical for gauge theories that one component of a
vector can be eliminated by gauge transformations so that
vectors are reduced to d� 1 polarizations, here labeled by
the amputated symbol |. For the field quanta this implies
that the vector bosons mediating weak and strong interac-
tions in d ¼ 3 space dimensions come in two polarization
states.

The spatial components of the physical fields and their
conjugate momenta are obtained as generalizations of the
Fourier transforms (40) and (41),

AðjaÞðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þdp Z ddkffiffiffiffiffiffi

!k
p e ð|Þ

kj ðað|aÞ
y

k þ að|aÞ�k Þe�ik�x;

(112)

and

�ðjaÞðxÞ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�Þdp Z

ddk
ffiffiffiffiffiffi
!k

p �
	jl �

kjkl

k2

�
eð|Þkl

�
�
að|aÞ

y
k � að|aÞ�k

�
e�ik�x; (113)

where summations over |, l are implied and the two

polarization vectors eð1Þk and eð2Þk typically depend on k,
yet in a symmetric manner. The polarization vectors ex-
press certain gauge conditions. We here choose the par-
ticularly convenient axial gauge of a vanishing last field

component, AðdaÞ ¼ 0, because it avoids some subtle com-
plications known for other gauges (see remarks on p. 15
of [40] and the added note in the conclusions of [42]). For
the axial gauge in d ¼ 3 dimensions, we concretely
choose [43]

e ð1Þ
k ¼ k

k3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q k1
k2
0

0
@

1
A; (114)

and

e ð2Þ
k ¼ sgnðk3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22

q �k2
k1
0

0
@

1
A: (115)

These vectors eð1Þk and eð2Þk are constructed such that one

obtains canonical commutation relations for the fields

Að1aÞ, Að2aÞ and �ð1aÞ, �ð2aÞ,

½Að{aÞðxÞ;�ð|bÞðx0Þ� ¼ i	{|	ab	ðx� x0Þ: (116)

To obtain this generalization of Eq. (42) for arbitrary d, we
postulate the property

e ð|Þ
kje

ð|Þ
kl ¼ 	jl þ

kjkl

k2d
for j; l 2 f1; . . . ; d� 1g; (117)

for the polarization vectors of the axial gaugewith eð|Þkd ¼ 0,
where summation over | but no integration over k is
implied in Eq. (117).
So far, we have made little use of the fact that we are

dealing with a gauge theory: After fixing the gauge,
J ¼ ð|aÞ has only d� 1 spatial components labeled by |,
but a further label a for the infinitesimal generator of the
group occurs, and a so far unmotivated projector in mo-
mentum space has been introduced in Eq. (113). Much
deeper use of the properties of gauge theories must, of
course, be made in the formulation of the Hamiltonian for
the interactions between the various kinds of field quanta.
As a first step, we need to look at the following constraint
arising for Yang-Mills fields,

@j�
ðjaÞ þ gfabcAðjbÞ�ðjcÞ ¼ 0; (118)

where g is the coupling constant and fabc are the structure
constants of the underlying Lie group, say SUðnÞ. For the
free theory with g ¼ 0, the projector in Eq. (113) implies
that the constraint (118) is fulfilled so that its occurrence is
now motivated. In the presence of interactions, we modify

only the last component �ðdaÞ such that Eq. (118) is

fulfilled. The components �ðjaÞ for j � d� 1, which ap-
pear in the canonical commutation relations (116), remain
unchanged.

The constraint (118), which fixes�ðdaÞ, is a result of the
field equations for the Yang-Mills theory. It depends on the
strength of the interaction inherited from the Hamiltonian.
This is very different from a gauge condition, say from

fixing AðdaÞ ¼ 0. The gauge condition is an example of a
primary constraint, whereas Eq. (118) is an example of a
secondary constraint resulting from the consistency of the
primary constraints with the evolution equations. Even
more important is the distinction between first and second
class constraints. Second class constraints can be treated in
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a consistent canonical quantization procedure based on the
Dirac brackets of classical mechanics or field theory (see,
for example, [44] or Sec. 7.6 of [31]). First class constraints
are typically related to unphysical degrees of freedom and
can be taken into account by arbitrarily choosing a par-
ticular gauge. Unfortunately, there is no guarantee for the
gauge invariance of the final results obtained by canonical
quantization in different gauges. A loss of symmetry seems
to be the unavoidable price to pay for a simple canonical
quantization [45].

Within the axial gauge, the full Hamiltonian can be
expressed nicely in terms of the spatial components of

the fields AðjaÞ and �ðjaÞ (see, for example, Eq. (15.4.10)
of [40])

H ¼
Z �

1

2
�ðjaÞðxÞ�ðjaÞðxÞ þ 1

4
FðijaÞðxÞFðijaÞðxÞ

�
d3x;

(119)

with the tensor fields

FðijaÞ ¼ @iAðjaÞ � @jAðiaÞ þ gfabcAðibÞAðjcÞ: (120)

With the Fourier transforms (112) and (113), the gauge

condition AðdaÞ ¼ 0, and the modification of�ðdaÞ required
to fulfill the constraint (118), the Hamiltonian (119) can be
rewritten in terms of the creation and annihilation opera-

tors aJyk and aJk. Except for an irrelevant constant contri-

bution, the free Hamiltonian Hð0Þ for g ¼ 0 is of the form
(110) provided that !k ¼ jkj, that is, Yang-Mills fields
must be massless. The interaction Hamiltonian contains
first- and second-order terms in g and a few field operators
only, which is an extremely convenient feature of the axial
gauge, in particular, for perturbation theory. Note that the
form of the Hamiltonian describing the interactions de-
pends on the gauge. It even happens that the interactions
are described by a simple polynomial Hamiltonian in one
gauge and by a nonpolynomial Hamiltonian in another
gauge [42,43,46].

With the described steps to introduce fields and
Hamiltonian, it is possible to use the thermodynamic
coarse-graining approach to the quantization of pure
Yang-Mills fields. The introduction of friction simply hap-
pens by adding a label J (to be summed over) to each of
the creation and annihilation operators in Eq. (54). Also the
coupling to matter would be straightforward. On the one
hand, the loss of gauge invariance in the proposed proce-
dure admittedly is a high price to pay. The results for
gauge-invariant correlation functions, such as Wilson
loops, need to be compared to conventional calculations
and the � function needs to be evaluated. On the other
hand, a major benefit may be the simultaneous solution of
all ultraviolet and infrared problems [as discussed after
Eq. (83)], where the latter are known to be particularly
subtle for the present approach to Yang-Mills theories
because axial gauges lead to additional singularities in
the propagator so that naive principal-value recipes do

not work [47–51] and inconsistencies in the
renormalization-group flow in perturbation theory might
arise [52,53].

B. Gravitation

In the ’4 and Yang-Mills theories, the friction mecha-
nism provides a dynamic cutoff on the length scale ‘
introduced in Eq. (87). This smoothing length scale has
no physical significance. We are dealing with an effective
field theory valid only at length scales large compared to ‘.
Physical predictions are obtained after removing the cutoff
from the results of detailed calculations, that is, in the limit
‘ ! 0. In the description of gravity, a quite different
scenario should be expected. The smoothing length scale
‘ should be of the order of the Planck length and the
dissipative friction mechanism should express a physical
smearing of space and time at short scales, a fundamental
effect that precludes further resolution. We hence expect an
expression for the friction parameter � of the form

� � ℏ2G

ckBTe

; (121)

where G is the gravitational constant and a numerical
prefactor still needs to be determined (we here show the
occurrences of the reduced Planck constant and the speed
of light explicitly). The determination of the prefactor
could be based on a discussion of the entropy production
rate as associated with black holes [54–56] or more general
gravitational fields (for a thermodynamical discussion of
the entropy of classical gravitational fields see [57]).
However, such wild speculations should be postponed until
we will have succeeded in formulating a convincing cova-
riant friction mechanism.
The above discussion implies that the role of

renormalization-group theory is changed in quantum grav-
ity. For the ’4 and Yang-Mills theories, the � function
characterizes the running coupling constant of a minimal
model that is appropriate to predict only the large-scale
properties of its universality class. If the small regularizing
length scale used for the minimal model goes to zero, we
obtain the usual rules for handling the singularities of a
field theory. In gravity, on the other hand, the small length
scale ‘ has a physical meaning. We need a proper physical
model on the scale ‘, not just a minimal model. No limit
is required, no singularities occur. As gravity can be ob-
served over an enormous range of length scales, the cou-
pling constant at the Planck scale must be at its critical
value. The Planck scale, the gravitational constant, and the
friction parameter hence contain equivalent information, as
is clear from the definition of the Planck scale and
Eq. (121). For gravity, renormalization is not related to
fundamental aspects of constructing a field theory in terms
of minimal models but belongs only to the realm of per-
turbation theory. When we pass form the Planck scale to
larger scales, the original physical model is degraded to a
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minimal model for which, on the scales of the order of the
scales of physical interest, we can apply perturbation the-
ory with the hope to get useful results.

For the detailed mathematical formulation of the dissi-
pative quantum theory of gravitation one might try to
follow the procedure sketched for Yang-Mills theories.
However, we are then faced with the same problems as
in the canonical quantization of gravity. As a consequence
of their complicated nonpolynomial functional form, the
handling of the constraints resulting from gauge invariance
is much more difficult for gravity. In particular, problems
arise for the construction of the momentum representation.
Ashtekar’s famous idea of enlarging the gravitational
phase space to incorporate spinors and to represent the
spatial components of a metric in the decomposed form
gij ¼ �
iA

B
jB
A (with summations over the SUð2Þ spinor

indices A and B) in order to obtain simpler constraints
[58,59] (see, for example, also Sec. 3.2 of [60] and
Sec. 4.3 of [61]) may well be the key to obtain the dis-
sipative quantum theory of gravitation.

VI. SUMMARYAND CONCLUSIONS

Within the framework provided by the thermodynamic
quantum master equation, we propose to include irrevers-
ible terms into quantum field theory and to consider the
limit of weak friction and low temperatures. These irre-
versible terms account for the fact that we need to elimi-
nate degrees of freedom below certain length and time
scales in order to be able to make use of the field ideal-
ization. The smoothing length scale resulting from the
dissipative friction mechanism provides an alternative
regularization scheme where an external cutoff is replaced
by a dynamic process. However, the change from
Hamiltonian to dissipative equations is much more than
just another regularization scheme because it comes with a
number of important implications. The vacuum state is no
longer given by the ground state, but rather by a canonical
density matrix characterized by a temperature Te. The
Hamiltonian has a double role because it occurs both in
the canonical density matrix and serves as a generator for
the reversible contribution to dynamics. Entropy occurs
naturally; it may be irrelevant in effective field theories
because the entropy production rate is negligibly small, but
it must play an important role in a full quantum theory of
gravity.

In applying the proposed ideas to ’4 theory in d space
dimensions, we have have elaborated explicitly that a
perturbation theory can be constructed with guidance
from a detailed-balance principle, without any need to go
through Dyson’s U matrix to obtain meaningful results
(see the discussion in Sec. 17.1 of [29]). All regularization
is consistently provided by the irreversible contribution to
time evolution that rapidly damps the local degrees of
freedom. Although the irreversible friction mechanism is
implemented in a noncovariant manner, the final physical

predictions of second-order perturbation theory in the limit
of vanishing friction coincide with the well-known mani-
festly covariant results. A covariant formulation of the
friction mechanism would be desirable but, in view of
the second-order derivatives occurring in Eq. (51), it pre-
sumably requires the introduction of additional fields cor-
responding to spatial derivatives [12].
In the present approach, renormalization-group theory is

used as a tool to refine perturbation theory. It requires a
certain characteristic occurrence of the small smoothing
length scale in perturbation expansions, which we have
verified explicitly to second order. As a result, we repro-
duce the well-known expression for the � function for the
running coupling constant. The fixed-point value of the
dimensionless coupling constant is found to depend in a
nontrivial way on space dimensionality.
Although we focus on perturbation expansions, the ap-

proach to quantum field theory proposed in the present
paper is by no means restricted to perturbation theory.
The fundamental quantum master equation (54) could
also be treated by nonperturbative methods, including
stochastic simulation techniques. Not even the lineariza-
tion of the master equation around equilibrium would be
necessary if one liked to benefit from the full structure of
the thermodynamic framework, for example, for funda-
mental or constructive developments. The underlying
equation for the evolution of dissipative systems has a
deep geometric structure and hence provides a sound basis
for the description of dynamic quantum systems, including
a Lyapunov function (entropy). The formulation is done
according to the principles of nonequilibrium thermody-
namics as the proper framework for systems with elimi-
nated degrees of freedom.
For proving the new approach to be useful, one should

establish its applicability to a wide range of quantum field
theories. We have discussed how dissipative smoothing can
be applied to pure Yang-Mills fields where we propose to
do all calculations in the axial gauge. As a crucial test, the
proposed dissipative friction mechanism should resolve
the subtle infrared problems occurring for Yang-Mills
fields in the axial gauge by providing the clear causality
properties of irreversible equations. For the calculation of
Wilson loops, the proper definition of multitime correla-
tions needs to be understood, including the proper imple-
mentation of time-reversal symmetry, detailed balance,
and their preservation under perturbation theory. For quan-
tum gravity, the frictional smoothing mechanism would
need to be elevated from a regularization scheme to a
physical smearing of space and time.
As a first step, we have restricted ourselves to second-

order perturbation expansions in ’4 theory. Of course, the
dissipative approach to quantum field theory should also
be validated for higher orders of perturbation theory and
for more complicated field theories. One might want to
attempt to establish a structure of perturbation expansions
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consistent with renormalization-group theory by analyzing
Feynman diagrams. However, in view of the robust geo-
metric structure of the thermodynamic approach, a deeper
discussion of the limits of vanishing friction and tempera-
ture seems to be the more relevant issue. To simplify the
practical calculation of perturbation expansions, one needs
to formulate rules to identify those Feynman diagrams that
do not contribute in the limits of vanishing friction and
temperature. Many details of dissipative quantum field
theory still need to be clarified, many possibilities still
need to be explored.
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APPENDIX A: SOME USEFUL INTEGRALS

We here collect a number of useful integrals that occur
in the perturbation expansion of ’4 theory. To facilitate a
direct comparison, we introduce the integrals I1, I2, I3 in
exactly the same way as in Sec. 11.5.1 of [35]. These
integrals depend only on the dimensionality d. As before,
we use d for the dimension of space, D ¼ dþ 1 for
the dimension of spacetime, and � ¼ 3� d ¼ 4�D.
The D ¼ dþ 1 components of a spacetime vector k are
given by k ¼ ð�;kÞ, where � is real and k has d compo-
nents. Connecting integrals in d and D dimensions, where
we consider both real and imaginary time, is the key to
revealing Lorentz invariance.

The simplest integral is defined by (see Eq. (11.39)
of [35])

I1 ¼ m1�d

ð2�Þd
Z ddk

2!k

¼ m2�D

ð2�ÞD
Z

dDk
i

�2 �!2
k þ i"

¼ m2�D

ð2�ÞD
Z

dDk
1

�2 þ!2
k

: (A1)

Note that the integral I1 may be ill-defined in certain
integer dimensions. If � corresponds to the real frequency,
one needs to be careful with the proper handling of the
poles which are located on the integration line; then, the i"
with infinitesimal positive " shifts the poles to avoid ambi-
guities. If � corresponds to the imaginary part of the
frequency, the integration path is well separated from
the poles and the i" prescription becomes irrelevant.
After properly closing the contour for the � integration,
Cauchy’s integral theorem of complex analysis allows
us to pass from the D-dimensional integrals to the
d-dimensional representation.

By means of the general formula for reducing
d-dimensional spherically symmetric integrals to one-
dimensional integrals,

Z
fðkÞddk ¼ 2�d=2

�ðd=2Þ
Z 1

0
fðkÞkd�1dk; (A2)

we obtain the explicit result

I1 ¼ � 1

ð2�Þ2
ð2 ffiffiffiffi

�
p Þ�

�ð2� �Þ�
�
1þ �

2

�
: (A3)

The following two useful integrals are closely related to I1,

I01 ¼
m3�d

ð2�Þd
Z ddk

2!3
k

¼ 1

ð2�Þ2
ð2 ffiffiffiffi

�
p Þ�
�

�

�
1þ �

2

�
; (A4)

and

I001 ¼ m3�d

ð2�Þd
Z ddk

2!2
kð!k þmÞ

¼ 1

ð2�Þ2
ð2 ffiffiffiffi

�
p Þ�

�ð1� �Þ
�
�

�
1þ �

2

�
� �

2

ffiffiffiffi
�

p
�

�
1

2
þ �

2

��
:

(A5)

As a next step, we consider the dimensionless integral

Ikð��2Þ ¼ m6�2D

ð2�Þ2D
Z

dDk1d
Dk2d

Dk3

� 	ðk1 þ k2 þ k3 þ kÞ
ð�2

1 þ!2
k1
Þð�2

2 þ!2
k2
Þð�2

3 þ!2
k3
Þ ; (A6)

where, again, certain integer values of D should be ex-
cluded. This integral has been discussed in great detail on
pp. 282–284 of [35]. According to Eqs. (11.38), (11.40),
and (11.41) of [35], the useful integrals I2 and I3 can be
introduced by expanding Ikð!2Þ in terms of !2,

Ikð!2Þjk¼0 ¼ I2 � I3
!2

m2
þOð!4Þ: (A7)

By deforming the integration path from imaginary to real
frequencies and carefully stating by the i" prescription
how poles on the new integration line have to be circum-
vented, we arrive at the Lorentz invariant expression oc-
curring, for example, in truncated form for D ¼ 4 on
p. 174 of [30],

Ikð�2Þ¼m6�2D

ð2�Þ2D
Z
dDk1d

Dk2d
Dk3

� 	ðk1þk2þk3þkÞ
ð�2

1�!2
k1
þ i"Þð�2

2�!2
k2
þ i"Þð�2

3�!2
k3
þ i"Þ :

(A8)

Again, we can pass from D-dimensional to d-dimensional
integrals. After replacing the factor 	ð�1 þ �2 þ �3 þ �Þ
contained in Eq. (A8) by its one-dimensional Fourier
transform, the integrations over �1, �2, and �3 can be
performed. After a further integration of an exponential,
we obtain
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Ikð!2Þ ¼ m4�2d

ð2�Þ2d
Z ddk1d

dk2d
dk3

4!k1!k2!k3

	ðk1 þ k2 þ k3 þ kÞ

� !k1 þ!k2 þ!k3

ð!k1 þ!k2 þ!k3 � i"Þ2 �!2
: (A9)

For the actual evaluation of Ikð!2Þ, the form (A6) offers
the most convenient starting point. Note that each of the
factors in the denominator of Eq. (A6) contains a positive-
definite quadratic form Q of the integration variables.
After using the identity 1=Q ¼ R1

0 e�Qzdz for each of

the three factors in the denominator, the two Gaussian
D-dimensional integrations remaining after making use
of the 	 function can be carried out easily and only three
one-dimensional integrations remain to be done (see
Sec. 9.6 of [35]).

In comparing our results to those of [35], for example,
the formula for I1 given in Eq. (A3) to (11.44) of [35], the
following identities are useful (see 8.334 of [39]):

�ð1� xÞ�ðxÞ ¼ �

sin�x
; (A10)

�

�
1

2
� x

�
�

�
1

2
þ x

�
¼ �

cos�x
: (A11)

APPENDIX B: SOME USEFUL EXAMPLES OF �A

Among the normal ordered products of up to three
creation/annihilation operators, �A vanishes for all opera-

tors except for ayk1ak2 , a
y
k1
ak2ak3 , and ayk1a

y
k2
ak3 . For the

product of two operators, we have

�ay
k1
ak2

¼ wð!k1Þ
2�k1

�!k1

	ðk1 � k2Þ: (B1)

For the product of three creation/annihilation operators, we
find

�ay
k1
ak2ak3

¼ �k1

e�!k1 � 1
f	ðk1 � k2Þ½Wð!k1 ;�!k1 �!k3Þ

þWð�!k1 ; !k1 �!k3Þ�ak3
þ 	ðk1 � k3Þ½Wð!k1 ;�!k1 �!k2Þ
þWð�!k1 ; !k1 �!k2Þ�ak2g; (B2)

and

�ay
k1
ay
k2
ak3

¼ �k3

e�!k3 � 1
f	ðk2 � k3Þ½Wð!k3 ; !k1 �!k3Þ

þWð�!k3 ; !k1 þ!k3Þ�ayk1
þ 	ðk1 � k3Þ½Wð!k3 ; !k2 �!k3Þ
þWð�!k3 ; !k2 þ!k3Þ�ayk2g: (B3)

These results are obtained by straightforward evaluation of
Eq. (73).

APPENDIX C: SOME USEFUL COMMUTATORS

To facilitate the calculation of averages occurring in
perturbation theory, we calculate some basic commutators
involving the Hamiltonian. They are obtained in a straight-
forward manner from the fundamental commutation rela-
tions (42) and the from (45) of the ’4 Hamiltonian. The
following single commutators are used in evaluating the
averages in Eqs. (78) and (103):

½ak; Hð1Þ� ¼ �z

~!k

ðak þ ay�kÞ þ
�

24

1

ð2�Þd
1ffiffiffiffiffiffi
~!k

p
Z ddk1d

dk2d
dk3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!k1 ~!k2 ~!k3

p 	ðk1 þ k2 þ k3 þ kÞ

� ða�k1a�k2a�k3 þ 3ayk1a�k2a�k3 þ 3ayk1a
y
k2
a�k3 þ ayk1a

y
k2
ayk3Þ; (C1)

and

½Hð1Þ; ayk � ¼
�z

~!k

ðayk þ a�kÞ þ �

24

1

ð2�Þd
1ffiffiffiffiffiffi
~!k

p
Z ddk1d

dk2d
dk3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!k1 ~!k2 ~!k3

p 	ðk1 þ k2 þ k3 � kÞ

� ða�k1a�k2a�k3 þ 3ayk1a�k2a�k3 þ 3ayk1a
y
k2
a�k3 þ ayk1a

y
k2
ayk3Þ: (C2)

The following type of identities for single commutators allows us the separation of the two contributions represented by the
Feynman diagrams in Figs. 2(a) and 2(b):

½ak1ak2 ; Hð1Þ� ¼ ½ak1 ; Hð1Þ�ak2 þ ½ak2 ; Hð1Þ�ak1 þ ½ak1 ; ½ak2 ; Hð1Þ��; (C3)

and

½Hð1Þ; ayk1a
y
k2
� ¼ ayk1½Hð1Þ; ayk2� þ ayk2½Hð1Þ; ayk1� þ ½½Hð1Þ; ayk1�; ayk2�: (C4)
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We also provide a number of double commutators. The following double commutators are used in Eqs. (77) and (103):

½ak1 ;½ak2 ;Hð1Þ��¼�

8

1

ð2�Þd
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!k1 ~!k2

p Z ddk01ddk02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!k0

1
~!k0

2

q 	ðk01þk02þk1þk2Þða�k01a�k02 þ2ay
k01
a�k02 þay

k01
ay
k02
Þþ �z

~!k1

	ðk1þk2Þ;

(C5)

½½Hð1Þ; ayk1�; ayk2� ¼
�

8

1

ð2�Þd
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!k1 ~!k2

p Z ddk01ddk02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!k01 ~!k02

q 	ðk01 þ k02 � k1 � k2Þða�k01a�k02 þ 2ay
k01
a�k02 þ ay

k01
ay
k02
Þ

þ �z

~!k1

	ðk1 þ k2Þ; (C6)

and

½ak1 ;½Hð1Þ;ayk2��¼
�

8

1

ð2�Þd
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!k1 ~!k2

p Z ddk01ddk02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!k01 ~!k02

q 	ðk01þk02þk1�k2Þða�k01a�k02 þ2ay
k01
a�k02 þay

k01
ay
k02
Þþ �z

~!k1

	ðk1�k2Þ:

(C7)

The following type of identities for double commutators facilitates the evaluation of the average in Eq. (100):

½ak1ak2 ; ½Hð1Þ; ay
k0
1
ay
k0
2
�� ¼ 	ðk1 � k01Þak2½Hð1Þ; ay

k0
2
� þ 	ðk1 � k02Þak2½Hð1Þ; ay

k0
1
� þ 	ðk2 � k01Þak1½Hð1Þ; ay

k0
2
�

þ 	ðk2 � k02Þak1½Hð1Þ; ay
k0
1
� þ ay

k0
1
½ak2 ; ½Hð1Þ; ay

k0
2
��ak1 þ ay

k0
2
½ak2 ; ½Hð1Þ; ay

k0
1
��ak1

þ ay
k0
1
½ak1 ; ½Hð1Þ; ay

k0
2
��ak2 þ ay

k0
2
½ak1 ; ½Hð1Þ; ay

k0
1
��ak2 þ ay

k0
1
½ak1 ; ½ak2 ; ½Hð1Þ; ay

k0
2
���

þ ay
k0
2
½ak1 ; ½ak2 ; ½Hð1Þ; ay

k0
1
��� þ ½ak1 ; ½½Hð1Þ; ay

k0
1
�; ay

k0
2
��ak2 þ ½ak2 ; ½½Hð1Þ; ay

k0
1
�; ay

k0
2
��ak1

þ ½ak1 ; ½ak2 ; ½½Hð1Þ; ay
k0
1
�; ay

k0
2
���; (C8)

and

½½ak1ak2 ; Hð1Þ�; ay
k0
1
ay
k0
2
� ¼ 	ðk1 � k01Þ½ak2 ; Hð1Þ�ay

k0
2
þ 	ðk1 � k02Þ½ak2 ; Hð1Þ�ay

k0
1
þ 	ðk2 � k01Þ½ak1 ; Hð1Þ�ay

k0
2

þ 	ðk2 � k02Þ½ak1 ; Hð1Þ�ay
k0
1
þ ay

k0
1
½ak2 ; ½Hð1Þ; ay

k0
2
��ak1 þ ay

k0
2
½ak2 ; ½Hð1Þ; ay

k0
1
��ak1

þ ay
k0
1
½ak1 ; ½Hð1Þ; ay

k0
2
��ak2 þ ay

k0
2
½ak1 ; ½Hð1Þ; ay

k0
1
��ak2 þ ay

k0
1
½ak1 ; ½ak2 ; ½Hð1Þ; ay

k0
2
���

þ ay
k0
2
½ak1 ; ½ak2 ; ½Hð1Þ; ay

k0
1
��� þ ½ak1 ; ½½Hð1Þ; ay

k0
1
�; ay

k0
2
��ak2 þ ½ak2 ; ½½Hð1Þ; ay

k0
1
�; ay

k0
2
��ak1

þ ½ak1 ; ½ak2 ; ½½Hð1Þ; ay
k0
1
�; ay

k0
2
���: (C9)

APPENDIX D: EXACT SECOND-ORDER PERTURBATION RESULTS FOR PROPAGATOR

By evaluating the average (77) by means of the first-order expansion (27) of averages, the double commutator (C7), and
Wick’s theorem (57), we obtain the exact result

Xk ¼ �
J þ 2z

2 ~!k

� �2 �J

16 ~!k

1

ð2�Þd
Z ddq

~!2
q

�
wð2!qÞ

ð1� e��!qÞ2 þ
2

ðe�!q � 1Þð1� e��!qÞ þ
wð�2!qÞ
ðe�!q � 1Þ2

�
; (D1)

with

J ¼ 1

ð2�Þd
Z ddq

2 ~!qðe�!q � 1Þ : (D2)

Note that, in the low-temperature limit � ! 1, the integral J becomes exponentially small. In a similar way, the average
(78) can be evaluated by means of the commutators (C1) and (C2), the formula (76) with the explicit expressions of
Appendix B, and Wick’s theorem (57). The complete result is
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Ykð!Þ ¼ ��2 zðJ þ 2zÞ
2 ~!2

k

�
1

!þ!k � i�k

� 1

!�!k � i�k

�

� �2 J þ 2z

8 ~!2
k

1

ð2�Þd
Z ddq

~!qðe�!q � 1Þ
�

1

!þ!k � i�ayqaqak

� 1

!�!k � i�ay�k
ayqaq

�

þ �2 J þ 2z

8 ~!2
k

1

ð2�Þd
Z i�q½Wð!q;�!q þ!kÞ þWð!q;�!q �!kÞ�ddq

~!qðe�!q � 1Þ
�

�
1

!þ!k � i�ayqaqak

1

!þ!k � i�k

� 1

!�!k � i�ay�k
ayqaq

1

!�!k � i�k

�

� �2 1

96 ~!k

1

ð2�Þ2d
Z ddk1d

dk2d
dk3

~!k1 ~!k2 ~!k3

	ðk1 þ k2 þ k3 þ kÞ
ð1� e��!k1 Þð1� e��!k2 Þð1� e��!k3 Þ

�
�

1� e��ð!k1
þ!k2

þ!k3
Þ

!þ!k1 þ!k2 þ!k3 � i�a�k1
a�k2

a�k3

� 1� e��ð!k1
þ!k2

þ!k3
Þ

!�!k1 �!k2 �!k3 � i�ay
k1
ay
k2
ay
k3

þ 3
e��!k1 � e��ð!k2

þ!k3
Þ

!�!k1 þ!k2 þ!k3 � i�ay
k1
a�k2

a�k3

� 3
e��!k3 � e��ð!k1

þ!k2
Þ

!�!k1 �!k2 þ!k3 � i�ay
k1
ay
k2
a�k3

�
: (D3)
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