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The consequences of on-shell supersymmetry are studied for scattering amplitudes with massive

particles in four dimensions. Using the massive version of the spinor-helicity formalism, the supersym-

metry transformations relating products of on-shell states are derived directly from the on-shell

supersymmetry algebra for any massive representation. Solutions to the resulting Ward identities can

be constructed as functions on the on-shell superspaces that are obtained from the coherent-state method.

In simple cases, it is shown that these superspaces allow one to construct explicitly supersymmetric

scattering amplitudes. Supersymmetric on-shell recursion relations for tree-level superamplitudes with

massive particles are introduced. As examples, simple supersymmetric amplitudes are constructed in

Supersymmetric Quantum Chromodynamics (SQCD), the Abelian Higgs model, the Coulomb branch of

N ¼ 4, QCD with an effective Higgs-gluon coupling and for massive vector-boson currents.
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I. INTRODUCTION

Recent developments inspired by insights into the
twistor-space structure of scattering amplitudes in gauge
theories [1] led both to the discoveries of new symmetries
and dualities of maximally supersymmetric Yang-Mills
theory [2,3] and to the development of new methods for
the calculations of multiparticle processes relevant for
physics at hadron colliders such as Tevatron or the LHC
[4]. A prominent example of the simplicity of scattering
amplitudes are the maximally helicity violating (MHV)
amplitudes in massless gauge theories [5–7]. In supersym-
metric theories, amplitudes with different field content are
related by on-shell supersymmetry Ward identities (SWIs)
[8,9] that allow to show, for instance, that the helicity equal
amplitudes of massless particles in supersymmetric theo-
ries vanish to all orders in the coupling constant. SWIs are
also useful in order to obtain certain amplitudes in non-
supersymmetric theories [6,7,10,11]. In maximally super-
symmetric N ¼ 4 Yang-Mills, the use of an on-shell
superspace allows to solve the SWIs and combine the
MHV amplitudes with different external field content into
a ‘‘supervertex,’’ [12] nowadays known as a superampli-
tude. This on-shell superspace was the basis of the twistor-
string theory of [1] and also plays an important role in
recent developments inN ¼ 4 Yang-Mills theory such as
dual superconformal symmetry [2,13] as well as the super-
symmetrized on-shell recursions relations [14,15]. At a
practical level, these are spaces with the coordinates given
by the momentum eigenvalue and a number of Grassmann-
valued parameters �i. On these spaces, a superfield admits
an expansion in the fermionic variables

�ðk�;�iÞ¼�ðk�Þþ�i�iðk�Þþ�i�j�ijðk�Þþ��� ; (1)

such that typically the components are fields with a well-
defined Lorentz quantum-number (helicity in the massless
case). A scattering amplitude becomes a function of the
combined supersymmetric variable k�, �i for each leg.

Specific component amplitudes can be isolated by fermi-
onic integration. As noted in [15], the action of half of the
supercharges can be diagonalized using a coherent-state
representation, resulting in a useful method to simplify
sums over the states of the supermultiplets in unitarity
cuts and on-shell recursion relations.
It is an interesting question to which extent the simple

structures of scattering amplitudes uncovered in massless
theories survive once massive particles are included. In
addition to being directly relevant for collider processes
involving top quarks or electroweak gauge bosons, for
instance, amplitudes with massive particles also arise in
N ¼ 4 andN ¼ 2 gauge theories away from the usually
studied conformal point (see e.g., [16,17] and references
therein) or from compactifications of higher-dimensional
field theories. The extension of several of the new methods
for the calculation of scattering amplitudes developed in
the wake of [1] to massive particles has been achieved. For
instance, on-shell recursion relations [18,19] have been
generalized for amplitudes which involve massive scalars,
quarks, or vector bosons [20–22] or to higher-dimensional
theories [23]. Furthermore, theMHV vertex rules [24] have
been extended to amplitudes with external Higgs [25]
particles and electroweak gauge bosons [26] as well as
propagating massive scalars and quarks [27–30] and spon-
taneously broken gauge theories [31]. More recently, the
‘‘constructability’’ of amplitudes in theories with massive
particles was studied in [32]. The extension of spinor-
helicity methods to higher dimensions is discussed in
[33–36].
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Following the example of the MHVamplitudes in mass-
less theories, an interesting starting point for the study of
amplitudes with massive particles is the simplest nonvan-
ishing scattering amplitudes which contain a pair of mas-
sive particles in the fundamental representation together
with equal-helicity gluons. A closed all-multiplicity ex-
pression for massive scalars and positive-helicity gluons
has been found first in [37] while a particular compact form
has been given in [38]:

Að ��þ
1 ;g

þ
2 ; . . . ;�

�
n Þ

¼ i2n=2�1m2
h2þjQn�2

j¼3 ðy1;j�kjk1;jÞjðn�1Þ�i
y1;2y1;3 . . .y1;n�2h23ih34i���hðn�2Þðn�1Þi ;

(2)

where y1;j ¼ k21;j �m2 with k1;j ¼ k1 þ . . . kj. The analo-

gous amplitudes with a pair of massive quarks can be
obtained from (2) using SWIs [39]. For amplitudes with
a single negative helicity gluon, [22,37] similar SWIs are
also useful. Up to now, no result of a similar simplicity as
(2) is available for all-multiplicity amplitudes of massive
vector bosons and general kinematics (some earlier works
discussed amplitudes in the high-energy limit [40,41] or
for special kinematic configurations [42]).

The main aim of this article is to provide a complete
discussion of on-shell supersymmetry for particles in mas-
sive supermultiplets, parallel to the discussion to massless
particles. To this end, a covariant form is derived of on-
shell supersymmetry (SUSY) transformations for any mas-
sive representation of the SUSYalgebra in four dimensions
in the framework of the spinor-helicity formalism. This
follows the treatment of SUSY in higher dimensions in [34]
which highlighted a covariant construction of the repre-
sentations of the SUSYalgebra in a general Lorentz frame.
The results reproduce the expressions for the massive
quark multiplet obtained in [39] from an explicit analysis
of the representation of the SUSY algebra on field opera-
tors and generalizes directly to all massive representations
including the massive vector multiplet. As emphasized in
[15], the on-shell superspaces for massless particles arise
as fermionic and covariant coherent-state representations
of the on-shell SUSY algebra. Hence, our analysis allows
us to construct on-shell superspaces for massive particles
which in turn leads directly to the formulation of super-
symmetric amplitudes. This allows us, for instance, to
demonstrate neatly the vanishing of some classes of am-
plitudes. Several explicit examples of superamplitudes in a
variety of theories with massive particles will be provided.
A general method for solving the supersymmetric Ward
identities is provided as well as a general analysis of
supersymmetric on-shell recursion relations. Note that a
related discussion of BPS states in extended SUSY gauge
theories in four dimensions has appeared in [43] while
coherent states for massless N ¼ 1 and N ¼ 2 super-
multiplets have been discussed in [44–46]. In the N ¼ 4

case, there is a broad parallel to superspaces for the stress-
energy multiplet as discussed in [47,48].
In detail, this article is structured as follows. In Sec. II,

we review the construction of polarization vectors for
massive particles [49] within the spinor-helicity formalism
by defining the spin with respect to a fixed quantization
axis. In Sec. III, the SUSY-transformations for the general
massiveN ¼ 1 multiplet in an arbitrary Lorentz frame in
the massive spinor-helicity framework are derived. This
includes the transformation of the massive quark multiplet
[39] as a special case. Section IV employs the coherent-
state approach for constructing on-shell superspaces of
massive SUSY representations and uses it to establish the
vanishing of the analog of the all-helicity equal amplitude
for four-dimensional spontaneously broken Yang-Mills
theories. Some applications of the superspace technology
to specific examples of amplitudes in gauge theories with
massive particles are investigated in Sec. V. Theories
studied there include super QCD with massive scalars
and quarks, the Abelian Higgs model, effective Higgs-
gluon couplings as well as vector-boson currents.
Section VI contains a discussion of supersymmetric on-
shell recursion relations, including an analysis of so-called
large BCFW shifts in SQCD. Conclusions are reached and
a discussion ensues. Appendix A contains an overview of
our conventions, Appendix B details some of the models
studied, and Appendix C shows the results of the calcu-
lation of a three-point supervertex with arbitrary spin axes.

II. MASSIVE SPINOR-HELICITY FORMALISM

In this article, massive spinor-helicity methods will be
used to treat the polarization states of massive vector
bosons and massive quarks. While this material is treated
in the literature [49] (see also, e.g., [50–53]), in this sec-
tion, a concise introduction is provided to set up the
notation and framework used in Sec. III for the construc-
tion of the SUSY multiplets. The quantization of massive
one-particle states with a choice of spin-quantization
axis is reviewed first. This will lead to massive quark
spinors and polarization vectors of massive spin-one bo-
sons. A summary of our spinor conventions is given in
Appendix A.

A. Massive one-particle states with a fixed spin axis

Massive one-particle representations of the Poincaré
group are specified by one vector and two half-integer
numbers: the momentum k�, total spin s and projected

spin quantum-number sn for a spin-quantization axis n.
These are defined by the conditions

P�jk; s; sni ¼ k�jk; s; sni; (3)

W2jk; s; sni ¼ �m2sðsþ 1Þjk; s; sni; (4)

Rnjk; s; sni ¼ snjk; s; sni; (5)
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where W2 is the length of the Pauli-Lubanski vector (A9).
Further, the operator Rn is given by

Rn ¼ � 1

m
n�W

�; (6)

with a spacelike spin axis n� (n2 ¼ �1) orthogonal to k.
There are several possible choices of the spin axis n for

massive particles. A massive two-component spinor for-
malism based on helicity eigenstates is discussed in [49].
Since helicity is not a Lorentz-invariant concept for mas-
sive particles, in this article the spin axis for a particle with
momentum k will be fixed instead in a covariant way
following [51] by introducing a lightlike vector q:

n�q ¼ k�

m
�mq�

q � k : (7)

Here, the reference vector q is arbitrary up to the require-
ment ðq � kÞ � 0. Because of this constraint, some care has
to be taken in the choice of q in order to obtain a smooth
massless limit. Note that scattering amplitudes defined in
terms of the external states jk; s; snqi will in general ex-

plicitly depend on the spin-quantization axis (7) and hence
on the reference vector q. The Lorentz-generator which
implements rotations around the axis (7) has a manifestly
well-defined massless limit. Acting on single-particle mo-
mentum eigenstates, it reads

Rnq ¼
q�W

�

q � P ¼ � �����q�P�M��

2ðq � PÞ : (8)

In the following, all legs of an amplitude are assumed to
share the same polarization axis q, unless explicitly stated
otherwise.

In order to incorporate massive particles into the spinor-
helicity formalism, it is useful to decompose the massive
momenta into two lightlike vectors using the same refer-
ence vector q used to define the spin axis [49]:

k� ¼ k[;� þ m2

2ðq � kÞq
�: (9)

A massive momentum can therefore be expressed in terms
of four two-componentWeyl spinors k[�, k

[
_� and q�, q _�, c.f.

(A1). For spinor products associated to massive momenta,
the notation hiji ¼ hk[i k[j i will be used. For the later treat-
ment of the SUSY algebra, note these spinors form a basis
of the dotted and undotted spinors. Hence, any undotted
(dotted) spinor can be expanded into the basis spanned by�

k[�; ~q� ¼ m

hkqiq�
�
;

�
k[_�; ~q _� � m

½qk�q _�

�
; (10)

respectively. This will be important below.

1. Polarization spinors of massive spin one-half particles

For spin one-half particles, the generator of rotations
around the spin axis (8) is represented as

Rnq ¼
1

2m
	5nqk (11)

[c.f. (A10) and (A11)]. In the literature on helicity ampli-
tudes, usually all momenta are treated as outgoing.
Therefore, consider antiparticle spinors and conjugate par-
ticle spinors labeled by their eigenvalues of the projectors
Pnqð�Þ ¼ 1

2 ð1þ �	5nqÞ:
�uðk;�ÞPnqð�Þ¼ �uðk;�Þ; Pnqð�Þvðk;�Þ¼vðk;�Þ: (12)

Since on-shell spinors satisfy the Dirac equation, the ei-
genvalues of the rotation generator in Eq. (11) are given by
�=2 for the v spinors and��=2 for the u-spinors. Writing
the Dirac spinors in terms of two-component Weyl spinors
as v ¼ ðv�; v

_�ÞT and �u ¼ ðu�; u _�Þ, these conditions re-
duce to

v�ðk;�Þ¼�nq;� _�v
_�ðk;�Þ; u�ðk;�Þ¼�u _�ðk;�Þn _��

q :

(13)

It is easily seen that this is satisfied by the massive spinors
in the conventions of [39]:

�uðk;þÞ¼
�
m

hqkiq
�;k[_�

�
; �uðk;�Þ¼

�
k[;�;

m

½qk�q _�

�
; (14)

vðk;þÞ¼ � m
hkqiq�
k[; _�

 !
; vðk;�Þ¼ k[�

� m
½kq�q

_�

 !
: (15)

2. Polarization vectors of massive spin-one bosons

Polarization vectors for massive vector bosons are de-
fined by the condition

ðRnqÞ�� ��ðk;��Þ ¼ ���ðk;��Þ; (16)

where � 2 f0;�1g. The reversed label arises because
again all particles are considered to be outgoing. The
action of the generator Rnq on four-vectors is obtained

using the vector representation of the Lorentz-generators
ðM��Þ�� ¼ ið
�

�
�
� � 
�

�
�
�Þ. Translating the vector indi-

ces to bi-spinor notation using the identity (A7) for the
totally antisymmetric tensor, gives the explicit condition

1

2
ðRnqÞ _��

� _�
�

_��ðk; �Þ ¼ q�k[; _�ðk[;��� _�ðk; �Þq _�Þ
½qk[�hk[qi

� k[;�q _�ðq��� _�ðk; �Þk[; _�Þ
hk[qi½qk[�

¼ ��� _��ðk; �Þ: (17)

This condition is satisfied by the polarization vectors [49]

�� _�ðk;þÞ ¼ ffiffiffi
2

p q�k
[
_�

hqk[i ; �� _�ðk;�Þ ¼ ffiffiffi
2

p k[�q _�

½k[q� ;

�� _�ðk; 0Þ ¼ 1

m

�
k[�k

[
_� � m2

2q � k q�q _�

�
(18)

ON-SHELL SUPERSYMMETRY FOR MASSIVE MULTIPLETS PHYSICAL REVIEW D 84, 065006 (2011)

065006-3



that are transverse, k � �ðk; �Þ ¼ 0, normalized according
to �ðk; �Þ � �ðk;��Þ ¼ 1, and span the space perpendicu-
lar to k:

X
�2f0;�1g

��ðk; �Þ��ðk;��Þ ¼ �g�� þ k�k�

k2
: (19)

The positive and negative helicity polarization vectors are
direct generalizations of the massless polarization vectors
in the spinor-helicity formalism. However, in the massless
case, the choice of the spinors q corresponds to a physi-
cally irrelevant gauge choice, whereas in the massive case,
it corresponds to a choice of the spin axis which is physical.
The basis of polarization vectors just constructed obeys the
simple but powerful equations

��ðki;þÞe�ðkj;þÞ ¼ ��ðki;�Þe�ðkj;�Þ ¼ 0 (20)

for polarization vectors of two different particles i, j if the
same reference vector q is used to define the polarization
axis for these fields.

3. Special choice of frame

As a useful illustration, let us make the above consid-
erations more concrete by fixing a special reference frame.
There is always a frame such that the reference vector q
reads

q� ¼ ð1; 0; 0;�1Þ: (21)

For a massive particle, one could transform to the rest-
frame of the particle. To allow for a smooth massless limit,
it is more useful however to boost to the frame such that the
spacial component of the momentum is directed along the
z-axis singled out by the choice of q,

k� ¼ ðk0; 0; 0; k3Þ; (22)

with the mass-shell condition k2 ¼ m2. We will assume
q � k � 0, so

ðq � kÞ ¼ k0 þ k3: (23)

In this frame, the light-cone projection of the massive
momentum is given by

k[;� ¼ ðk0 þ k3Þ
2

ð1; 0; 0; 1Þ: (24)

The spin axis (7) agrees with the helicity axis nk mentioned
above:

n�q ¼ 1

m
ðk3; 0; 0; k0Þ: (25)

In the rest-frame, the spin vector simply becomes the
unit vector along the z axis: n�q ¼ ð0; ~ezÞ so the operator
Rnq ¼ Jz generates rotations around the z axis as expected.

It is also easy to determine the basis spinors used in (10)
from the explicit expressions for q and k[. Up to the usual
scaling ambiguity, the spinors can be written as

k[�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0þk3

p 1

0

 !
; k[_�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0þk3

p
1 0
� �

;

~q�¼ m

hkqiq�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0�k3

p 0

1

 !
; ~q _�¼ m

½qk�q _�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0�k3

p
0 1
� �

:

(26)

The final expressions are well-defined both in the mass-
less limit k0 ! k3 and in the rest-frame. Note that the
other natural such limit, k0 ! �k3, runs afoul of the
constraint (23).
In the special frame where the massive vector-boson

moves along the z-axis and the elements of the spinor basis
are given by (26), one recovers the familiar expressions

��ðk;�Þ¼ 1ffiffiffi
2

p ð0;1;�i;0Þ; ��ðk;0Þ¼ 1

m
ðk3;0;0;k0Þ: (27)

B. Lorentz-invariance constraints on amplitudes

For helicity amplitudes of massless particles, Lorentz-
invariance implies the constraint�

k�i
@

@k�i
� k _�

i

@

@k _�
i

�
Að; . . . c hiðkiÞ; . . .Þ

¼ �2hiAð; . . . c hiðkiÞ; . . .Þ: (28)

To generalize this constraint to the massive spin states (3),
consider Lorentz-rotations around the spin-quantization
axis n defined by the matrix

!n;�� ¼ 1

m
�����n

�k�: (29)

Under these transformations, the spin states acquire only a
phase given by the projection of the spin on the quantiza-
tion axis:

e�i=2�!n;��M
�� jk;s;sni¼ei�Rn jk;s;sni¼ei�sn jk;s;sni: (30)

For the spin quantization axis nq defined in (7), scattering

amplitudes can be expressed entirely in terms of the basis
spinors jk[i �i and jqi�i for each particle. The action of the
generator of rotations around the spin axis in the spin one-
half representation (11) on these basis spinors is given by

Rnq jk[�i ¼ 1

4ðq � kÞ	
5qkjk[�i ¼ � 1

2
jk[�i;

Rnq jq�i ¼ � 1

4ðq � kÞ	
5kqjq�i ¼ � 1

2
jq�i:

(31)

so that the Lorentz-rotations around the spin axis of the
basis spinors are given by

e�i�Rn jk[�i¼e�i�=2jk[�i; e�i�Rn jq�i¼e�i�=2jq;�i:
(32)
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Consistency with the transformation law of the spin-states
(30) then implies the generalization of the constraint (28)
to amplitudes with massive particles (see also [32]):�
k[;�i

@

@k[;�i

�q�i
@

@q�i
þq _�

i

@

@q _�
i

�k[; _�i

@

@k[; _�i

�
Að. . . ;c sn;i

ki
; . . .Þ

¼�2sn;iAð. . . ;c sn;i
ki
; . . .Þ; (33)

where the minus sign on the right-hand side is due to the
convention to treat all particles as outgoing. The only
dependence in Feynman diagrams on the q spinors can
arise through the external polarization vectors and spinors
and through the decomposition of momenta into lightlike
vectors (9). Since these expressions are homogeneous of
degree zero in the spinors q� and q _�, it follows that the
same property is shared by scattering amplitudes so that the
q-dependent terms in (33) always drop out.

III. COVARIANT REPRESENTATION THEORY
OF THE N ¼ 1, D¼ 4 SUSYALGEBRA

Recall that in the textbook treatment the massive repre-
sentations in the rest-frame are constructed by acting with

specific components (e.g., �Q _1; _2=
ffiffiffiffiffiffiffi
2m

p
) of the SUSY gener-

ators on a ‘‘Clifford vacuum’’ state j�i annihilated by the
conjugate generators (see e.g., [54] for a detailed textbook
discussion). Since our objective is to formulate the repre-
sentation theory of the algebra directly in an arbitrary
Lorentz frame, the supercharges Q� and �Q _� should be
projected on operatorswith awell-defined quantum-number
of the operator Rnq used to define the states (3). In this

section, it will be shown that the massive spinor-helicity
methods from Sec. II allow to accomplish this in a simple
way. The approach used here is inspired by the treatment of
generic massless representations in higher dimensions by
one of the present authors [34]. With this approach, the
results for theSUSY transformationmassive quarkmultiplet
obtained in [39] from LSZ reduction are easily recovered
and generalized to any massive multiplet. Our conventions
for the SUSYalgebra are summarized in Appendix A 2.

A. Spin decomposition of the SUSY generators

The key observation in order to make contact with the
massive spinor-helicity methods discussed in Sec. II is to
note that the supercharges can be expanded in the basis
spanned by the spinors ~q and k as in (10):

Q�¼ q�

hk[qihk
[Qiþ k[�

hqk[ihqQi¼ ~q�Qþþk[�Q�; (34)

�Q _�¼ q _�

½qk[�½
�Qk[�þ k[_�

½k[q�½
�Qq�¼ ~q _�

�Q�þk[_� �Qþ: (35)

Here, the components of the supercharges have been in-
troduced,

Qþ�hk[Qi
m

; �Q��½ �Qk[�
m

; Q�� hqQi
hqk[i ;

�Qþ� ½ �Qq�
½k[q� ;

(36)

that have a well-defined spin quantum-number as will be
shown shortly. The convenience of the decomposition of
the generators is seen when inserting the decompositions
(34) into the SUSY algebra fQ�; �Q _�g ¼ �2��

� _�k� and

using (9) for the right-hand side:

~q�~q _�fQþ; �Q�g þ k[�~q _�fQ�; �Q�g þ ~q�k
[
_�fQþ; �Qþg

þ k[�k
[
_�fQ�; �Qþg ¼ �2ðk[�k[_� þ ~q�~q _�Þ: (37)

Since the four lightlike Lorentz vectors on the left-hand
side form a (‘‘lightlike’’) basis of four-dimensional space,
from this expression, the anticommutators for the gener-
ators Q�, �Q� can be read off,

fQþ; �Q�g fQþ; �Qþg
fQ�; �Q�g fQ�; �Qþg

� �
¼ � 2 0

0 2

� �
: (38)

The action of the SUSY charges Q� and �Q� on the
eigenstates of the Lorentz-generator Rnq can be obtained in

an analogous way starting from the commutation relations
of the SUSY charges with the generators of the Lorentz-
transformations (A13) and inserting the decomposition
(34). Using the (anti-) self-duality relations (A6), the com-
mutators of the SUSY charges with the generators of the
rotation around the spin axis can be evaluated as

½Rnq ;Q��¼� 1

ðk �qÞq�k�ð�
��Þ��Q�¼1

2
ð~q�Qþ�k[�Q�Þ;

(39)

½Rnq;
�Q _��¼ 1

ðk �qÞq�k�ð ��
��Þ _�

_�
�Q

_�¼1

2
ðk[; _� �Qþ� ~q _� �Q�Þ:

(40)

Inserting the decomposition (34) on the left-hand side and
comparing the coefficients of the basis spinors can be read
off from the commutation relations

½Rnq ; Q�� ¼ � 1

2
Q�; ½Rnq;

�Q�� ¼ � 1

2
�Q�: (41)

Therefore, as anticipated by the notation,Qþ and �Qþ raise
the spin quantum-number sn by 1=2 while Q� and �Q�
lower it by one-half. Therefore a covariant definition of
SUSY generators has been obtained that have a well-
defined spin quantum number with respect to the spin
axis nq in (7). By the close relation to the usual rest-frame

analysis, it should come as no surprise that these generators
can be used to construct the massive representations, which
will be done in Sec. III B.
A general SUSY transformation parameterized by two

Grassmann-valued spinors �� and � _� is expressed in terms
of the supercharges (36) as
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Qð�Þ¼��Q�þ� _�
�Q _�

¼h�k[iQ�þ½�k[� �Qþþm
h�qi
hk[qiQþþm

½�q�
½qk[�

�Q�:

(42)

This operator has a well-defined massless limit. Note that
if the supersymmetry variation is directed along the light-
cone vector q used to define the polarization axis

�� ¼ �q�; � _� ¼ �q _�; (43)

with a Grassmann number �, the form of the algebra is
exactly equivalent to the massless case, generalizing the
findings of [39] to arbitrary representations.

B. General massive representations in
an arbitrary frame

After the covariant analysis of the SUSY algebra its
representations can be studied on generic massive one-
particle states which have definite quantum numbers sn
under the Rnq operator defined above in (3). Since the

operators Q� and �Q� raise and lower the value of sn by
one-half, their action on the basis states of the multiplets
can be determined along the lines of the usual analysis of
the rest-frame algebra. The action of a general supersym-
metry transformation on a state in an arbitrary frame is then
obtained from the operator (42).

Following the usual treatment in the rest-frame, a set
of2s0 þ 1 states j�0; s

0
ni � jk; s0; s0ni can be defined

(the ‘‘Clifford vacuum’’) annihilated by Q� and Qþ:

Q�j�0; s
0
ni ¼ Qþj�0; s

0
ni ¼ 0: (44)

Such a state can be constructed from any state with Rnq

eigenvalue s0n by multiplying with Q�Qþ (or e.g., by
multiplying by Q� in case that the state is already annihi-
lated
by Qþ). Using the fact that �Qþ raises sn by one-half and
�Q� lowers it by one-half, the following states can be
defined (up to a phase choice)

����������; s0n � 1

2

	
� 1ffiffiffi

2
p �Q�j�0; s

0
ni;

j�0
0; s

0
ni � 1

2
�Q� �Qþj�0; s

0
ni;

(45)

which are eigenstates of the generator of rotations around
the spin axis with quantum numbers Rnq j��i ¼
ðs0n � 1

2Þj��i and Rnq j�0
0i ¼ s0nj�0

0i. In the following,

the spin labels on the states will be suppressed when no
confusion can arise. The action of the remaining generators
on the ket-states is completely fixed by the SUSY algebra:

1ffiffiffi
2

p Q�j��i ¼ �j�0i; (46a)

1ffiffiffi
2

p �Q�j��i ¼ �j�0
0i; (46b)

1ffiffiffi
2

p Q�j�0
0i ¼ �j��i; (46c)

where all other combinations of generators and states
vanish. Therefore, as sketched in Fig. 1, acting with the
generators Q� and �Q� moves around within the states
ð�þ;�0;�

0
0;��Þ so they form an irreducible representa-

tion of the SUSYalgebra. The states j�þi and j��i are in
general superpositions of states with spin s0 � 1

2

j�þi¼cþþ
��������k;s0þ1

2
;s0nþ1

2

	
þc�þ

��������k;s0�1

2
;s0nþ1

2

	
;

j��i¼c��
��������k;s0�1

2
;s0n�1

2

	
þcþ�

��������k;s0þ1

2
;s0n�1

2

	
;

(47)

with the Clebsch-Gordan coefficients

c

n
¼


s0 þ 


2
; s0n þ 
n

2

��������s0; s0n; 12 ; 
n

2

	
: (48)

The spin decomposition of these states is identical to that in
the rest-frame since for a Lorentz boost from the rest-frame
the states transform as Uð�Þjk; s; szi ¼ j�k; s; s0zi without
a Wigner rotation. Explicit examples for the states �� for
s0n ¼ 0 and s0n ¼ � 1

2 will be given below.

The action of a general SUSY transformation (42) pa-
rameterized by the Grassmann-valued spinors �� and � _�

on the four states of the massive multiplet can now be
worked out. Since the same results can be obtained in the
superfield formalism to be introduced below [see (84)],
the results will not be recorded here.
It is also useful to record the definitions of the out-states

explicitly. The conjugate states satisfying the conditions
h��jRnq ¼ ðs0n � 1

2Þh��j and<�0
0jRnq ¼ s0n <�0

0j are

defined as

FIG. 1. Sketch of the states in the massive multiplet and the
action of the supercharges.
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��; s0n � 1

2

�������� ¼ � 1ffiffiffi
2

p h�0; s
0
njQ�;

h�0
0; s

0
nj ¼ 1

2
h�0; s

0
njQ�Qþ;

(49)

which is consistent with the algebra (38) and the definition
of the conjugate Clifford vacuum satisfying h�0j �Q� ¼ 0.
The action of the SUSY charges on the bra-spinors (49) is
obtained from (46) using the complex conjugation of the

supercharges Qy
� � �Q�.

1. Massive quark multiplet

The simplest massive representation is based on a scalar
Clifford vacuum j�0; 0i ¼ jk; 0; 0i. In this case, the super-
positions (47) in the definitions of the states j��;� 1

2i
collapse to a single state with spin s0 � 1

2 ¼ � 1
2 .

Therefore, the multiplet includes two spin-states of a mas-
sive Majorana fermion j��i ¼ jk; 12 ;� 1

2i and the states

j�0i and j�0
0i of a complex scalar. For a massive multiplet

in the fundamental representation of SUðNÞ, the fermion
necessarily must be a Dirac fermion so one has to double
the number of states and include two complex scalar
fields. The on-shell SUSY-transformations of the spin-
states with the external spinors (14) have been obtained
in [39] from the transformations of the field operator. In
order to make contact with the conventions used in that
reference, the following identifications for the out-states
must be made:

h�0j¼hk;0;0j�h ��þ
k j; h�0

0j¼hk;00;0j�h ���
k j;

h�þj¼


k;
1

2
;
1

2

���������h �Qþ
k j; h��j¼



k;
1

2
;�1

2

���������h �Q�
k j;

(50)

where the notation follows that of the fermion spinors,
i.e., the states with a bar denote outgoing particles. An
analogous on-shell multiplet of statesQ� and�� denoting
outgoing antiparticles is not displayed here.

2. Massive vector multiplet

Apart from the quark multiplet, the other massive mul-
tiplets most relevant for globally supersymmetric field
theories are based on Clifford vacua with spin one-half,
j�0;� 1

2i ¼ jk; 12 ;� 1
2i. Starting from the s0n ¼ 1

2 states, one

obtains the multiplet containing two inequivalent massive
‘‘wino’’ states � with spin projectionþ 1

2 , a massive vector-

bosonW with spin projectionþ1 and a linear combination
of a longitudinal massive vector-boson and a scalar:���������0;

1

2

	
¼
��������k;12;12

	
�j�þ

k i;
���������0

0;
1

2

	
¼
��������k;1

0

2
;
1

2

	
�j~�þ

k i;
j�þ;1i¼jk;1;1i�jWþ

k i;
j��;0i¼ 1ffiffiffi

2
p ðjk;1;0iþjk;0;0iÞ� 1ffiffiffi

2
p ðjW0

k iþj�kiÞ:
(51)

The states with the negative spin-projections are obtained
from the Clifford vacuum with s0n ¼ � 1

2 and include the

orthogonal linear combination of the longitudinal vector
and the scalar���������0;� 1

2

	
¼
��������k; 12 ;� 1

2

	
� j��

k i;���������0
0;�

1

2

	
¼
��������k; 1

0

2
;� 1

2

	
� j~��

k i;

j�þ; 0i ¼ 1ffiffiffi
2

p ðjW0
k i � j�kiÞ;

j��;�1i ¼ jk; 1;�1i ¼ jW�
k i:

(52)

C. Extended supersymmetry and BPS multiplets

Massive representations of extended supersymmetry can
also be studied with the above methods. Without central
charges, the analysis simply reduces to multiple copies of
the N ¼ 1 case. The most interesting example for a field
theory in this class is the massive fundamental multiplet of
N ¼ 2, which contains a massive vector-boson, 5 real
scalars, and 2 Dirac fermions.
This multiplet can be reinterpreted [55] as a BPS repre-

sentation ofN ¼ 4. As pointed out in [55], there is a close
link between the massive Dirac equation and BPS condi-
tions. In the language and notation of this paper, this link
reads:

k� _�QI
� ¼ � 1

2
ZI
J
�QJ; _� ðBPS conditionÞ: (53)

The ZI
J can be identified with the central charges as fol-

lows. Multiplying both sides with k� _� and summing gives,

QI
� ¼ � 1

2
k� _�

ZI
J

m2
�QJ; _�; (54)

so that

fQI
�;Q

J
�g ¼ � 1

2
k� _�

ZI
L

m2
f �QL; _�;QJ

�g ¼ ZI
L


L;J
ðk� _�k

_�
�Þ

m2

¼ ZI;J���: (55)

The conjugate equation follows easily as well. For
comparison to the usual rest-frame analysis of BPS
multiplets, one can insert the expansion of the SUSY
generators, Eq. (34), into Eq. (53). This gives

mðk[; _�QIþ � ~q _�QI�Þ ¼ � 1

2
ZI
Jð~q _� �QJ� þ k[; _� �QJþÞ: (56)

Since the spinors form a complete basis of the spinor space,
condition (53) implies

mQIþ ¼ � 1

2
ZI
J
�QJþ mQI� ¼ 1

2
ZI
J
�QJ� (57)

for the rest-frame generators. This is the usual BPS condi-
tion: the supercharges are eigenvectors (up to complex

ON-SHELL SUPERSYMMETRY FOR MASSIVE MULTIPLETS PHYSICAL REVIEW D 84, 065006 (2011)

065006-7



conjugation) under the central charges with eigenvalue
equal to the mass. The representation theory of these
representations is seen to reduce to that of massive
supersymmetry for a part of the algebra. Hence, BPS
representations of N ¼ ð2 or 4Þ SUSY, for instance,
are isomorphic to complex massive representations of
N ¼ ð1 or 2Þ. Of course, this can all be framed in
terms of Dirac spinors with complex masses. Doing this
yields immediately the 4D BPS analysis of [43].

IV. ON-SHELL SUPERSPACES FOR THE MASSES

In this section, on-shell superspaces for general massive
representations will be constructed using the set-up intro-
duced in Sec. III. The main observation is that these on-
shell superspaces can always be obtained as a fermionic
coherent-state representation since the above analysis re-
duces the supersymmetry algebra to copies of the fermi-
onic harmonic oscillator. After a reminder on the properties
of the coherent-state representation of massless simple
supersymmetry, the generalization to the massive case
will be presented below. This parallels the construction in
higher dimensions [34] and N ¼ 4 SUSY gauge theory
on the Coulomb branch [43]. Some general properties of
the massive superamplitudes which follow will be ob-
tained. In particular, this includes the vanishing of some
simple amplitudes for appropriate choices of the spin axes
of the massive particles, generalizing results for SQCD
obtained from explicit calculations and SWIs [39] and
from diagrammatic arguments reviewed briefly below.

Impatient readers familiar with massless superspaces
can skip ahead directly to a short-cut to on-shell super-
spaces for massive particles described in Sec. . A quick
reminder of massless on-shell four-dimensional superspa-
ces is contained in Sec. .

A. Coherent states for massless N¼1 SUSY

In order to set the stage, first recall the coherent states for
massless, 4DN ¼ 1 representations in a notation suitable
for generalization to the massive case. From the decom-
position of the SUSY generator (42), one sees that in the
massless limit only the charges Q� and �Qþ appear and the
massive representation splits into two massless supermul-
tiplets. The algebra of the Q� and �Qþ is isomorphic to the
creation and annihilation operators of a fermionic oscilla-
tor, which motivates the introduction of coherent states that
are eigenstates of one of the supercharges.

For the supermultiplets containing the states of maxi-
mal- and minimal-helicity sþ and s�, one can define the
coherent states by1

jsþ; �i ¼ e�ð1= ffiffi
2

p Þ�Q�jsþi ¼ jsþi þ �

��������sþ � 1

2

	
; (58)

js�; ��i ¼ e�ð1= ffiffi
2

p Þ �� �Qþjs�i ¼ js�i þ ��

��������s� þ 1

2

	
: (59)

Here and in the following, momentum labels have been
suppressed. The individual spin-states in the multiplet can
be obtained from the coherent-state representation by ap-
propriate integrations over the Grassmann parameters. The
representation used for the maximal-helicity multiplet in
(58) will be denoted as the �-representation and that for
the minimal-helicity multiplet as the ��-representation.
Alternatively to the description chosen above, one could
e.g., use the � description for both multiplets by defining
the states��������s� þ 1

2
; �

	
¼ e�ð1= ffiffi2p Þ�Q�

��������s� þ 1

2

	
: (60)

These two equivalent representations are related by fermi-
onic Fourier transform,

j�i ¼
Z

d ��e ���j ��i: (61)

In complete analogy to the coherent states of a (fermi-
onic) harmonic oscillator, the two states defined above are
eigenstates of Q� and �Qþ, respectively,

1ffiffiffi
2

p �Qþj�i ¼ ��j�i; 1ffiffiffi
2

p Q�j ��i ¼ � ��j ��i: (62)

Therefore, the � representation diagonalizes the action of
the �Qþ operator, while a SUSY transformation using the
remaining SUSY charge shifts the eigenvalue:

eð1=
ffiffi
2

p Þ� _�
�Q _� j�i ¼ eð1=

ffiffi
2

p Þ½�k� �Qþj�i ¼ e�½�k�j�i;
eð1=

ffiffi
2

p Þ��Q� j�i ¼ eð1=
ffiffi
2

p Þh�kiQ�j�i ¼ j�� h�kii:
(63)

The action on the �� representation has the roles of the two
SUSY generators exchanged:

eð1=
ffiffi
2

p Þ �� _�
�Q _� j ��i¼ j ���½�k�i; eð1=

ffiffi
2

p Þ��Q� j ��i¼e ��h�kij ��i:
(64)

1. Representing the SUSY generators on fields
on on-shell superspace

The above can be given a more geometrical interpreta-
tion. For this, one maps the states to fields on the super-
space spanned by the momentum k� and one fermionic

variable �. By the above, the action of the �Qþ generator on
the superfield is represented by fermionic multiplication,
while the action of the Q� operator on the superfield is
given by differentiation,

�Qþ ¼ ffiffiffi
2

p
�; Q� ¼ � ffiffiffi

2
p @

@�
: (65)

It can be checked directly that this forms a representation
of the supersymmetry algebra since

1In this section, the in-states will be considered so that the
helicity labels are reversed compared to [15].
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f �Qþ; Q�g ¼ �2

�
�;

@

@�

�
¼ �2: (66)

In other words, fermionic multiplication and differentia-
tion form a natural representation of the fermionic har-
monic oscillator. Since for massless states

Q� ¼ k�Q�; �Q _� ¼ k _�
�Qþ (67)

holds by Eq. (42), we obtain

Q� ¼ � ffiffiffi
2

p
k�

@

@�
; �Q _� ¼ ffiffiffi

2
p

k _�� (68)

as a representation of the supersymmetry generators acting
on fields on an on-shell superspace. Note that for a choice
of on-shell superspace spanned by variables k and ��, the
fermionic multiplication and differentiation are swapped
between the chiral and antichiral generators. This is
naturally encoded in the fermionic Fourier transform of
Eq. (61). Fields on the massless on-shell superspace have a
finite expansion in �,

�ðk�; �Þ ¼ �0ðkÞ þ�þ�; (69)

where the þ on the field � serves as a reminder it has
helicity þ 1

2 compared to the field �. The extension to

multiple copies of the massless SUSY algebra needed to
describe extended supersymmetry is obvious.

B. Coherent states for massive N ¼ 1 SUSY

In the massive N ¼ 1 case in four dimensions, the Qþ
and �Q� components in the decompositions (34) do not
decouple so two copies of the algebra of the fermionic
oscillator are encountered, fQ�; �Qþg and f �Q�; Qþg. Since
any of the states of the supersymmetric multiplet can be
used as a top-state of a coherent-state representation, there
are four possible parameterizations:

�-representation: Analogously to the massless case, the
coherent-state in the � representation is obtained by acting
on the top-state �þ of the massive multiplet with an
exponential of the ‘‘lowering’’ operators �Q� and Q� and
is parameterized by two Grassmann-valued eigenvalues �
and � of the ‘‘raising’’ operators �Qþ and Qþ:

jk; sþn ; �; �i � e�ð1= ffiffi
2

p Þð�Q�þ� �Q�Þj�þ; sþn i: (70)

Here, sþn ¼ sn þ 1
2 is the maximal spin in the supermulti-

plet based on the Clifford vacuum j�0; sni ¼ jk; s; sni. For
the applications to scattering amplitudes, only outgoing
states will be considered. For those, the conjugate coherent
states are relevant:

hk; sþn ; �; �j � h�þ; sþn je�ð1= ffiffi
2

p Þð �Qþ�þQþ�Þ: (71)

�� representation: Alternatively, a massive �� representation
can be introduced by acting with the operators Qþ and �Qþ
on the states with minimal spin s�n ¼ sn � 1

2 :

jk; s�n ; ��; ��i � e�ð1= ffiffi
2

p Þð �� �Qþþ��QþÞj��; s�n i; (72)

with the conjugate state given by

hk; s�n ; ��; ��j � h��; s�n je�ð1= ffiffi
2

p ÞðQ� ��þ �Q� ��Þ: (73)

In the following, the spin- and momentum labels will be
suppressed if no confusion can arise. As in the massless
case, the two representations are related by a Fourier trans-
formation,

j�; �i ¼
Z

d��d ��e����e� ���j ��; ��i;

j ��; ��i ¼
Z

d�d�e���e ���j�; �i:
(74)

‘‘mixed’’ representations: The remaining two represen-
tations are constructed based on the Clifford vacuum or its
conjugate. These ‘‘mixed’’ ��� and ��� coherent-state rep-
resentations can be obtained e.g., from a partial Fourier
transform of the � representation:

j ��;�i¼
Z
d�e ���j�;�i; j�; ��i¼

Z
d�e���j�;�i: (75)

Explicitly, the in- and out-states in the two mixed repre-
sentations are given by

jk; sn; ��; �i ¼ e�ð1= ffiffi
2

p Þð �� �Qþþ� �Q�Þj�0; sni;
jk; sn; �; ��i ¼ �e�ð1= ffiffi

2
p Þð�Q�þ��QþÞj�0

0; sni;
(76)

hk; sn; ��; �j ¼ h�0; snje�ð1= ffiffi
2

p ÞðQ� ��þQþ�Þ;

hk; sn; �; ��j ¼ �h�0
0; snje�ð1= ffiffi2p Þð �Qþ�þ �Q� ��Þ:

(77)

The coherent states diagonalize the action of two of the
four SUSY generators: the raising operators �Qþ andQþ in
case of the �-representation, the lowering operators �Q�
and Q� in the case of the ��-representation, and the SUSY
charge �Q _� (Q�) in case of the ��� ( ���) representation.
Acting with the Q and �Q SUSY-transformations using
the decomposition (34), the explicit form of the transfor-
mations in the � and �� representations is found to read:

h�; �jeð1=
ffiffi
2

p Þ��Q� ¼ h�; �0je�h�k[i;
h�; �jeð1=

ffiffi
2

p Þ� _�
�Q _� ¼ h�0; �je��mðð½�q�Þ=ð½k[q�Þ;

h ��; ��jeð1=
ffiffi
2

p Þ��Q� ¼ h ��0; ��je��mððh�qiÞ=ðhk[qiÞ;

h ��; ��jeð1=
ffiffi
2

p Þ� _�
�Q _� ¼ h ��; ��0je ��½�k[�;

(78)

where the shifted coherent-state parameters are given by

�0 ¼ �þ ½�k[�; �0 ¼ �þm
h�qi
hk[qi ;

��0 ¼ ��þ h�k[i; ��0 ¼ ���m
½�q�
½k[q� :

(79)
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The transformations of the parameters � ( ��) are identical
to those of the massless coherent states while those of � (��)
vanish for SUSY transformation parameters proportional
to the reference spinors as in (43).

The analogous transformations in the two mixed repre-
sentations are given by

h�; ��jeð1=
ffiffi
2

p Þ��Q� ¼ h�; ��je�h�k[iþ��mðh�qiÞ=ðhk[qiÞ;

h�; ��jeð1=
ffiffi
2

p Þ� _�
�Q _� ¼ h�0; ��0j;

h ��; �jeð1=
ffiffi
2

p Þ��Q� ¼ h ��0; �0j;
h ��; �jeð1=

ffiffi
2

p Þ� _�
�Q _� ¼ h ��; �je ��½�k[���mð½�q�Þ=ð½k[q�Þ:

(80)

The fact that the states in the mixed representations are
eigenstates of all components of the SUSY charges Q� or
�Q _� will be useful to implement supermomentum conser-
vation in the construction of superamplitudes below. A
related observation for six-dimensional massless particles
has been made in [56].

1. Representing the SUSY generators on fields
on on-shell superspace

Just as was done in the massless case, one can immedi-
ately obtain from the above a representation of the massive
supersymmetry algebra acting on fields on a superspace
whose coordinates are the momentum with two additional
fermionic directions. The SUSY generators will corre-
spond to fermionic multiplication and differentiation on
this space. Just as above, four choices are possible here,
depending on which representation of the SUSY algebra
one wishes to use.

In the ��� representation, we obtain

Q� ¼ ffiffiffi
2

p
k[��þ ffiffiffi

2
p m

hk[qiq� ��;

�Q _� ¼ � ffiffiffi
2

p
k[_�

@

@�
� ffiffiffi

2
p m

½qk[�q _�

@

@��
;

(81)

as a representation of the supersymmetry generators acting
on fields on an on-shell superspace. Note that it can again
be checked directly that this is a representation of the
massive on-shell supersymmetry algebra. The other three
possibilities for choices of fermionic multiplication and
differentiation are obtained from the above by fermionic
Fourier transform.

A field in the ��� representation can be expanded into
components according to

�ðk; �; ��Þ ¼ ��0
0 þ�þ ������þ�0���; (82)

where the labels refer to the states in the massive multiplet
discussed in Sec. III B. The phase factors in the definition
of the states have been chosen in order to be compatible
with the definition of the coherent state (77). Defining the
SUSY transformation of the superfield by


��ðk; �; ��Þ ¼ 1ffiffiffi
2

p Qð�Þ�ðk; �; ��Þ (83)

and evaluating the action of the differential operators, the
transformations of the component fields can be read off:


��0 ¼ �þh�k[i þ��m
h�qi
hk[qi ;


��
0
0 ¼ ���½�k[� ��þm

½�q�
½k[q� ;


��� ¼ �0
0h�k[i þ�0m

½�q�
½k[q� ;


��þ ¼ ��0½�k[� ��0
0m

h�qi
hk[qi :

(84)

These results can be shown to be consistent with the trans-
formations obtained using the direct definitions of the
states from Sec. III or the expansion of the coherent states.
These transformations generalize the result of [39] to
arbitrary massive representations.

C. Superamplitudes

Having defined the coherent states that are labeled by the
particle momentum k, the spin of the top-state and two
Grassmann-valued parameters, it is natural to define super-
amplitudes as functions of these parameters,

Aðfki;sþni ;�i;�ig;fkj;s�nj ; ��j; ��jg;fkk;s0nk ;�k; ��kg;fkl;s0nl ; ��l;�lgÞ:
(85)

Here, the particles with index i are in the �-representation,
the ones with index j in the �� representation, particles with
index k in the mixed ��� representation, and the index l
denotes particles in the ��� representation. For the massive
particles, the amplitude depends on the spin axes ni, which
are defined through the reference vectors qi. For ampli-
tudes including both massive and massless supermultiplets,
the same notation is used with the understanding that the
variables �i and ��j vanish for the massless particles. Several

properties of the massive superamplitudes will be demon-
strated in this subsection.

1. SUSY-invariance

First of all, scattering amplitudes must be invariant
under the chiral and antichiral supersymmetry transforma-
tions. For amplitudes with particles in the � and �� repre-
sentations, the transformations (78) imply the relations

Aðf�i; �ig; f ��j; ��jgÞ ¼ e

P
i

�ih�k[i iþ
P
j

��jmjðh�qjiÞ=ðhk[j qjiÞ

� Aðf�i; �
0
ig; f ��0

j; ��jgÞ;

Aðf�i; �ig; f ��j; ��jgÞ ¼ e

P
j

��j½�k[j ��
P
i

�imið½�qi�Þ=ð½k[i qi�Þ

� Aðf�0
i; �ig; f ��j; ��

0
jgÞ; (86)
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where the spin and momentum labels are again suppressed.
These identities encode the SUSY-Ward identities of he-
licity amplitudes that can be extracted performing appro-
priate integrals over the Grassmann parameters. This
relation will be used in Sec. IVD to show the vanishing
of the analog of the all-plus and one-minus amplitudes for
appropriate choices of the spin axes. If the same spin axis
defined by a reference vector q is used for all massive
particles and for a SUSY transformation aligned with the
spin axis, the invariance relation resembles that in the
massless case [15]:

Aðf�i; �ig; f ��j; ��jgÞjqi¼q ¼ e

P
i

�i�hqk[i iþ
P
j

��j�½qk[j �

� Aðf�0
i; �ig; f ��0

j; ��jgÞjqi¼q: (87)

For amplitudes with all legs in one of the mixed repre-
sentations, the SUSY-transformations of the coherent
states are given by (80) so the invariance of the super-
amplitudes takes the form

Aðf�k; ��kg; f ��l; �lgÞ ¼ e

P
k

�kh�k[k iþ��kmkðh�qkiÞ=ðhk[k qkiÞ

� Aðf�l; ��lg; f ��0
k; �

0
kgÞ;

Aðf�k; ��kg; f ��l; �lgÞ ¼ e

P
l

��l½�k[l ���lmlð½�ql�Þ=ð½k[l ql�Þ

� Aðf�0
k; ��

0
kg; f ��l; �lgÞ: (88)

Again, this identity simplifies to a form analogous to the
massless case if the SUSY transformation is aligned with
the common reference spinors of the external legs.

2. Supersymmetric momentum conservation

In [15], it was shown that for massless multiplets in the
coherent-state formulation there is a supersymmetric part-
ner of the momentum conserving delta-function which (for
the case of extended SUSY with 2N supercharges) can be
written as

� 
2N
�Xn
i¼1

�I
ik

i
�

�
: (89)

Note the number of manifestly conserved charges here,
which is twice the number of fermionic generators. This is
related to the fact that for massless fields, the helicity equal
and one-helicity unequal amplitudes vanish: one needs
2N integrations to get a nonzero answer. Repeating the
same reasoning as in [15], the question is under which
supersymmetry transformations a coherent-state amplitude
(for definiteness consider the case with all particles in the�
representation) only acquires a phase under a chiral SUSY
transformation, e.g.,

Aðf�i; �i; kigÞ ! ef�ðf�i;�i;kigÞ��Aðf�i; �i; kigÞ; (90)

for some function f. In other words, the coherent-state
variables must remain unshifted. In the massless case,

this is true for all chiral transformations if all particles
are in the same coherent-state representation. If the condi-
tion (90) is satisfied, one can infer that the amplitude must
be proportional to a delta-function 
2ðf�ðf�i; �i; kigÞÞ, in
analogy to (89). In the massive case, this is no longer true
in general for all representations.
An inspection of the invariance conditions (86) and (88)

shows that a condition of the form (90) is satisfied for the
chiral transformation if all particles are in the ��� repre-
sentation and for the antichiral transformation if all parti-
cles are in the ��� representation. For the fundamental
massive multiplet, this means that the top-state is one of
the two scalars. In general, with massive particles in the ���
representation and massless fields in the � representation,
one obtains a delta-function of the type


2ðQ�Þ � 1

2
hQQi ¼ Q1Q2; (91)

where the conserved fermionic momentum reads

Q � ¼ X
k

�
�kk

[
k;� þ ��kmk

qk;�

hk[k qki
�
: (92)

This naturally incorporates amplitudes with some massless
particles in the � representation where the corresponding
mk vanish. The Q-SUSY is manifest through the delta-
function while the remaining SUSY-transformations re-
quire that the vertex is annihilated by the operator

�Q _� ¼ X
i

� k[; _�i

@

@�i

þ q _�
i

mi

½k[i qi�
@

@��i
: (93)

The invariance of the delta-function under the �Q operator
is a consequence of momentum conservation. This is most
easily seen using the SUSY algebra:

½ �Q _�;Q�Q�� ¼ �2
X
i

ki; _��Q� ¼ 0: (94)

Analogously, the ��� representation will lead to the natu-
rally conjugate delta-function


2ð �Q _�Þ; �Q _� ¼ X
k

�
��kk

[; _�
k � �kmk

q _�
k

½k[k qk�
�
: (95)

The situation is more involved if all particles are in the
�� or �� �� representation. In order to obtain a SUSY trans-
formation where the superamplitudes only pick up a phase
as required by (90), it is necessary to use the same spin axis
for all external particles and restrict to chiral SUSY-
transformations aligned to the spin-quantization axis,
�� ¼ �q�. In this case, the phase is given by the function

f�ðf�i; kigÞ�� ¼ Xn
i¼1

�i�hqk[i i: (96)

Hence, the supersymmetric partner of the momentum
conserving delta-function for massive particles in the
��-representation reads
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�Xn
i¼1

�ihqk[i i
�
: (97)

In this case, the delta-function restricts only half of the
SUSY parameters. Moreover, it is not invariant under the
full supersymmetry algebra. An analogous argument using
an antichiral transformation shows that amplitudes in the
�� �� representation involve the delta-function




�Xn
i¼1

��i½qk[i �
�
: (98)

From these results, it can be seen immediately that the
�-and �� representations are less suitable for the construc-
tion of a manifestly supersymmetric formalism than the
mixed representations.

The arguments given here extend also to massive repre-
sentations ofN extended SUSYwhere coherent states in a
formalism similar to the one used here have been con-
structed in [43]. In this case, there are 2N coherent-state
parameters �I and ��I with I ¼ 1; . . .N , the conserved
supermomentum (92) is generalized to N objects QI

and the delta-function is extended to


2N ðQI
�Þ �

Y
I

1

2
hQIQIi: (99)

Similarly, in the �� representation, the delta-function is
given by


N
�Xn
i¼1

�I
i hqk[i i

�
; (100)

where it is seen that only half of the SUSY-transformations
are constrained. Again, this delta-function is not a solution
to the SUSY-Ward identities.

3. Superspin constraints

The superamplitudes are further constrained by the
Lorentz-invariance condition (33). In analogy to the mass-
less case (e.g., [3]), it is useful to supersymmetrize this
constraint by assigning a superfield the spin of the top-
state. This implies that the Grassmann variables ð�; �Þ and
ð ��; ��Þ are assigned the spin 1

2 and � 1
2 , respectively. The

superamplitudes therefore satisfy the identity (suppressing
the Grassmann variables and the distinction among the
various representations)

S iAðfkk; s0nkgÞ ¼ �2s0niAðfkk; s0nkgÞ; (101)

where the superspin operator is given by

Si ¼ k[;�i

@

@k[;�i

� k[; _�i

@

@k[; _�i

� �i

@

@�i

þ ��i

@

@ ��i

þ ��i
@

@��i
� �i

@

@�i
: (102)

As mentioned before, all amplitudes that will be consid-
ered here are homogeneous of degree zero in the reference

spinors. Hence, the q-dependent terms in (33) always drop
out and have not been included in the expression above.

4. Sums over supermultiplets

One application of on-shell superspaces used often for
massless particles is to simplify sums over spectra of on-
shell particles. These sums appear, for instance, after tak-
ing unitarity cuts of scattering amplitudes at loop level or at
a kinematic pole of a tree-level amplitude. Typically, this
will take the form of

X
s2species;spins

ALð. . . ; fP; sgÞArðf�P;�sg; . . .Þ; (103)

where AL and AR appear on both sides of the tree-level
kinematic pole of an amplitude, for instance. The momen-
tum P is on-shell, P2 ¼ m2. The sum over s ranges over all
states which can appear in the theory with this particular
mass. Hence, it ranges over particle species as well as all
values of the quantum-number s (helicity or spin) which
can appear. The flip in sign occurs due to the difference in
incoming and outcoming momentum.
Using an on-shell superspace, the discrete sum can be

replaced by a continuous fermionic integral. Consider
for simplicity first the fundamental massive multiplet.
Expanding out the fermionic components of

Z
d�d��ALð. . . ; fP;�; ��gÞARðf�P;�; ��g; . . .Þ; (104)

for instance, shows clearly all the different terms appear-
ing. For more complicated representations than the funda-
mental one, a sum over the different superfields has to be
included. For the massive vector multiplet in N ¼ 1, for
instance, which consists of two massive superfields, one
should write

X2
i¼1

Z
d�d��ALð. . . ;fP;�; ��giÞARðf�P;�; ��gi�1; . . .Þ; (105)

where the sum over i ranges over the two (naturally con-
jugate!) superfields.

D. Vanishing all-multiplicity amplitudes

The compact form of the SWIs in the coherent-state
formalism (86) will now be applied to derive the vanishing
of some classes of massive amplitudes by generalizing the
discussion of the massless case in [15]. For massive parti-
cles, this will be seen in general to require special choices
of the spin axes of the external particles. For multigluon
amplitudes with massive quarks or scalars, some explicit
results are available in[37–39], and for amplitudes with
massive vector-bosons, diagrammatic arguments following
[7,34] can be used to cross-check our findings.
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1. All particles in maximal spin-state

As a generalization of massless amplitudes with all
external particles in the same helicity state, consider am-
plitudes where all particles are in the state of either maxi-
mal or minimal spin of their SUSY multiplet. At this stage,
the Clifford vacuum of the representations is kept arbitrary
so this includes amplitudes with all particles in the massive
vector or quark multiplets as well as mixed amplitudes. For
definiteness, consider the case were all particles are in the
state of maximal-spin. This amplitude can be extracted
from the superamplitude with all particles in the �� repre-
sentation by the integral

Aððfkj; sþj gÞ ¼
Z Yn

j¼1

ðd��jd ��jÞAðfkj; ��j; ��jgÞ: (106)

For a common choice of spin axis, the invariance under
SUSY-transformations aligned with the spin axis implies
the identity (87). Using a transformation (78) with �� ¼
� ��1q�=hqk[1 i and � _� ¼ 0, the variable ��1 can be shifted
to zero, resulting in the following representation of the
amplitude:

Aððfkj;sþj gÞjqj¼q¼
ZYn

j¼1

ðd��jd ��jÞAððk1;0; ��1Þ;fkj; ��0
j; ��jgÞjqj¼q

¼0: (107)

The amplitude vanishes upon performing the ��1 integral
since the only dependence of the amplitude on ��1 is
through the shifted ��0

j variables and can be absorbed by

a shift of the integration variables. The preceding argument
is essentially the same as in the massless example [15],
however for massive particles, it was necessary to pick the
same spin axis and choose a special SUSY transformation
in order to avoid an ��1-dependent phase factor involving
the � variables in (86).

These findings are in agreement with the explicit result
that the amplitudes with two massive quarks [38,39] and an
arbitrary number of positive-helicity gluons vanishes if the
two quarks have positive spin with respect to the same
axes. For amplitudes with only massive or massless gauge
bosons, the vanishing of the amplitudes with equal spin
labels can be checked at tree-level by a diagrammatic
argument using the simple but powerful observation (20).
Since this argument is analogous to that for unbroken
Yang-Mills theory in four dimensions [7] and higher di-
mensions [34], we will be very brief. Working in the
Feynman-’t Hooft gauge (R�¼1 gauge), momenta in the

numerator of Feynman diagrams can only arise through
three-point vertices of gauge bosons coupling to them-
selves and scalars that contain at most one power of the
momentum. Since there are at most n� 2 three-point
vertices in an n-point amplitude, each diagram must con-
tain at least one contraction of polarization vectors ��i � ��j
that vanishes according to (20), provided the same

spin axis is used for all massive vector bosons. The vanish-
ing of the all-plus and all-minus amplitudes for spontane-
ously broken gauge theories is mentioned in [53].
For the representation (52) based on a spin one-half

Clifford vacuum j�0;� 1
2i, the maximal representation is

actually the state j�þ; 0i ¼ 1ffiffi
2

p ðjW0
k i � j�kiÞ so this yields

an identity of an amplitude of a longitudinal vector and a
massive scalar.

2. One-particle in minimal spin-state

The next amplitudes to be considered are those with
n� 1 particles in the maximal spin-state of their multiplet
and one-particle (say particle n) in the minimal spin-state.
These amplitudes can be expressed as an integral over a
superamplitude where particles one to n� 1 are in the
��-representation and particle n is in the � representation:

Aððfkj;sþj g;ðkn;s�n ÞÞ

¼
Z Yn�1

j¼1

ðd��jd ��jÞðd�nd�nÞAðfkj; ��j; ��jg;ðkn;�n;�nÞÞ:

(108)

Both ��1 and ��2 can be transformed to zero using a chiral
SUSY transformation with

�12;� ¼ k[2;� ��1 � k[1;� ��2

hk[2k[1 i
: (109)

Under this transformation, the amplitude becomes

Afkj;sþj g;ðkn;s�n Þ

¼
Z Yn�1

j¼1

ðd ��jd��jÞðd�nd�nÞe
P

n�1
j¼1

��jmjðh�12qji=ðhk[j qjiÞþ�nh�12k[n i

�Aðk1;0; ��1Þ;ðk2;0; ��2Þ;fkj; ��0
j; ��jg;ðkn;�n;�

0
nÞ; (110)

with ��0
j ¼ ��j þ h�12k[j i, �0n ¼ �n þmn

h�12qni
hk[nqni .

In the massless case considered in [15], the amplitude
depends on ��1=2 only through the ��0

j that are integrated

over and through the phase involving h�12k[n i. This spinor
product is of the form a1 ��1 þ a2 ��2, where the coefficients
a1;2 follow from (109). Changing the ��1 and ��2 integration

variables to the linear combinations ��� ¼ a1 ��1 � a2 ��2,
the amplitude vanishes upon the ��� integration. Once
some particles are massive, the dependence of the ampli-
tude on ��1 and ��2 is more involved. However, the argu-
ment used in the massless case still applies if a common
spin-quantization axis qi;� ¼ k[n;� is chosen for all massive

particles, except for the maximal-spin particle n. For this
choice, as in the massless case, the amplitude depends on
��1=2 only through hk[n�12i ¼ ��þ and through the shifted ��0

j

and �0n that are integrated over so that the amplitude van-
ishes after integrating over ���:
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Aððfkj; sþj g; ðkn; s�n ÞÞjqi;�¼k[n;�
¼ 0: (111)

This result generalizes observations based on SWIs or
diagrammatic arguments for specific multiplets. In [39],
it was shown that the amplitude of a pair of massive quarks
with spinþ 1

2 , one negative helicity gluon, and an arbitrary

number of positive-helicity gluons vanishes only if the
chiral reference spinor used in the definition of the massive
quarks is chosen as the momentum spinor of the negative
helicity gluon. For amplitudes with external vector bosons
only, the diagrammatic argument given above for the all-
plus amplitude can be used in the present case as well
since for the choice qi;� ¼ k[n;� as reference spinor for

all positive-helicity polarization vectors �þj , the identity

�þðkjÞ � ��ðknÞ is satisfied in addition to (20) (for the

related higher-dimensional case see [34]).
For the choice of a common but arbitrary spin-

quantization axis for all particles, the amplitude does not
vanish, but a simple SWI can be derived from the identity
(87) for SUSY-transformations aligned with the spin axis.

Projecting out the auxiliary amplitude Aðsþj ; . . . s00n Þ with
<�0

0; s
0
nj from the superamplitude and using SUSY-

invariance results in:

Aðfkj; sþj g; ðkn; s00n ÞÞ

¼
Z Yn�1

j¼1

ðd ��jd��jÞðd�nd�nÞ�nAðfkj; ��j; ��jg; ðkn; �n; �nÞÞ

¼
Z Yn�1

j¼1

ðd ��jd��jÞðd�nd�nÞ�ne

P
j

��j�½qk[j �

� Aðfkj; ��j; ��jg; ðkn; �0
n; �nÞÞ: (112)

Expanding the exponential and performing the integrals
generates a sum of amplitudes where one of the negative-
spin-states is replaced by hs0i j:Z

. . . ðd ��id��iÞ . . . ��i . . .Að. . . ; fki; ��i; ��ig . . .Þ
¼ �ð�1Þ�iAð. . . ðki; s0i Þ . . .Þ; (113)

as can be seen from the definition of the coherent states
(73). Here, �j counts the fermionic states sþj with j < i.

Shifting the �n integral to �
0
n ¼ �n � �½qk[n � results in the

SWI

½qk[n �Aðfkj;sþj g;ðkn;s�n ÞÞ

¼Xn�1

j¼1

ð�1Þ�j½qk[j �Aððk1;sþ1 Þ;...ðkj;s0j Þ;...ðkn;s00n ÞÞ: (114)

V. APPLICATIONS TO SUSY MODELS WITH
MASSIVE PARTICLES

In this section, the on-shell superspace techniques de-
veloped in the previous section are applied to a series of

examples. Particular attention is paid to the three-point
vertices as they are crucial in the application of super-
symmetric on-shell recursion relations to be presented in
the next section.

A. SQCD with massive matter

As a first example, consider SQCD with a massive
matter multiplet in the fundamental representation. The
SUSY-Ward identities of helicity amplitudes in this model
have been studied previously in [39]. The Lagrangian
and the on-shell three-point vertices are summarized in
Appendix B 1. In the on-shell superspace formulation,
the ingredients are massive superfields� in the fundamen-

tal of SUðNÞ, massive superfields �� in the antifundamen-
tal, and massless superfields including the positive and
negative helicity gluon and gluinos. In the ��� representa-
tion for the massive superfields and the � representation
for the massless superfields, they read

�ð�; ��Þ ¼ ��� þ �Q� � ��Qþ þ ����þ;
��ð�; ��Þ ¼ � ��� þ � �Q� � �� �Qþ þ ��� ��þ;

G�ð�Þ ¼ �� þ �g�; Gþð�Þ ¼ gþ þ ��þ:

(115)

From the representation of the component fields in terms
of polarization vectors and spinors, it is seen that the
superfield Gþ has superspin 1 while the field G� has
superspin � 1

2 .

1. Three-point superamplitudes

There are two three-point supervertices of matter fields
and the gluon multiplet that can be constructed out of

the superfields (115): those with field content ��G�� and
��Gþ�. For definiteness, let us express the superampli-
tudes in the ��� representation. From the general argument
in the previous section, both these amplitudes should be
proportional to the supermomentum-conserving delta-
function2 of Eq. (91). Therefore, the three-point super-
amplitudes take the form3:

A3ð ��1; G
�
2 ;�3Þ ¼ 
2ðQ�ÞF�ð�i; ��i; hiji; hiqiÞ (116)

with the explicit form of the Grassmann delta-function


2ðQ�Þ ¼
X
i;j

�
1

2
hiji�i�j þm

hiqi
hjqi�i ��j

�
: (117)

The functions F can be expressed entirely in terms of
angular spinor brakets as can be derived by exploiting

2As will be shown explicitly further on, a subtlety which arises
for massless fields in the case of three-point kinematics does not
arise in the massive case.

3In the discussion of SQCD, we will consider color-ordered
vertices with the color structures and gauge coupling stripped
off. All the reference spinors will be chosen equal.
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the on-shell three-point kinematics. As a result of momen-
tum conservation, one can obtain the relation

½23�
h1qi ¼ ½31�

h2qi ¼
½12�
h3qi : (118)

Furthermore, the on-shell conditions

2k2 � k3 ¼ ðk2 þ k3Þ2 �m2 ¼ ðk1Þ2 �m2 ¼ 0 (119)

imply the identity

h23i½23� ¼ �m2 hq2i½q2�
hq3i½q3� ¼ �m2 h31i½31�

h21i½21� (120)

and an analogous relation for h21i½21�. Since the vertex
should be homogeneous of degree zero in the reference
spinors, the conjugate equation of (118) allows to eliminate
ratios of square spinor brakets involving auxiliary spinors.
Taken together, these results therefore can be used to
express the three-point amplitudes entirely in terms of
angular spinor brakets.

A similar representation of the vertices can be written
down in the conjugate superspace (the ���-representation)
where they are conventionally expressed through square
brakets:

A3ð ��1; G
�
2 ;�3Þj ��� ¼ 
2ð �Q _�Þ �F�ð ��i; �i; ½ij�; ½iq�Þ: (121)

The vertices in the ���-representation are related to that
in the conjugate superspace by a Grassmann-Fourier-
transform:

Að ��1;G
�
2 ;�3Þj���

¼ �F�
��

@

@�i

;
@

@��j

��Z Y3
i¼1

d ��i

Y
j¼1;3

d�je
�i ��ie��j ��j
2ð �Q _�Þ:

(122)

Hence, fixing one three-point amplitude also fixes the
conjugate amplitude. The functions F and �F are subject
to certain requirements. In a renormalizable theory, the
vertex must have mass dimension one, since the coupling
constant is dimensionless and the vertices are either pro-
portional to a momentum and dimensionless external
wave-functions or involve two external quark spinors
with mass dimension one-half. Since the Grassmann
delta-function has mass dimension one, the function F
must be dimensionless. The three-point supervertices
must also satisfy constraints implied by the Lorentz-
invariance condition (101). Since SiQ� ¼ 0, the
Grassmann-delta-function is annihilated by the superspin
operator and the spin information is carried by the function
F alone. Finally, as argued before, the vertex should be
homogeneous of degree zero in the auxiliary spinors q.

The relation between the representations (116) and (121)
can be used to show that the functions F and �F are at most
linear in the Grassmann variables. To see this, note that the

fermionic Fourier transform of the �Q _�-delta-function has
fermionic weight 3 in the ��� representation, while the
Q�-delta-function has degree two. Since a Grassmann-
parameter dependent function �F can only lower the degree
in the ��� representation, this implies that the maximum
fermionic weight for the functions F and �F is one. The
most general ansatz is therefore of the form F ¼
F0 þP

iðci�i þ di ��iÞ. Because of the supersymmetric
delta-function, it is possible to eliminate two of these terms
by adding a termproportional to h�Qi for some spinor�. For
the case of two massive legs, this leaves a possible depen-
dence on three Grassmann parameters. There are then three

possible nontrivial solutions to the condition �QF ¼ 0:

F1ðf��igÞ ¼
X
i¼1;3

ci ��i with
X
i¼1;3

mi

½k[i q�
ci ¼ 0; (123a)

F2ðf�igÞ ¼ �1½23� þ �2½31� þ �3½12�; (123b)

F3 � F3ð�; ��Þ: (123c)

However, due to the identity (118), the case F2 is actually
proportional to hqQiwhich annihilates the fermionic delta-
function by construction. The solution to the SUSY con-
straints for different reference spinors of the three legs is
discussed in Appendix C. From this analysis, it also follows
that an in principle possible solution involving the two ��
variables and one of the �-variables is excluded if all
reference spinors are chosen equal.
Let us now take the spin-constraint on the solutions F

into account. These functions can depend on six spinor
products so they are not completely determined by the
three spin-constraints SiF ¼ �2siF. Taking also the re-
quirement of equal powers of the reference spinors in
numerator and denominator into account, there are two
free degrees of freedom left. Consider the function F3 first.
Taking the two independent parameters to be the exponents
of hq1i and hq3i, the solution of the superspin constraints
can be written as

F3 ¼ g123h12i�3þ�3h23i�1þ�1h31i�2�ð�1þ�3Þ hq1i�1hq3i�3

hq2i�1þ�3
;

(124)

where �1 ¼ s1 � s2 � s3, �2 ¼ s2 � s3 � s1, and �3 ¼
s3 � s1 � s2 are the solutions in the massless case [57]
and the gijk are constants of mass dimension �Pi�i ¼
�Pisi. At tree-level, only natural numbers can arise for
the coefficients �i and�i since the vertices must be equiva-
lent to expressions obtained by contracting the Feynman
rules with polarization vectors and spinors. Since it is not
possible to fix the exponents �i from this symmetry argu-
ment, the requirement to reproduce the correct massless
results must be imposed to uniquely determine the form of
the vertices. Turning to the solutions F1 of the SWIs,
for the vertices considered here with m1 ¼ m3 � m,
m2¼0, the solution is proportional to F1� ��1½q1�� ��3½q3�.
Taking the spin constraints into account, the general form is
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F1¼h123h12i�3þ�3þð1=2Þh23i�1þ�1þð1=2Þh31i�2�ð�1þ�3Þ�ð1=2Þ

�hq1i�1hq3i�3

hq2i�1þ�3

�
��1

h12i�
��3

h23i
�
; (125)

where the hijk are constants of mass dimension 1
2 �

P
isi.

Here, the conjugate equation of (118) has been used towrite
the result entirely in terms of angular brackets.

The above constraints can now be applied to the

vertexA3ð ��1; G
�
2 ;�3Þ, where s1¼ s3¼0 and s2¼�1=2.

It is seen that a vertex of the form (124) requires half-
integer exponents of the spinor brakets that have been
excluded above while the solution (124) leads to integer
exponents. It can be checked that the solution with �i ¼ 0,

A3ð ��1; G
�
2 ;�3Þ ¼ 
2ðQ�Þ ��1h23i � ��3h12i

h31i
¼ 1

2

X
i;j

hiji�i�j

��1h23i � ��3h12i
h31i

þm
X
i

hiqih2qi
h1qih3qi�i ��1 ��3; (126)

leads to the correct massless limit for the scalar-gluon
vertex:

A3ð ���
1 ; g

�
2 ; �

þ
3 Þ ¼ �A3ð ��1; G

�
2 ;�3Þj�2�3 ��3 ¼

h12ih23i
h31i :

(127)

In the second line of (126), momentum conservation has
been used to simplify the ��-dependent terms. This vertex
reproduces the three-point amplitudes for the component
fields [39] collected in Appendix B 1.

The interaction with the positive-helicity gluon multi-
plet can be either obtained from symmetry arguments as
above or by a Grassmann-Fourier transform from the ���
representation. It is instructive to follow the second ap-
proach here. The three-point amplitude with the positive-
helicity gluon multiplet ���-representation is obtained by
taking the complex conjugate of the result (126):

A3ð ��1; G
þ
2 ;�3Þj ��� ¼ 
2ð �Q _�Þ �1½23� � �3½12�

½31� ; (128)

where the positive-helicity gluon superfield in the �� rep-
resentation is

Gþð ��Þ ¼ �þ þ ��gþ: (129)

The vertex in the���-representation is obtained by a Fourier
transformation

A3ð ��1;G
þ
2 ;�3Þj���¼

ZY
i

d ��id�ie
�i ��ie��i ��iA3ð ��1;G

þ
2 ;�3Þj ���

¼�ijk
�
1

2
½ij��k

��3½23�� ��1½12�
½31�

þm
½iq�½2q�
½1q�½3q��j�k

�
: (130)

It can be checked from this form easily that the component
vertices obtained from this vertex reproduce the compo-
nent vertices in Appendix B 1.
According to the general discussion, it should be pos-

sible to write the last line of Eq. (130) in the general form
(116) where the SUSY-invariance is manifest. Indeed,
using (120) to extract a common prefactor between the
‘�2’ and ‘���’ type terms, the vertex can be written as

A3ð ��1; G
þ
2 ;�3Þj��� ¼ 
2ðQ�Þm h31i

h12ih23i : (131)

This result is in agreement with (124) for s1 ¼ s3 ¼ 0 and
s2 ¼ 1. Equations. (126) and (131) contain the two super-
symmetric three-point amplitudes in massive SQCD, in
addition to the two known three-point amplitudes which
involve only gluons.
Note that in the formulation (131) the nonvanishing of

the MHV-type vertices

A3ð �Qþ
1 ; g

þ
2 ; Q

�
3 Þ and A3ð ��þ

1 ; g
þ
2 ; �

�
3 Þ (132)

in the massless limit is not manifest, but holds due to (120).
In contrast, the form (130) has a massless limit in agree-
ment with the form of the MHV-three-point supervertices
in massless maximally supersymmetric theories [14,15],
where the degenerate on-shell three-point kinematics
only allows to extract a reduced SUSY-conserving delta-
function 
ð�1½23� þ �2½31� þ �3½12�Þ.

2. All-multiplicity amplitudes with
positive-helicity gluons

Using the result that the amplitudes in the ��� represen-
tation are proportional to the Grassmann-delta function
(91), it is easy to write down the supersymmetric version
of the massive scalar amplitude coupled to gluons given in
Eq. (2):

Að ��1;G
þ
2 ; . . .G

þ
n�1;�nÞ¼
2ðQ�ÞAð

��þ
1 ;g

þ
2 ; . . . ;�

�
n Þ

m
:

(133)

Integrating out�1 and ��1 gives back the original amplitude.
Integrating out ��1 and �n gives the amplitude with massive
quarks:

Að �Qþ
1 ;g

þ
2 ; . . .g

þ
n�1;Q

�
n Þ¼hnqi

h1qiAð
��þ
1 ;g

þ
2 ; . . . ;�

�
n Þ: (134)

This reproduces the result in [39] obtained from a more
conventional use of theWard identities. Integrating out two
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� variables or ��1 and �i yields the remaining nonvanishing
component amplitudes:

Að �Q�
1 ;g

þ
2 ; . . .g

þ
n�1;Q

�
n Þ¼h1ni

m
Að ��þ

1 ;g
þ
2 ; . . . ;�

�
n Þ;

Að �Q�
1 ;g

þ
2 ; . . .�

þ
i ;g

þ
iþ1; . . . ;�

�
n Þ¼h1ii

m
Að ��þ

1 ;g
þ
2 ; . . . ;�

�
n Þ;

Að �Qþ
1 ;g

þ
2 ; . . .�

þ
i ;g

þ
iþ1; . . . ;�

�
n Þ¼ hiqi

h1qiAð
��þ
1 ;g

þ
2 ; . . . ;�

�
n Þ:
(135)

B. Three-point vertices with massive and
massless vector bosons

The symmetry analysis in Sec. VA can also be applied to
vertices with two massive vector bosons and a massless
one. This provides a template for the WþW�	 vertex in
(a supersymmetrized extension of) the standard model.
Here, however, the concrete model will be left unspecified.
The ingredients are two superfields containing the positive
and negative helicity ‘‘photons’’

Aþð�Þ¼Aþþ��þ; A�ð�Þ¼��þ�A�; (136)

and two massive superfields for charged vector fields W,
two Dirac fermions � and ~�, and scalarsH, as contained in
the supermultiplets (51) and (52):

Wþð�; ��Þ¼��þþ�
1ffiffiffi
2

p ðW0þHÞ� ��Wþþ���~�þ;

W�ð�; ��Þ¼���þ�W�� ��
1ffiffiffi
2

p ðW0�HÞþ���~��:
(137)

There are analogous superfields in the conjugate represen-
tation of the unbroken gauge group denoted by a bar. Note
that the scalars are charged under the unbroken gauge
group with massless gauge bosons A and should not be
confused with the Higgs bosons responsible for symmetry
breaking. The corresponding Higgs-superfields would
have to be added in a complete model.

Since the two superfieldsW� are needed to describe all
spin-states of the massive vector bosons, there are two

MHV-type vertices with the field content �Wþ
1 A�

2 W
�
3

(and the analog with the W plus-minus labels exchanged)

and �W�
1 Aþ

2 W
�
3 . For the first vertex, the superspin con-

straint (101) holds with s1=3 ¼ � 1
2 for the W�-legs, and

s2 ¼ �1=2 for the A� leg. As in the case of the matter
supermultiplet, there is no solution involving a Grassmann-
parameter independent function F3 with integer coeffi-
cients �i, and one is led to an expression similar to (126):

A3ð �Wþ
1 ;A�

2 ;W
�
3 Þ¼
2ðQ�Þð��1h23i� ��3h12iÞ h23i

h12ih31i :
(138)

For the second MHV-type vertex with s1 ¼ s3 ¼ � 1
2 ,

s2 ¼ 1, a Grassmann-parameter independent solution is
available

A3ð �W�
1 ;Aþ

2 ;W
�
3 Þ ¼ 
2ðQ�Þ h13i2

h12ih23i : (139)

It can be seen that these two vertices include the correct
MHV-type triple gauge boson vertices that are identical to
the massless case. It is also seen that the ð�1 ��1Þ and ð�3 ��3Þ
coefficients of (139) yield the correct helicity-flip vertices
for massive fermions

A3ð ���
1 ;A

þ
2 ; ~�

�
3 Þ¼A3ð �~��

1 ;g
þ
2 ;�

�
3 Þ¼�m

h13i2
h12ih23i (140)

and a vertex involving a longitudinal gauge boson

A3ð �W�
1 ; A

þ
2 ;W

0
3 Þ ¼ 2m

h1qi
h3qi

h13i2
h12ih23i (141)

that agrees with an explicit computation.
The conjugate supervertices can either be obtained by a

Fourier transformation from the ��� representation or from
symmetry considerations and matching to the massless
limit. The results are

A3ð �Wþ
1 ;Aþ

2 ;W
�
3 Þ ¼ 
2ðQ�Þm hq3i

hq1i
h31i

h12ih23i ; (142)

A3ð �Wþ
1 ;A�

2 ;W
þ
3 Þ ¼ 
2ðQ�Þm hq2i2

hq1ihq3i
�

��1
h12i �

��3
h23i

�
:

(143)

C. Abelian Higgs model

As the simplest toy model for a theory with massive
vector bosons, consider the supersymmetric Abelian Higgs
model of a vector multiplet ðA�; 
;DÞ and a chiral multi-

plet ð�; c ; FÞ with a Fayet-Illopolus term. This model was
first constructed in [58]. The Lagrangian of the model
is discussed in Appendix B 2. In the broken phase, the
physical spectrum of the model contains a Dirac fermion
� � ðc�; cþÞT ¼ ðc ;�i
yÞT , a vector-boson A, and a
scalarH with a common massm. In this minimal form, the
model is not anomaly free, which does, however, not affect
the tree amplitudes discussed in the following.
In order to match the physical spectrum of the model to

the massive vector multiplet described in Sec. III B 2, the
antifermion degrees of freedom have to be treated as
independent from the fermion states. From (84), it is seen
that the spin one-half state h�0; 12 j is the superpartner

of the maximal-spin-state h�þ; 1j in the massless limit.
Therefore, it has to be identified with the right-handed
antiparticle state created by the field cþ ¼ �i
y: hcþj ¼
h�0;

1
2 j. Similarly, the left-handed particle state created by

�c� ¼ i
 is identified with the superpartner of the minimal
spin-state, i.e., h �c�j ¼ h�0

0;� 1
2 j. In superfield notation,

the physical states of the model are contained in the two
supermultiplets in the ���-representation:
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Aþð�; ��Þ¼� �cþþ�
1ffiffiffi
2

p ðA0þHÞ� ��Aþþ���cþ;

A�ð�; ��Þ¼� �c�þ�A�� ��
1ffiffiffi
2

p ðA0�HÞþ���c�:
(144)

1. Three-point superamplitudes

The three-point amplitudes of the model are contained in
two supervertices with the field content A�

1 A
þ
2 A

�
3 and

Aþ
1 A

�
2 A

þ
3 . For the first vertex, the superspin constraint

(101) applies with s1=3 ¼ �1=2 and s2 ¼ 1=2. Demanding

integer exponents of the spinor brakets leads to an expres-
sion similar to (126):

A3ðA�
1 ;A

þ
2 ;A

�
3 Þ ¼ 
2ðQ�Þð��1h23i � ��3h12iÞ h13i

h12ih23i :
(145)

The precise form of the solution to the �Q-SUSY-invariance
condition has been fixed by the requirement of the absence
of a triple gauge boson interaction in this Abelian model,
which implies that the vertex must not depend on ��2. This
results also in the absence of vertices involving cþ and
two fields with a minus label, which agrees with the
explicit vertices obtained in Appendix B 2.

The second vertex takes its natural form in the ���
representation, where it is given by

A3ðAþ
1 ;A

�
2 ;A

þ
3 Þj ���¼
2ð �Q�Þð�1½23���3½12�Þ ½13�

½12�½23� :
(146)

Fourier-transforming to the ���-representation results in

A3ðAþ
1 ;A

�
2 ;A

þ
3 Þj���

¼ ½31�
½12�½23��

ijk

�
1

2
½ij��kð��1½12�þ ��3½23�Þ��2

�m
½iq�
½2q��j�k

�
½31� ½2q�2

½1q�½3q� ��2þ½23���3þ½12���1
��

¼
2ðQ�Þ
�
�1h12i��3h23i

h31i þ½31�
m

��2

�
: (147)

As in the case of (131), in the last line, the
Q-supersymmetry has been made manifest. The
�Q-supersymmetry can be checked to hold as a result of
the Schouten identity and (118). Note that (120) does not
hold for three massive legs, so it is not possible to argue
that the three-point vertices can be expressed entirely in
terms of angular bra-kets. Instead, the on-shell conditions
and momentum conservation imply the identity

0 ¼ ðp1 þ p3Þ2 �m2

¼ h13i½31� þm2

�
1þ hq3i½q3�

hq1i½q1� þ
hq1i½q1�
hq3i½q3�

�

) h13i½31� �m2 ¼ m2 ½q2�2
½q3�½q1�

½31�2
½12�½23� ; (148)

that can be used to verify the equivalence of the two
expressions for the vertex.
Note that both three-point vertices are antisymmetric

under interchange of the two legs with equal quantum
numbers. This reflects the simple fact that the lowest
components of the A-superfields are fermions. This
should be contrasted with the usual massless three-point
vertices in Yang-Mills: due to the structure constant the
color-ordered three-point amplitudes are antisymmetric
under interchange of bosonic legs with equal quantum
numbers.

2. Results for scattering amplitudes

As a result of the general discussion of Sec. IVD, the
amplitudes with only vector bosons in the maximal or
minimal spin-state vanish, as in the massless case. For
amplitudes with one vector-boson in the opposite spin-state,
the general discussion allows to conclude that they vanish
only for a special choice of the spin axes, c.f. (111). In the
Abelian Higgs model, however, it is possible to show
diagrammatically that these amplitudes vanish even for
arbitrary choices of the spin axes. This is discussed in
Appendix B 2. Therefore, the simplest nonvanishing
‘‘maximally spin violating’’ amplitudes are, in analogy to
massless non-Abelian gauge theories, those with two oppo-
site spin labels. Concretely, picking particles one and two to
be polarized opposite to the rest, for instance, the following
n-point amplitude is obtained from the Feynman graphs,

AMSV=MSV

¼ið2igÞn�2m2
X

permð3;...;nÞ

�� Yn=2�1

i¼2

ð��2i �k1;2i�1Þð��2iþ1 �k1;2iÞ
ðk21;2i�1�m2Þðk21;2i�m2Þ

�

�ð��2 ���3 Þð��n ���1 Þ
ðknþk1Þ2�m2

�
; (149)

where ki;j ¼
P

i
l¼i kl. Details can be found in the appendix.

This amplitude should be generated by a solution to the
SWIs which on the superspace in �� representation should
have weight 4. The above amplitude, for instance, is the
coefficient of �1�1�2�2. We have been unable however to
find the general superamplitude on this space which repro-
duces the above amplitude.
The amplitudes (149) are related to amplitudes with

fermions by the SWI

RUTGER H. BOELS AND CHRISTIAN SCHWINN PHYSICAL REVIEW D 84, 065006 (2011)

065006-18



hqk[n iAnðA�
1 ; A

þ
2 ; . . . ; A

�
i ; . . . ; A

þ
n Þ

¼ hqk[1 iAnð ���
1 ; A

þ
2 ; . . .A

�
i ; . . . ;�

þ
n Þ

þ hqk[i iAnðA�
1 ; A

þ
2 ; . . . ;

���
i ; . . . ;�

þ
n Þ: (150)

Amplitudes with two outgoing antifermions�þ generated
by the SWI obviously vanish due to fermion number
conservation and have been dropped. Using the results
from Appendix B 2, this identity can be checked at the
four-point level. The four-point vector-boson amplitude is
found to be

A 4ðA�
k1
; Aþ

k2
; A�

k3
; Aþ

k4
Þ ¼ i3ð2gmÞ2 hq1i½2q�hq3i½4q�hq2i½1q�hq4i½3q�

�
�

1

ðk21;2 �m2Þ þ
1

ðk22;3 �m2Þ
�
:

(151)

The result for the fermion amplitude is

A4ð ���
k1
;Aþ

k2
;A�

k3
;�þ

k4
Þ

¼ i3ð2gmÞ2½q2�h3qi
½q1�hq2i½3q�h4qi

�hq�jk3;4jq�i
ðk21;2�m2Þ þhqþjk4�k1jqþi

ðk22;3�m2Þ
�
:

(152)

Adding the contribution from the second fermionic ampli-
tude that is obtained by exchanging k1 $ k3, the SWI
(150) is manifestly satisfied.

D. Massive N ¼ 2 superfields on the Coulomb
branch of N ¼ 4

The minimal massive multiplet in four dimensions with
N ¼ 2 supersymmetry is the massive vector multiplet.
Hence, any theory which contains this type of multiplet
must be a spontaneously broken gauge theory. These fall in
two classes: those which became massive by giving a
vacuum expectation value to a scalar in a massless gauge
multiplet (Coulomb branch), or by giving a vacuum expec-
tation value (vev) to a scalar in a matter multiplet (Higgs
branch). In this subsection, we briefly consider the former.
Typically, these theories arise as a generalized dimensional
reduction of a six-dimensional theory (see [43] for an
explicit description of this map). However, the multiplets
which arise this way are BPS multiplets. As described in
Sec. III C, BPS representations ofN ¼ 4 can be treated as
massive N ¼ 2 multiplets. In the following, only this
N ¼ 2 will be made explicit.

In an N ¼ 2 framework, one can introduce an on-shell
massive vector-boson superfield V

V ¼ �þ c I�
I þ c I ��I þ V��1�2 þ Vþ ��1 ��2 þ�J

I ��J�
I

þ �c I ��I�
1�2 þ �c K�

K ��1 ��2 þ ����1 ��2�1�2; (153)

and the N ¼ 2 positive-helicity gluonic superfield

Gþ ¼ gþ þ �þ
I �

I þ s�1�2; (154)

as well as a negative helicity superfield,

G� ¼ �sþ ��þ
I �

I þ g��1�2: (155)

All capital roman letters run from 1 to 2. These superfields
are in a different phase convention than the previous ones.
All fields are in the ��� representation. On this superspace,
the minimal solution to the SUSY-Ward identities is the
supermomentum-conserving delta-function and hence

A� 
4ðQI
�Þ (156)

for every amplitude in this representation.

1. Three-point superamplitudes

In addition to the known three-point amplitudes for
the Yang-Mills fields, there are three superamplitudes
which involve the massive vectors. Note that two massive
vectors are needed by six-dimensional momentum conser-
vation. The simplest of these is simply proportional to the
delta-function,

AðV;Gþ; VÞ ¼ h31i
h12ih23i


4ðQI
�Þ; (157)

which can be easily checked by integrating out both ��� on
the last leg, for instance, and using the identity (120). The
conjugate to this amplitude reads

AðV;G�; VÞ ¼ ½31�
½12�½23�


4ð �QI
_�Þ (158)

on the conjugate superspace. The triple massive vector-
boson vertex (which has weight 6 and is self-dual under
fermionic Fourier transform) will not be needed here as it
only arises for symmetry-breaking patterns which involve
more than 2 unbroken subgroups. Note though that with
one supersymmetry in the ��� and the other in the ���
representation

AðV; V; VÞ�? X3
i¼1

ð�1
i ��

2
i þ ��1i �

2
i Þ
2ðQ1

�Þ
2ð �Q2
_�Þ (159)

is a solution to the Ward identities. Integrating out all
fermionic variables on the first leg and �1�2 on the second,
for instance, from this guess yields after a short calculation

Að�1
1V

��2
2Þ �

m2½1q�h12i
½q2� : (160)

Since one expects this to be the usual amplitude of a
complex scalar coupled to gluon, one has to divide the
proposed three-point function in Eq. (159) bym2. The field
identification follows from a double-fermionic Fourier
transform on the second supersymmetry of the multiplet
in Eq. (153). The explicit appearance of the mass m2,
however, makes it difficult to turn this three-point ampli-
tude into a generic amplitude on the Coulomb branch of
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N ¼ 4 as only for equal masses one can make a symmet-
ric amplitude out of Eq. (159). This does, however, make it
a prime candidate for the N ¼ 2 three-point coupling in
the Abelian Higgs model. Note that as a special feature,
(159) is a solution to the SUSY-Ward identities for arbi-
trary spin axes on the three different legs.

2. All-multiplicity superamplitudes

In the following, we will study the symmetry-breaking
pattern UðNÞ ! UðN1Þ 	UðN2Þ. The naturally massive
vector bosons are charged in the bi-fundamental while
the gluons are taken to transform in one of the two UðNiÞ
factors. The simplest amplitude follows by almost trivial
extension of the above results in SQCD to N ¼ 2
supersymmetry,

Að �V1; G
þ
2 ; . . .G

þ
n�1; VnÞ ¼ 
4ðQI

�ÞAð
��þ
1 ; g

þ
2 ; . . . ; �

�
n Þ

m2
:

(161)

Note that the fields in the massive multiplets remain
charged in the fundamental and antifundamental of the
UðN1Þ gauge group, while the multiplet now incorporates
a massive vector-boson. An interesting component ampli-
tude follows by integrating out the ��11, ��21 and �1

n�
2
n

coordinates:

Að �Vþ
1 ; g

þ
2 ; . . .g

þ
n�1; V

�
n Þ ¼

�hnqi
h1qi

�
2
Að ��þ

1 ; g
þ
2 ; . . . ; �

�
n Þ;
(162)

which is the natural extension of Eq. (134). It contains two
massive vector-boson components, one with positive and
one with negative-spin with respect to the common spin
axis defined by q.

To verify that (161) is correct, one can consider one
component amplitude which involves the massive scalar
pair. By dimensional reduction from six dimensions, it is
seen that the part of the action of the symmetry broken field
theory relevant for this amplitude agrees with the action
used to compute the all-multiplicity amplitude of massive
scalars in QCD (2). Since Eq. (161) is invariant under on-
shell N ¼ 2 supersymmetry and reproduces one compo-
nent amplitude, it is indeed the correct amplitude on the
Coulomb branch. Note that the other superamplitudes
where some or all of the massless matter is charged under
the other gauge group are related to the above one by the
usual Kleiss-Kuijf relations [59], applied in the six-
dimensional parent theory. For instance,

AðGþ
� ; ��1; G

þ
2 ; . . .G

þ
n�1;�nÞ

¼ Að ��1; G
þ
� ;G

þ
2 ; . . .G

þ
n�1;�nÞ

þ Að ��1; G
þ
2 ; G

þ
� ; . . .G

þ
n�1;�nÞ

þ � � � þ Að ��1; G
þ
2 ; . . .G

þ
n�1; G

þ
� ;�nÞ (163)

follows. Note that the supermomentum-conserving delta-
function always factors out of these sums as it is com-
pletely symmetric.

E. Effective Higgs-gluon couplings

In the standard model, one can consider effective Higgs-
gluon couplings obtained by integrating out a top quark
loop in the limit of large top mass. In this limit, the
effective interaction is given by the following local mass
dimension 5 operators added to the Yang-Mills action
[60,61],

SHgg ¼ �s

6�mr

tr
Z

d4x½HF2 þ AF ~F�; (164)

which can be rewritten as

SHgg ¼ �s

6�v
tr
Z

d4x½ð�þ ��ÞF2 þ ð�� ��ÞF ~F� (165)

¼ �s

6�v
tr
Z

d4x½�F2þ þ ��F2��: (166)

Here, H ¼ �þ �� is the real Higgs field decomposed into
two chiral scalar fields, A ¼ �� �� the would-be axion
field, Fþ and F� denote the self-dual and anti-self-dual
field strengths, respectively, and v� 246 GeV [25]. Of
course, the Higgs and axion fields are uncharged under
the strong gauge group. As shown in [25], the scattering
amplitudes of either � or �� fields display an ‘‘almost’’
MHVor MHV form, e.g.,

Að�;gþ2 . . .g
�
i . . .g�j . . .gþn Þ¼�n�2

s

6�v

hiji4
h23i . . .hn2i ; (167)

for an amplitude with n� 1 gluons. In addition to the
MHV-type amplitude, the model under study has one
more simple amplitude: the amplitude with all negative
helicity gluons,

Að�; g�2 . . .g�n Þ ¼ �n�2
s

6�v

m4
�

½23� . . . ½n2� : (168)

The difference to the actual MHV amplitude is in the
momentum conserving delta-function which now includes
the momentum of the chiral Higgs field �. For the field ��,
there is a corresponding natural anti-MHV-type amplitude.
As shown in [28], there is actually a tower of these ampli-
tudes with an arbitrary number of insertions of either � or
�� fields (but none of mixed type), as well as a natural
generalization to higher dimension operators. Here, we
will focus on the example of a single � or �� field and
the operator in Eq. (164) for clarity, the generalization
should be obvious.
The above model can be embedded into a supersymmet-

ric field theory [25]. This will generically turn the Higgs
field into a massive multiplet of the N ¼ 1 algebra

�ð�; ��Þ ¼ ��þ �cþ � ��c� þ ��� ��: (169)
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Hence, the field content of this model is very similar to that
studied for supersymmetric QCD but the action and sym-
metry properties are different. The Ward identities of the
massless Higgs case were discussed in [25]. Using the
technology developed above, it is easy to generalize
to massive Higgs particles. In particular, a SUSY argu-
ment for the vanishing of amplitudes of the form
Að�; gþ2 . . . g�i . . . gþn Þ for a massive Higgs can be con-
structed along the lines of Sec. IVD.

1. Three-point amplitudes

There are two nonvanishing three-point amplitudes
which involve the massive Higgs field. For instance, in
the ��� representation, we have

Að�1; G
�
2 ; G

�
3 Þ ¼

�s

6�v
h23i2
2ðQ�Þ
4ðk1 þ k2 þ k3Þ

(170)

for a �F2þ type coupling as well as

Að ��1; G
þ
2 ; G

þ
3 Þ ¼

�s

6�v
½23�2
2ð �Q _�Þ
4ðk1 þ k2 þ k3Þ

(171)

in the ��� representation for a ��F2� type coupling. Here, the
scalar superfield in the ��� representation is denoted by
��ð ��; �Þ ¼ ��þ ��cþ þ �c� � ����. It is straightforward
to check that these solve the supersymmetric Ward identi-
ties. Note thatQ now also includes the supermomentum of
the chiral Higgs fields.

2. All-multiplicity superamplitudes of MHV-type

From the three-point amplitudes, it is easily guessed that
the n-point amplitudes with MHV-type configuration reads

Að�;Gþ . . .G�
i . . .G�

j . . .GþÞ¼�n�2
s

6�v

hiji3
h23i . . .hn2i


2ðQ�Þ:
(172)

Integrating out �i and �j gives back the known component

amplitude of Eq. (167). Similarly, one can immediately
write down the conjugate amplitude on the conjugate
superspace

Að ��;G� . . .Gþ
i . . .Gþ

j . . .G�Þ¼�n�2
s

6�v

½ij�3
½23� . . .½n2�


2ð �Q _�Þ:
(173)

These are both solutions to the supersymmetric Ward
identities and reproduce one component amplitude.
Hence, they must be the correct superamplitudes. From
these expressions, explicit forms of amplitudes which in-
volve a Higgsino and a gaugino can be easily calculated.

3. All-multiplicity superamplitudes of NmaxMHV-type

The other simple amplitude, i.e.,, the one from Eq. (168)
, can also easily be written as a superamplitude. Since the
amplitude in Eq. (168) has an arbitrary number of minus
helicity gluons, it is natural to work on the conjugate
superspace. The simplest guess reads

Að ��;G�; . . . ;G�Þj ���¼�n�2
s

6�v

m3
�

½23� . . .½n2�

2ð �Q _�Þ: (174)

The component amplitude in (168) follows by integrating
out the fermionic �1 and ��1 coordinates. Of course, there is
a conjugate superamplitude involving large numbers ofGþ
fields in the conjugate representation as well,

Að�; Gþ; . . . ; GþÞ ¼ �n�2
s

6�v

m3
�

h23i . . . hn2i

2ðQ�Þ: (175)

These superamplitudes solve the supersymmetric Ward
identities by construction. Note that by applying a fermi-
onic Fourier transform to all legs, the conjugate represen-
tation can be obtained. This will have a total fermionic
weight n.

4. Extension to N ¼ 4 and its string
theory interpretation

It is easy to extend the above amplitudes at least to
theories which involve more supersymmetry, leading, for
instance, to an N ¼ 2 amplitude with a massive vector-
boson. Adding even more supersymmetry will lead to
multiplets which involve massive states with higher spins.
In the ��� representation N ¼ 4, supersymmetry leads to
perhaps the simplest generalization of the MHVamplitude,

Að�; G; . . . ; GÞ ¼ �n�2
s

6�v

1

h23i . . . hn2i

8ðQI

�Þ
I ¼ 1; . . . 4: (176)

This displays explicit N ¼ 4 supersymmetry. Integrating
out the obvious fermionic coordinates yields back the
amplitudes Eq. (167) and (the conjugate of) Eq. (168). A
conjugate amplitude to this (in the ��� representation) also
exists. The N ¼ 4 multiplet stretches all the way to
massive spin 2 fields which are physically problematic in
field theory. On-shell methods could be, however, useful
here to evade complications of a Lagrangian description, as
advocated in [57]. There might also be an application to
correlation functions, see also the next subsection.
In string theory, a massive N ¼ 4 scalar multiplet in

four dimensions arises by restricting the momentum of the
first Regge excitation to lie in a chosen four dimensions.
One can choose all momenta of the fields in an amplitude
in the superstring to have this type of four-dimensional
kinematics. The chiral couplings written in (166) appear,
for instance, in a certain rewriting [62] of the Dirac-Born-
Infeld action in four dimensions inspired by string field
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theory. Hence, one can map the Higgs-gluon coupling
amplitudes to amplitudes in the superstring.

The three-point version of the amplitude in Eq. (176),
for instance, can neatly be compared to the complete string
amplitude in four-dimensional kinematics written in
equation (V.107) of [63] after application of the appropri-
ate fermionic integrations. The dimensionful constant v is

exchanged for
ffiffiffiffiffi
�0p
, while the mass scale is also set by this

constant, m2 � 1
�0 . From one of the explicit four-point

results in [63], it follows that the full four-point string
superamplitude with one massive state in four-dimensional
kinematics is a Veneziano-type factor times the above
amplitude, i.e.,

Að�; G;G;GÞj��� ¼
ffiffiffiffiffi
�0p 1

h23ih34ih42i

8ðQI

�Þ

� �ð1� �0sÞ�ð1� �0tÞ
�ð1� �0s� �0tÞ ; (177)

up to some numerical constant and I still runs from 1 to 4.
This form reproduces one color-ordered component ampli-
tude and is invariant under the on-shell SUSYalgebra, so it
must be the full answer. Note that in the case of one
massive leg the four-point MHV-like and MHV-like am-
plitude, e.g.,

Að ��; G; G;GÞj ��� ¼
ffiffiffiffiffi
�0p 1

½23�½34�½42�

8ð �QI

_�Þ

� �ð1� �0sÞ�ð1� �0tÞ
�ð1� �0s� �0tÞ ; (178)

are not dual to each other under fermionic Fourier trans-
form as in the massless case. One of these amplitudes is
natural in the ��� and the other in the ��� representation.
Simply counting fermionic weight shows that the fermi-
onic Fourier transform of one of these four-point ampli-
tudes to the conjugate representation will yield a function
with fermionic weight 12 instead of 8. This can, therefore,
not be the other superamplitude. Hence, the four-point
amplitude with four-dimensional kinematics has both an
MHVand a MHV like configuration with one massive leg.
We strongly suspect the three- and four-point superampli-
tudes reproduce all amplitudes in [63] of this type by
integrating out appropriate fermionic variables. To make
a precise comparison would require to properly identify
the lower-spin-states in the N ¼ 4 supermultiplet with
maximal-spin 2 that will be in general superpositions of
states with equal spin projection but different total spin
[c.f. (47)], analogous to the spin zero states in the vector
multiplet (51). For higher multiplicities, the string theory
amplitudes with four-dimensional kinematics and one
massive leg should reduce to Eq. (176) in the �0 ! 0 limit.
We leave many interesting questions and obvious guesses
which are raised by these short paragraphs to future work.

F. Incorporating off-shell elements:
Vector-boson currents

Although the main focus of this article is on on-shell
states, it is an interesting question how the technology
developed here can be extended to incorporate elements
of off-shell states as well. After all, the difference between
on-shell and off-shell for massive states is not as big as for
massless states, see, for instance, the parallel between the
space considered in [47,48] for the N ¼ 4 stress-energy
multiplet and the N ¼ 4 massive multiplet considered
above. Another prime example of this are vector-boson
currents, discussed in the context of CSW rules in [26],
for instance. These are the currents for an electroweak
vector-boson coupled to quarks which in turn couple to
glue. All states apart from the electroweak vector-boson
are put on-shell.
As calculated by the ancients [64], this type of current

has a particularly nice form if the gluons are all of positive-
helicity while the quarks are of positive and negative type,

J� _�ðfþ1 ; gþ2 ; . . . ; gþn�1; f
�
n jPVÞ ¼ C

ffiffiffi
2

p n�P
� _�
V n�

h12i . . . hðn� 1Þni :
(179)

Here,C is an unimportant numerical constant. In this color-
ordered current, particles 1 and n correspond to the funda-
mental quarks with indicated helicities and PV is the
momentum flowing through the off-shell vector-boson
leg. Note that the current is transverse P

�
VJ� ¼ 0, as it

should. In four dimensions, this implies the current can be
expanded into a basis of the transverse space. A natural
basis for us is given in Eq. (18) and consists of the polar-
ization vectors for the massive vector-boson with mass P2

V .
In particular, the mass of the vector-boson is not set to its
physical value. This results in

J� _�ðfþ1 ; gþ2 ; . . . ; gþn�1; f
�
n jPVÞ ¼ e� _�� c1 þ e� _�þ c2 þ e� _�

0 c3

(180)

with

c1 ¼ C
P2
V

hqpVi2
hqni2

h12i . . . hðn� 1Þni ; (181)

c2 ¼ C
hpVni2

h12i . . . hðn� 1Þni ; (182)

c3 ¼
ffiffiffi
2

p hpVnihnqi
ffiffiffiffiffiffiffi
P2
V

q
hpVqih12i . . . hðn� 1Þni : (183)

What is important for us is that the ci coefficients can be
interpreted as specific scattering amplitudes for massive
vector bosons. It is this interpretation which can be incor-
porated neatly into the on-shell framework advocated
above.
Since the problem under study contains a massive

vector-boson, it is natural to try to use a N ¼ 2 massive

RUTGER H. BOELS AND CHRISTIAN SCHWINN PHYSICAL REVIEW D 84, 065006 (2011)

065006-22



on-shell superspace as in Sec. VD. We will, in addition,
need a massless quark superfield M charged in the
fundamental and a similar superfield �M charged in the
antifundamental,

M¼�þþmI�
Iþ���1�2; �M¼ ��þþ �mI�

Iþ ����1�2:

(184)

By analogy to the MHV amplitude case, it is easy to
suspect that the components of the current (180) will arise
as the simplest solution to the SUSY-Ward identities: i.e.,
the ones which have no fermionic weight beyond the delta-
function. This leads to

AðM1; G
þ
2 ; . . . ; G

þ; �MnjVÞ ¼ C
1

h12i . . . hðn� 1Þni

4ðQI

�Þ:
(185)

Integrating out both � variables on the massive vector-
boson leg and both � variables on the antifundamental
scalar leg gives,

Aðfþ1 ;gþ2 ; . . .gþn�1;f
�
n jP�

V Þ¼C
hpVni2

h12i . . .hðn�1Þni ; (186)

which is exactly equivalent to coefficient c2. Instead, in-
tegrating out both � variables on the vector-boson leg and
both � variables on the antifundamental scalar leg gives,

Aðfþ1 ; gþ2 ; . . . gþn�1; f
�
n jPþ

V Þ

¼ C
m2

hqpVi2
hqni2

h12i . . . hðn� 1Þni ; (187)

which is exactly equivalent to coefficient c1, when taking
into account the relation m2 ¼ P2

V . The last coefficient
follows from

Aðfþ1 ;gþ2 . . . ;gþn�1;f
�
n jP0

VÞ
¼
Z
d�2

n

1ffiffiffi
2

p ð½d�1
Vd��

2
Vþd�2

Vd��
1
V�ÞAðM;Gþ; . . . ;Gþ; �MjVÞ

(188)

¼ ffiffiffi
2

p hpVnihnqim
hpVqih12i . . . hðn� 1Þni ; (189)

which is the final coefficient, c3.
With these observations, a supercurrent can be con-

structed:

J� _�ðMGþ ...Gþ �MjPVÞ¼e� _�þ ~c1þe� _�� ~c2þe� _�
0 ~c3; (190)

with

c1 ¼
Z

d�1
Vd�

2
VAðM;Gþ; . . . ; Gþ; �MjVÞ; (191)

c2 ¼
Z

d��1Vd��
2
VAðM;Gþ; . . . ; Gþ; �MjVÞ; (192)

c3¼ 1ffiffiffi
2

p
��Z

d�1
Vd��

2
Vþ

Z
d�2

Vd��
1
V

��
AðM;Gþ;...;Gþ; �MjVÞ:

(193)

Note that this supercurrent is more like a component part of
a natural function on superspace. As such, it is not com-
pletely annihilated by the on-shell superspace supersym-
metry generators. Similar supercurrents can be constructed
for the scalar and fermionic fields in the massive vector-
boson multiplet.
The calculation in this subsection shows that off-shell

elements like currents can be encoded into an essentially
on-shell approach using the massive on-shell superspace.
The prescription is to expand the current into a complete
set of solution to the free field equations. The coefficients
of this expansion can then be treated as amplitudes with
massive legs whose P2 does not equal their physical mass.
However, when expressed into the original currents along
the lines of Eq. (190), the explicit supersymmetry becomes
obscured. It would be very interesting to find a formulation
which yields a more supersymmetric form of the super-
currents. This should arise from blending an off-shell
superfield formalism with the above on-shell framework.
Although interesting, this is far beyond the scope of this
article.

1. Three-point ‘‘supercurrent’’

For completeness, let us list the three-point supercurrent,

AðM1; �M2jVÞ ¼ C
1

h12i

4ðQI

�Þ; (194)

which is just the three-point version of Eq. (185).

VI. SOLVING THE SUSY-WARD
IDENTITIES THROUGH SUPERSYMMETRIC

ON-SHELL RECURSION

A natural question from the previous section is how one
should calculate generic superamplitudes at tree-level
without resorting to off-shell techniques. In the massless
case, the answer to this question is the existence of super-
symmetric on-shell recursion relations [14] which are a
supersymmetric version of Britto-Cachazo-Feng-Witten
(BCFW) [18,19] on-shell recursion. These relations allow
one to calculate a superamplitude at tree-level with any
number of legs from lower point amplitudes. Hence, this
reduces the problem down to calculating three-point super-
amplitudes, which were found explicitly in the previous
section for various different theories. Recursion relations
which involve BCFW shifts of massive legs have been
discussed in [20–22].
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A. Constructing BCFW supershifts for
massive particles

A key ingredient in the BCFW relations is the concept of
a shift of two in principle arbitrarily chosen legs which
turns an amplitude of interest into a function of a single
complex parameter z,

k1 ! k̂1 � k1 þ zn; k2 ! k̂2 � k2 � zn: (195)

If the vector n satisfies

n � k1 ¼ n � k2 ¼ n � n ¼ 0; (196)

this shift keeps the masses of particles one and two invari-
ant. This shift is known as a BCFW shift. To construct this
shift for massive particles in terms of spinors, note that two
massive momenta k1 and k2 can always be decomposed
into

k1¼k[1 þ
m2

1

2k[1 �k[2
k[2 ; k2¼k[2 þ

m2
2

2k[1 �k[2
k[1 ; (197)

where k[1 and k[2 are massless. A BCFW shift vector n
which satisfies Eq. (196) can be written in terms of the
[-spinors as

n� _� ¼ k1;�k2; _� or n� _� ¼ k2;�k1; _� (198)

up to a proportionality constant. Here and below in this
section, for notational convenience, the spinors have been
written without [. Picking the first solution in Eq. (198),
the shifted momenta can be written as

k̂1;� _� ¼ k1;�ðk1; _� þ zk2; _�Þ þ m2
1

h12i½21� k2�k2 _�;

k̂2;� _� ¼ ðk2;� � zk1;�Þk2; _� þ m2
2

h12i½21� k1;�k1; _�:
(199)

This way of writing the momenta is manifestly consistent
with the massless limits. Since for the chosen shift

h12i½12� ¼ h1̂2i½12̂� (200)

holds, these spinors can be used just as above to construct
supersymmetric amplitudes: the BCFW shift reduces again
to studying shifted spinors. Care should be taken though
that the reference vectors of legs 1 and 2 are not shifted,
but kept fixed at k[2 and k

[
1 , respectively. Wewill employ an

on-shell superspace for the two massive legs for which the
SUSY generators can be written as

� 1ffiffiffi
2

p ðQ1;� þQ2;�Þ ¼ k1;��1 þ m1

h12i k2;� ��1 þ ð1 $ 2Þ;
(201)

1ffiffiffi
2

p ð �Q1; _� þ �Q2; _�Þ ¼ k1; _�
@

@�1

þ �m1

½21� k2; _�
@

@��1
þ ð1 $ 2Þ:

(202)

Note that in this step we have chosen a spin-polarization
axis for both of the shifted legs. As explained above, if the
same type of superspace is used for all the legs throughout
an amplitude, that amplitude is proportional to a super-
momentum conserving delta-function,

Að1; 2; XÞ � 
2ðQ�Þ ¼ 
2

�
�1k1;� þ ��1

m1

h12i k2;� þ �2k2;�

þ ��2
m2

h21i k1;� þQX;�

�
; (203)

where QX;� stands for the appropriate supermomentum of

the rest of the diagram. Note that this does not imply a
choice of spin-polarization axis for the remaining particles,
but only a choice of representation of the SUSY algebra.
Under the shift of the momenta given in Eq. (199), the

supermomentum Q� is not invariant but shifts linearly4

Q � ! Q� � z�2k1;�: (204)

The supermomentum can be made invariant under the
BCFW shift by an additional shift of the fermionic varia-
bles �1,

�1 ! �1 þ z�2: (205)

More general possibilities to cancel the z-dependence ofQ
involving a shift of ��2 would in general not permit a
massless limit and will therefore not be considered here.
The resulting combined shift of Eq. (199) together with
(205) will be referred to as a supershift in the following.

B. Supersymmetric on-shell recursion relations

As BCFW observed, the original amplitude one wishes
to study arises as

Að0Þ ¼
I
z¼0

AðzÞ
z

; (206)

where the contour integral is around a small contour cir-
cling zero and will include a normalization factor of 1

2�i by

convention. Pulling the contour to infinity gives a sum over
simple poles at finite values of z whose residue is the
product of tree-level amplitudes summed over species
and spins, with, in addition, a possible pole at infinity,

Að0Þ ¼ � X
finite z poles

� X
s2species

spins

ALð1̂ . . . ; fP̂; sgÞ 1

P2
L �m2

p

� ARðf�P̂;�sg; . . . ; 2̂Þ
�
þ Resðz ¼ 1Þ: (207)

Here, PL is the sum over undeformed momenta of all
known particles into the AL amplitude and M the mass of
the intermediate particle with momentum PL. Hence,
if the residue at infinity vanishes, then an on-shell recursion

4Recall that the terms ��� in the supermomentum arise from
the reference spinors and are not shifted.
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relation is obtained. From the discussion around Eq. (104),
it follows that the sums over spins and to some extend the
sum over species can be replaced by fermionic integrations
on superamplitudes,

Að0Þ¼� X
finitezpoles

�X
s

Z
d�Pd��PALð1̂ . . .;fP̂;�P; ��PgsÞ

� 1

P2
L�m2

p

ARðf�P̂;�P; ��Pg�s; . . . ; 2̂Þ
�
þResðz¼1Þ;

(208)

where the sum s runs over the possible superfields. Here, a
choice of spin axis for the ‘‘cut’’ leg can still be made.

It is instructive to verify that the relation in Eq. (208)
produces a solution to the on-shell SUSY-Ward identities.
In fact, it does so term-by-term, assuming the lower order
terms satisfy the Ward identities.5 To see this, pick one
particular term of the sum over finite poles in Eq. (208). For
this term, we would like to verify

Q�

�Z
d�Pd��PALAR

�
¼0¼ �Q _�

�Z
d�Pd��PALAR

�
: (209)

Since both these operators leave the 1
P2
L�m2

P

invariant,

this has been stripped off. Now by construction of the
supershift,

Q � ¼ QL
� þQR

� ¼ Q̂L
� þ Q̂R

�: (210)

The shifted Q̂L=R
almost annihilates the amplitudes, apart

from the missing ‘‘cut’’-leg term,

Q̂ L
�AL ¼

�
�Pp

[
� þ ��P

mPq
P
�

hp[qPi
�
AL: (211)

Choosing the spinor momentum of the leg with momentum
�P to be �p[

�, the other amplitude yields

Q̂ R
�AR ¼

�
��Pp

[
� � ��P

mPq
P
�

hp[qPi
�
AR; (212)

and hence

Q �

�Z
d�Pd��PALAR

�
¼ 0: (213)

The other operator can be written

�Q _� ¼ �QL
_� þ �QR

_�: (214)

From the explicit form of the above shift:

�1 ! �1 þ �2z � �̂1;

�2 � �̂2;

k1; _� ! k1; _� þ zk2; _� � k̂1; _�

(215)

holds, which leads to

@

@�2
¼
�

@

@�̂2

þ z
@

@�̂1

�
;

@

@�1

¼ @

@�̂1

(216)

so that

k1; _�
@

@�1

þ k2; _�
@

@�2

¼ k1; _�
@

@�̂1

þ k2; _�

�
@

@�̂2

þ z
@

@�̂1

�

¼ k̂1; _�
@

@�̂1

þ k2; _�
@

@�̂2

(217)

and hence

�Q L
_� þ �QR

_� ¼ �̂Q
L
_� þ �̂Q

R
_�: (218)

Now the operators on the right-hand side of this equation
act on AL and AR, respectively. The Ward identities of both
these superamplitudes then can be used to show that one
obtains a fermionic derivative on the cut leg in both cases.
This total derivative under the fermionic integral vanishes
trivially. This completes the proof that the finite z residues
in (208) satisfy the supersymmetric Ward identities term-
by-term. In passing, we note that this implies also that the
residue at infinity satisfies the supersymmetric Ward iden-
tities even if it is not zero.

C. Residues at infinity: General case

To have a constructive method of solving the Ward
identities, the residue at infinity has to be understood
properly. This residue will first be studied in the generic
case of the supershift contained in Eqs. (199) and (205). In
particular, we allow these legs to be either massive or
massless. Since the BCFW shift involves a momentum
which will become large compared to any fixed scale,
one might naively expect that masses do not change the
analysis of large BCFW shifts in field theory compared to
the massless case. However, the shift involves complex
momenta which may invalidate this hand-waving argu-
ment. Also, for massive particles, new helicity combina-
tions are allowed which can lead to complications. This
will be checked explicitly below in the example of SQCD.
We study the shifts for a general superfield in the

���-representation (82). The z-dependence of the amplitude
is contained in both the momentum as well as the coherent-
state parameter �̂1,

AðzÞ ¼ Aðfk̂1; �̂1; ��1g; fk̂2; �2; ��2g; XÞ: (219)

The point of this representation is that just as in the gluonic
massless case discussed in [15], there is a supersymmetry
transformation which shifts �̂1 and �2 to zero, while it
itself is independent of z. Any spinor � _� can be expanded,

5For the theories under study in this article, the necessary
‘‘three point amplitude’’ base step for this proof by induction has
been shown explicitly in Sec. V.
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� _� ¼ k̂1 _��1 � k2; _��2

½12� ¼ k1; _��1 � k2; _� ~�2

½12� ; (220)

where we have defined

~� 2 � �2 � z�1: (221)

Consider now the supersymmetry transformations gener-
ated by ½� �Q�. These shift the fermionic variables on legs
1 and 2 as

�̂1 ! �̂1 þ ½�1̂� ¼ �̂1 þ �2 ¼ �1 þ zð�2 þ �1Þ þ ~�2;

�2 ! �2 þ ½�2� ¼ �2 þ �1;

��1 ! ��1 � m1

½21� ½�2� ¼ ��1 � m1

½21��1;

��2 ! ��2 � m2

½12� ½�1� ¼ ��2 � m2

½12�
~�2:

(222)

Note that not all spinors are shifted, since some are part of
the definition of the spin axis of the other leg [see Eq. (199)].
To shift�̂1 and �2 to zero, set

�1 ¼ ��2; ~�2 ¼ ��1: (223)

This SUSY transformation is manifestly independent of
z from the second expression in Eq. (220).

Schematically, the amplitude now reads

AðzÞ � Aðfk̂1; 0;~��1g; fk̂2; 0;~��2g; ~XÞ; (224)

where the proportionality factor and the transformed field
content ~X are independent of z (but dependent on �1, �2).
Expanding out this superamplitude over ~�1 and ~�2 then
yields the result that the supershifted amplitude is propor-
tional to a sum over four amplitudes,

Aðfk̂1;0;~��1g;fk̂2;0;~��2g; ~XÞ
¼Aðf�0

0g;f�0
0g; ~XÞþ~��2Aðf�0

0g;f�þg; ~XÞ
þ~��1Aðf�þg;f�0

0g; ~XÞþ~��1~��2Aðf�þg;f�þg; ~XÞ; (225)

with all the z-dependence in the momenta of the first two
particles in each of the component amplitudes. Hence, the
large-z behavior of the supershifted amplitudes can be
obtained from studying the ordinary BCFW shifts of
the component amplitudes of the states with spin s0n and
s0n þ 1

2 . The latter can be done through various means and

the outcome depends on the field content of the theory
under study. Note that there can be no cancellations be-
tween the four different amplitudes in the above equation
since they are multiplied by the ��i variables. These are the
only places ��1 and ��2 occur in the full superamplitude. One
can take a massless limit of the above shifts without prob-
lems: in practice, this means that one sets either ~��1 or ~��2 or
both to zero in the equation just derived.

D. Residues at infinity: SQCD example

The shifts of tree-level amplitudes in (225) can be
studied in any theory which one might be interested in.
BCFW shifts at tree-level with at least one massless leg in
quite a large class of theories have been studied in [65].
Here, we will confine ourselves to an initial study of the
example of supersymmetric QCD, already considered
above as the first example theory in Sec. V. While the
generalization of the results of this subsection to other
minimally coupled supersymmetric theories with massive
matter is immediate, a systematic study of supersymmetric
theories with massive gauge bosons (or higher spins) is
beyond the scope of this article.
First, consider the case of two shifted and color-adjacent

massless legs. For the fields in the fundamental, color-
adjacent is taken to mean on opposite ends of the same
color structure, while for mixed adjoint-fundamental type
shifts, this means that the adjoint field appears next to the
fundamental in color-ordering. In this case, there are four
possibilities depending on the choice of which massless
superfields are shifted:

AðĜþ;Ĝþ; . . .Þ; AðĜ�;Ĝþ; . . .Þ;
AðĜþ;Ĝ�; . . .Þ; AðĜ�;Ĝ�; . . .Þ: (226)

By the analysis just presented, this implies we need to
study

Aðgþ; gþ; . . .Þ; Að��; gþ; . . .Þ;
Aðgþ;��; . . .Þ; Að��;��; . . .Þ;

(227)

respectively. An analysis of the shifts of these amplitudes
can be found, for instance, in Appendix B of [66], see also
[65] for a slightly different tree-level analysis.6 This leads
to the massless sector of Table I whose structure in this
sector might also have been guessed by familiarity with the
usual result. By the results in the table, supershifts exist
such that there are supersymmetric on-shell recursion re-
lations without boundary contributions.

TABLE I. Estimate of the leading asymptotic power in z�� of
the adjacent BCFW supershift of all superfields in a tree ampli-
tude in SQCD.

1n2 Gþ G� ��

Gþ þ1 �2 �1
G� þ1 þ1 �1
� þ1 �1 �1

6It can be checked that the analysis in [66] goes through
basically unchanged if massive fermions charged in the funda-
mental are added. QCD with massive fermions has also been
analyzed in [22].
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There are four possible supershifts for cases with one
massive and one massless leg.

AðĜþ; �̂; . . .Þ AðĜ�; �̂; . . .Þ
Að�̂; Ĝ�; . . .Þ Að�̂; Ĝþ; . . .Þ: (228)

By the analysis above, this reduces to the study of shifts of

fAðgþ; �; . . .Þ; Aðgþ; Qþ; . . .Þg;
fAð��; �; . . .Þ; Að��; Qþ; . . .Þg; (229)

fAð�;��; . . .Þ; AðQþ;��; . . .Þg;
fAð�; gþ; . . .Þ; AðQþ; gþ; . . .Þg: (230)

Since these amplitudes multiply different fermionic weight
functions in (225), the total shift is determined by the
‘‘worst behaving’’ shift of the two-component amplitudes.
As observed in [23], there is a natural gauge to study shifts
in the light-cone gauge with gauge vector q from the
BCFW shift. In this gauge, one can perform a quick
analysis which graphs contribute at leading order in the
shift parameter z. The leading graphs, for instance, invari-
ably include those where the shifted legs end on the same
vertex. Here, a difference arises between the massive
and massless cases: in the massive case the Yukawa
couplings behave differently since a helicity violating
��Qþ�-vertex is allowed [c.f. (B4)]. This analysis results
in the entries involving G and �-fields in Table I. A more
refined analyis might improve the behavior for some of
these shifts from z1 to z0.

The shift of two massive legs is easier to analyze as there
is only one possibility for a shift. By Eq. (225), we need to
study the component amplitudes

fAð�;�; . . .Þ; Að�;Qþ; . . .Þ; AðQþ; �; . . .Þ; AðQþ; Qþ; . . .Þg:
(231)

From diagrams which involve the Yukawa couplings be-
tween matter and vector multiplet, the third amplitude in
this list, for instance, scales as z.

Hence, on-shell recursion relations work with massive
multiplets in SQCD in general, provided one shifts at least
one massless leg with the shifts indicated on the first
column of Table I. This coincides with the conclusion of
[65] for tree-level amplitudes. Of course, in case there
is a residue at infinity, one could still use on-shell recursion
relations to calculate as long as the residue is known.
Alternatively, one could also pursue the use of shifts of
more than two legs, for instance, amplitudes with only
massive quark legs can be constructed with three-line
shifts [22]. Note also that all-leg shifts have been consid-
ered recently in [32]. There is one interesting exceptional
case of this type which is interesting in its own right.
This is the case of a massive fundamental scalar/
antiscalar pair coupled to all-plus glue which will be dis-
cussed below.

It should be noted that the results of Table I can be
improved if other shifts than adjacent ones are considered.
For the adjoint-valued fields, this means non-color-
adjacent shifts which generically scale one order of 1z better

than the adjacent shift. For the mixed case, i.e., a shifted
fundamental and adjoint valued field, a similar result is
expected to hold, as well as for two shifted fundamental/
antifundamental pairs which appear on different color
structures. The latter possibility only arises of course
when more than one fundamental/antifundamental pair is
involved in the amplitude.

1. Massive scalar pair with only positive-helicity gluons

In this particular case, the amplitude is known in a
particularly nice form as was mentioned in the introduction
in Eq. (2). In this case, it can be checked explicitly that the
residue at infinity vanishes under a BCFW shift of both
massive legs. This can also be understood from power-
counting in the special light-cone gauge: the leading dia-
gram for a shift of the massive legs involves the scalar pair
coupled directly to a single gluonic current which involves
only plus gluons. This current has been calculated long ago
in [67] and reads

J� _�þ ð3þ; 4þ; . . . ; nþÞ �
� _��

_�ðk3;nÞ�_�
h�3ih34i . . . hn�i ; (232)

where the spinor � is a light cone gauge choice. For the
case at hand, with the gauge choice that � _��� ¼ n _�� ¼
k _�
2 k

�
1 , it is easy to check that the diagram with two off-shell

scalars contracted into this current through a three vertex
vanishes. This follows as from the explicit form of the first
solution for the BCFW shift from Eq. (198)

� _��
_�ðk3;nÞ�_� ¼ �

�
1þ m2

2k1 � k2
�
k _�
2 k

_�
2 ðk�2 k2; _� þ k�1 k1; _�Þ

¼ �
�
1þ m2

2k1 � k2
�
k _�
2 k

�
1 ½12� � n� _�; (233)

where on the last linewe have identified thevector as the first
solution from Eq. (198). Note that the same result would
have been obtained for the other solution in Eq. (198).
Hence, this current is orthogonal to all momenta appearing
in the three vertex coupling.Moreover, the subleading graph
with two scalars attached to the four vertex also vanishes as
it involves contracting two all-plus currents together with a
metric. Therefore, the large BCFW shift of the two massive
legs of a scalar pair amplitudewith all-plus glue vanishes. In
particular, these amplitudes can be calculated through on-
shell recursion.
By simple extension of the above, the N ¼ 1 super-

amplitude version of the above scalar pair amplitude (133)
also scales as 1

z under a large BCFW shift on the massive

legs, simply because the supermomentum-conserving delta-
function is invariant under the supershift by construction.
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The same holds for theN ¼ 2 extension of this amplitude
discussed above in Eq. (161).

VII. DISCUSSION AND CONCLUSIONS

This article should be viewed as another step in extend-
ing recent analytic results on scattering amplitudes which
involve massless particles to particles with mass in four
dimensions. This step consists of a full covariant treatment
of massive representations of the supersymmetry algebra
which is a natural extension of [9] to the massive case. The
Ward identities which follow from this should hold to any
loop order as their derivation is based on algebra alone and,
in particular, does not depend on any coupling constants. It
is particularly illuminating to see the Ward identities de-
rived in [39] from an off-shell point of view reappear here
from an on-shell point of view. Our on-shell treatment is
completely general and can be applied to any theory with
unbroken supersymmetry and particles in any massive or
massless representation of the four-dimensional supersym-
metry algebra.

A particularly useful tool in recent developments in the
study of amplitudes with massless particles has been the
on-shell massless superspaces originally pioneered in [12].
As explained in [15], these can be understood as covariant
coherent-state representations of the on-shell supersymme-
try algebra. This point of view was used above to construct
on-shell superspaces for the massive representations. A
prime application of on-shell superspaces in the massless
case is to provide a method for obtaining solutions to
the supersymmetric Ward identities, usually implemented
through BCFW on-shell recursion. In several example
amplitudes in several example theories with massive par-
ticles, we have shown how this works in practice. A formal
solution to the Ward identities in terms of amplitudes alone
was also obtained in terms of on-shell recursion. To turn
this into an actual solution one needs an analysis of allowed
BCFW shifts for the theory one is interested in. For shifts
of one or more massless particles, on-shell recursion is
expected to work generically. The question of other shifts
was studied for SQCD above, a corresponding analysis for
other theories with massive particles is left to future work.

In general it would be interesting to see if the methods
described in this paper can be applied to yield more ex-
amples of supersymmetric scattering amplitudes. The
maximal-spin violating amplitudes in the Abelian Higgs
model show, for instance, that there certainly is scope for
the appearance of simple results for amplitudes in seem-
ingly complicated theories. Usually these results are indica-
tive of an unappreciated underlying symmetry which would
be interesting to find. A further worthwhile avenue to
explore is the interpretation of massive representations of
the SUSYalgebra as off-shell states. Some baby-steps along
these lines were taken above in the example of off-shell
vector-boson currents but there is clearly a lot more which

may be done here, especially considering recent work on
form factors at weak [68,69] and strong [70] coupling.
One interesting research direction leading closer to

experiment would be to investigate what happens to the
SUSY-Ward identities in scenario’s where supersymmetry
is (spontaneously) broken. The basic derivation of the
transformations will hold there as well, but the Ward
identity will change as the vacuum is not invariant under
the supersymmetry any more. Note that the analog of an
Adler zero has already been utilized in the context of
spontaneously broken supersymmetry in [71], and it would
be interesting to explore this further. A further direction
which stands out is the study of nonperturbative correc-
tions to the Ward identities. The vanishing of the all-plus
amplitude for the massless sector, for instance, depends on
the existence of a Uð1ÞR symmetry which is known to be
broken by instanton effects. In favorable circumstances,
these corrections can be calculated and presumably also
analyzed in an amplitude type of approach.
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APPENDIX A: NOTATION AND CONVENTIONS

1. Spinor conventions and collection of useful results

In this article, the conventions of [39] have been used
which will be summarized here for convenience. The
sigma matrices are defined as �

�

� _�
¼ ð1;� ~�Þ, ��� _�� ¼

ð1; ~�Þ where ~� ¼ ð�x;�y; �zÞ are the Pauli matrices.

Four-vectors x� are mapped to bi-spinors according to

x� _� ¼ x��
�
� _� ¼ x0 � x3; �x1 þ ix2

�x1 � ix2 x0 þ x3

� �
;

x _�� ¼ x� ���; _�� ¼ x0 þ x3; x1 � ix2
x1 þ ix2 x0 � x3

� � (A1)

so that 2x�y� ¼ x� _�y
_��. The two-dimensional antisym-

metric tensor is defined by

"�� ¼ " _� _� ¼ "�� ¼ " _� _� ¼ 0 1
�1 0

� �
: (A2)

Indices of two-component Weyl spinors are raised and
lowered as follows:
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k� ¼ "��k�; k _� ¼ " _� _�k _�;

k _� ¼ k _�" _� _�; k� ¼ k�"��:
(A3)

In the bra-ket notation, spinor products are denoted as

hpqi ¼ hp� jqþi ¼ p�q�;

½qp� ¼ hqþ jp�i ¼ q _�p
_�:

(A4)

We also make use of the matrices

��� ¼ 1

4
ð�� ��� � �� ���Þ; ���� ¼ 1

4
ð ����� � �����Þ;

(A5)

that satisfy the relations (using the convention �0123 ¼ 1)

��� ¼ i

2
��������; ���� ¼ � i

2
����� ����: (A6)

It is useful to recall the translation of the totally antisym-
metric tensor to spinor notation:

����� , �� _�� _�	 _	
 _
 ¼ 4ið"�	"�
" _� _
"
_� _	

� "�
"�	" _� _	"
_� _
Þ: (A7)

For the Dirac matrices, the representation

	�¼ 0 ��

��� 0

� �
; 	5¼ i	0	1	2	3¼ 1 0

0 �1

� �
; (A8)

will be used.

2. Super Poincaré algebra

The Pauli-Lubanski vector is given by

W� ¼ � 1

2
�����P�M��; (A9)

where M�� are the generators of the Lorentz-

transformations. For a massive particle in the rest-frame,
the Pauli-Lubanski vector reduces toW0 ¼ 0,Wi¼mJi�
m
2 �

ijkMjk. The generators of Lorentz-transformations in the

Dirac representation are given by M�� ¼ 1
2 ��� with

��� ¼ i

2
½	�; 	�� ¼ 2i��� 0

0 2i ����

� �
: (A10)

The relations (A6) imply the identity

	5��� ¼ i

2
��������: (A11)

The SUSY algebra in four dimensions without central
charges reads in the conventions of [39]

fQ�; �Q _�g¼�2��
� _�k�; f �Q _�;Q�g¼�2 ���; _��k�: (A12)

The commutation relations of the Lorentz-generators with
the supercharges are

½M��;Q��¼�ið���Þ��Q�; ½M��; �Q _��¼�ið ����Þ _�
_�
�Q

_�:

(A13)

APPENDIX B: SUSY MODELS WITH
MASSIVE PARTICLES

This appendix contains some details on the models of
SUSY gauge theories with massive particles considered
in the main text.

1. SQCD with massive matter

A supersymmetrized model of QCD with a massive
quark can be obtained by coupling super-Yang-Mills
multipletðAa

�; 

a;DaÞ to a chiral multiplet � ¼ ð�; c ; FÞ

in the fundamental and �� ¼ ð ��; �c ; �FÞ in the antifunda-
mental representation of the gauge group. The Lagrangian

with a superpotential m ��� reads after elimination of the
D and F terms

L ¼ � 1

4
ðFa

��Þ2 þ i

2
��a	�Dab

� �b þ i ��	�D��

þ ðD��þÞyðD�
þ�Þ þ ðD���ÞyðD���Þ

� ffiffiffi
2

p
g½ ��þ ��a�Tac� þ �cþ�aþTa��

� ��� ��aþTacþ � �c��a�Ta�þ�
� 1

2
g2ð ��þTa�� � ���Ta�þÞ2;

where the covariant derivative in the fundamental and
adjoint representation is given by

D� ¼ @� � igTaAa
�; Dab

� ¼ @� � gfabcAc
�: (B1)

Here, the following notation for the relation of two-
component and four-component spinors is used,

�¼ c

�c y

 !
� c�

cþ

 !
; ��¼ð �c ;c yÞ�ð �c�; �cþÞ;

�¼ i


�i
y

 !
� ��

�þ

 !
; ��¼ði
;�i
yÞ�ð ���; ��þÞ:

(B2)

The plus and minus labels are chosen such that e.g., cþ
creates an antiquark with positive helicity and thus differ
from the notation in [39]. The scalar fields have been
relabeled according to

� ¼ ��; �� ¼ ��� (B3)

with the convention ð��Þy ¼ ���.
The color-ordered three-point amplitudes obtained from

(B1) can be found in [39]. In addition to the usual vertices
of massive scalars and quarks with gluons, there are the
Yukawa couplings of scalars, quarks, and gluinos that read
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Vð �Qþ
1 ;�

�
2 ;�

þ
3 Þ¼�i

ffiffiffi
2

p ½13�;
Vð �Q�

1 ;�
þ
2 ;�

�
3 Þ¼ i

ffiffiffi
2

p h13i;

Vð �Q�
1 ;�

�
2 ;�

þ
3 Þ¼�i

ffiffiffi
2

p
m
h12i
h23i;

Vð �Qþ
1 ;�

þ
2 ;�

�
3 Þ¼ i

ffiffiffi
2

p
m
½12�
½23�;

Vð ��þ
1 ;Q

�
2 ;

���
3 Þ¼ i

ffiffiffi
2

p h23i;
Vð ���

1 ;Q
þ
2 ;

��þ
3 Þ¼�i

ffiffiffi
2

p ½23�;

Vð ��þ
1 ;Q

þ
2 ;

���
3 Þ¼ i

ffiffiffi
2

p
m
½12�
½31�;

Vð ���
1 ;Q

�
2 ;

��þ
3 Þ¼ i

ffiffiffi
2

p
m
h12i
h13i:

(B4)

2. Abelian Higgs model

The simplest supersymmetric version of the Abelian
Higgs model was first constructed in [58]. After elimina-
tion of the auxiliary fields, the Lagrangian reads

L AHM ¼ � 1

4
ðF��Þ2 þ i
y ���@�
þ ic y ���D�c

þ ðD��ÞyðD��Þ � ffiffiffi
2

p
ig½�y
c � c y
y��

� 1

2
ðg�y�þ �Þ2;

with D� ¼ @� � igA�. Because of the axial anomaly, this

model is not a consistent quantum field theory but it is
adequate as a simple example for the study of amplitudes

at tree-level. For � < 0, the scalar develops a vev, h�i ¼
vffiffi
2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffij�j=gp
. The mass eigenstates can be introduced by

decomposing the scalar as

� ¼ 1ffiffiffi
2

p ðvþH þ i’Þ (B5)

and introducing the Dirac fermion

�¼ c

�i
y

 !
� c�

cþ

 !
; ��¼ði
;c yÞ�ð �c�; �cþÞ: (B6)

In terms of the mass eigenstates and adding a gauge fixing
term LGF ¼ � 1

2� ð@�A� � �m’Þ2 with m ¼ gv, the

Lagrangian is given by

LAHMþGF¼�1

4
ðF��Þ2� 1

�
ð@�A�Þ2þ1

2
½ðmþgHÞ2

þg2’2�A�A
�þ1

2
@�H

2þ1

2
@�’

2

��m2’2þgA�ð’@
$
�HÞ�g

8
ð2vHþH2þ’2Þ2

þi �c� ���@�cþþi �cþ��D�c�
�ðmþgHÞ ���þig’ ��	5�: (B7)

The physical particles A, H, � all acquire the common
massm so they form a massive supermultiplet as expected,
while the field ’ is the unphysical Goldstone boson that
cancels the gauge dependent pole at �m2 in the massive
vector propagator.

a. Three-point amplitudes

The nonvanishing three-point amplitudes with external
physical states obtained from the Lagrangian (B7) using
the external massive spinors and polarization vectors of
Sec. II are given by

A3ðAþ
1 ; H2; A

�
3 Þ ¼ igmW

hq3ih23i
hq1ih12i ;

A3ðA0
1; H2; A

þ
3 Þ ¼ i

gffiffiffi
2

p ½13� hq1ihq3i ;

A3ðA0
1; H2; A

�
3 Þ ¼ i

gffiffiffi
2

p h13i ½q1�½q3� ;

A3ðA0
1; H2; A

0
3Þ ¼ 2igmð�01 � �03Þ:

(B8)

The nonvanishing vertices involving fermions and vector
bosons read

A3ð �Qþ
1 ;A

�
2 ;Q

�
3 Þ¼�i

ffiffiffi
2

p
g
h23i2
h31i ;

A3ð �Qþ
1 ;A

�
2 ;Q

þ
3 Þ¼�i

ffiffiffi
2

p
gm

h23i
h31i

h2qi
h3qi ;

A3ð �Qþ
1 ;A

0
2;Q

�
3 Þ¼�i

g

m

�
½12�h23i�m2 ½1q�hq3i

½2q�hq2i
�
;

A3ð �Qþ
1 ;A

0
2;Q

þ
3 Þ¼ ig½13�

A3ð �Qþ
1 ;A

þ
2 ;Q

�
3 Þ¼�i

ffiffiffi
2

p
g
½12�2
½31� ;

A3ð �Q�
1 ;A

þ
2 ;Q

�
3 Þ¼�i

ffiffiffi
2

p
gm

½12�
½31�

½2q�
½1q� :

(B9)

Note that the chiral interaction of the fermions with the
vector bosons results in the absence of the amplitudes
A3ð �Q�

1 ; A
�
2 ; Q

þ
3 Þ and A3ð �Q�

1 ; A
þ
2 ; Q

þ
3 Þ. Also the form of

the ‘‘helicity-flip’’ vertices differs from those in a nonchiral
theory. The coupling of fermions to the Higgs boson are
given by

A3ð �Qþ
1 ; H2; Q

þ
3 Þ ¼ ig½31�;

A3ð �Qþ
1 ; H2; Q

�
3 Þ ¼ img

�hq3i
hq1i �

h23i
h12i

�
;

A3ð �Q�
1 ; H2; Q

�
3 Þ ¼ igh31i;

A3ð �Q�
1 ; H2; Q

þ
3 Þ ¼ img

�h12i
h23i �

hq1i
hq3i

�
:

(B10)

RUTGER H. BOELS AND CHRISTIAN SCHWINN PHYSICAL REVIEW D 84, 065006 (2011)

065006-30



b. Maximally spin violating amplitudes

Let us now examine some examples of scattering am-
plitudes with only external massive vectors and their rela-
tion to fermionic amplitudes through SUSY. Throughout
this section, the same reference spinors jq�i for all the
external massive states will be used. Furthermore, unless
stated otherwise the Feynman- ’t Hooft gauge (with� ¼ 1)
will be employed so that all poles of the propagators appear
at p2 ¼ m2. From the vertices obtained from (B7), it is
seen that A-lines in the massive vector-boson amplitudes

must couple either to a HA2 or Að’@
$
HÞ cubic vertex,

where only the former does not conserve the number of
scalars, or trough quartic vertices.

The only contributions to the four vector-boson ampli-
tude arise from the exchange of an H boson:

A4ðAk1 ; Ak2 ; Ak3 ; Ak4Þ
¼ ð2igmÞ2 X

�2S4

�
ð�k�ð1Þ � �k�ð2Þ Þ

i

ðk�ð1Þ þ k�ð2ÞÞ2 �m2

� ð�k�ð3Þ � �k�ð4Þ Þ
�
; (B11)

where one sums over all the permutations � of the external
momenta. This amplitude vanishes in the limitm ! 0, as it
should. From the expression, it is straightforward to derive
scattering amplitudes for all the states of the massive
vector-boson. From Eq. (20), it follows that the following
amplitudes (and the ones with plus and minus labels ex-
changed) simply vanish,

A ðAþ;Aþ;Aþ;AþÞ¼AðA�;Aþ;Aþ;AþÞ
¼AðA0;Aþ;Aþ;AþÞ¼0: (B12)

The vanishing of the amplitudes with one unequal helicity
for arbitrary spin axes is a special property of the Abelian
Higgs model and does not follow from the general analysis
of Sec. IVD. The only nonvanishing four-point amplitude
that does not involve longitudinal polarizations is the ana-
log of the MHV amplitude, A4ðA�

1 ; A
þ
2 ; A

�
3 ; A

þ
4 Þ and per-

mutations thereof. For this amplitude, there are only two
distinct nonzero contributions in the permutation sum in
Eq. (B11), leading to the explicit result quoted in (151).

The SWI (150) relates the four-point Maximally Spin
Violating (MSV) amplitude to a sum of two fermionic
amplitudes. It is seen that each of the fermionic amplitudes

receives a nonvanishing contribution from a Higgs ex-
change diagram and a diagram with a fermion propagator:

A4ð ���
k1
;Aþ

k2
;A�

k3
;�þ

k4
Þ

¼ ðigÞ2 �uðk1;�Þ
�
6�ðk2;þÞ

�
1þ	5

2

�
iðk3;4þmÞ
ðk23;4�m2Þ 6�ðk3;�Þ

�
�
1þ	5

2

�
� i�ðk2;þÞ��ðk3;�Þ

ðk22;3�m2Þ
�
vðk4;þÞ; (B13)

where the diagram with exchanged photon attachments
vanishes for the given spin assignments. Inserting the
external wave-functions results in the expression quoted
in (152).
The above observation on the vanishing of vector-boson

amplitudes with one unequal spin label can be extended to
an arbitrary number of legs. As a first example, consider
the six-point amplitude of massive vector bosons where
diagrams of two different topologies with only cubic
vertices contribute, as shown in Fig. 2, and additional
diagrams with quartic vertices not shown. It can be seen
that diagrams of class (b) only contribute to amplitudes
with at most three different external spin-states since
otherwise they involve at least one product �þki � �þkj ¼ 0.

The same conclusion holds for diagrams with quartic
couplings. The only contributions to diagrams with one
or two negative helicity labels therefore arise from class (a)
and read explicitly

AðaÞ
6 ðAk1 ; . . . ; Ak6Þ ¼

X
�2S6

aðaÞ6 ðAk�ð1Þ ; . . . ; Ak�ð6Þ Þ; (B14)

with

aðaÞ6 ðAk1 ;...;Ak6Þ¼ ið2gÞ4m2ð�k1 ��k2Þ

�ð�k3 �k1;2Þ
k21;2�m2

ð�k4 �k1;3Þ
k21;3�m2

ð�k5 ��k6Þ
k21;4�m2

: (B15)

Again, at least two polarization vectors with a different
polarization than the remaining ones are required for a
nonvanishing result so that the vector-boson amplitudes
with one negative helicity vanish.
The topologies contributing to n-point amplitudes with

at most two unequal spins are the direct generalization
of Fig. 2(a), i.e., involve one line of alternating H and ’
propagators. Again, they are nonvanishing only for the
‘‘maximally spin violating’’ amplitudes with two unequal
spins. This is based on the fact that at least two AAH
vertices are needed to soak up the scalar degrees of free-
dom at tree-level. This will require at least 2 vectors having
a different polarization from the others. In particular, the
all-plus and all-minus amplitudes vanish, just as the one-
minus and one-plus amplitudes. Furthermore, all vertices
except AH’ will lead to an additional contraction of
polarization vectors: in other words, these contribute to
NMSV and onward. With the particular set of vertices in
the Abelian Higgs model, there is just one (sum over

FIG. 2. Example topologies contributing to the six-point am-
plitudes of massive vectors in the Abelian Higgs model.
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permutations of one) diagram for MSV amplitudes that
generalizes (B15), as quoted in (149).

APPENDIX C: THREE PARTICLE VERTICES IN
SQCD WITH ARBITRARY POLARIZATION AXES

The results for three-point vertices obtained in Sec. VA
in supersymmetric QCD can be generalized to the case of
arbitrary polarization axes. The vertices for the case of the
equal polarization axes can be found in Eqs. (126) and
(131), reproduced here for the readers’ convenience:

A3ð ��1; G
�
2 ;�3Þ ¼ 
2ðQ�Þ ��1½q1� � ��3½q3�

½q2� ;

A3ð ��1; G
þ
2 ;�3Þ��� ¼ 
2ðQ�Þm h31i

h12ih23i :

In the case of unequal polarization axes, these expressions
change slightly. Let us first classify the solutions to the
Ward identities. These either have fermionic weight two or
three and should reduce to the above if the axes are chosen
to coincide. Of course, both of these are proportional to the
delta-function,

A3 ¼ 
2ðQ�ÞFð1; 2; 3Þ: (C1)

Hence, in the weight two case, only one component am-
plitude needs to be calculated. It is convenient to let this
amplitude be �gþ �� as in this case

Að�; gþ; ��Þ ¼
Z

d�3d��3A3ð ��1; G
þ
2 ;�3Þ��� ¼ mFð1; 2; 3Þ

(C2)

holds. Hence, in the case of unequal polarization axes

A3ð ��1; G
þ
2 ;�3Þ��� ¼ 
2ðQ�ÞAð�; gþ; ��Þ

m

¼ 
2ðQ�Þ��2 _�K
� _�
1

mh�2i (C3)

holds for one of the vertices. The other one can in general
be written as

A3ð ��1; G
�
2 ;�3Þ ¼ 
2ðQ�Þðc1�1 þ c2�2 þ c3�3

þ c4 ��1 þ c5 ��3Þ (C4)

for some coefficients ci. To this linear polynomial, one
can always add multiples of h�Qi for some spinor �.
This allows one to eliminate two of the five coefficients,
leading to

A3ð ��1; G
�
2 ;�3Þ ¼ 
2ðQ�Þð~c2�2 þ ~c4 ��1 þ ~c5 ��3Þ (C5)

for some new coefficients ~c. Now, we demand invariance

under �Q. This leads to,

~c 2k
_�
2 þ ~c4

m

½q11� q
_�
1 þ ~c5

m

½q33� q
_�
3 ¼ 0; (C6)

which constitutes two linear equations. These can be iso-
lated by contracting once with q1 and once with q3,

~c 2½2q3� þ ~c4
m

½q11� ½q1q3� ¼ 0; (C7)

~c 2½2q1� þ ~c5
m

½q33� ½q3q1� ¼ 0: (C8)

Hence, the superamplitude has to be proportional to

A3ð ��1; G
�
2 ;�3Þ � 
2ðQ�Þðm½q1q3��2 � ½2q3�½q11���1

þ ½2q1�½q33���3Þ (C9)

to solve the SUSY-Ward identity constraints. The answer
here was rescaled to display a smooth q1 ! q3 limit. This
leaves the determination of the prefactor. This can be
obtained by comparing to the �g� �� amplitude,

Að�;g�; ��Þ¼
Z
d�2d�3d��3A3ð ��1;G

�
2 ;�3Þ¼� _�2�K

� _�
1

½�2� :

(C10)

This yields

A3ð ��1; G
�
2 ;�3Þ ¼ 1

ð½q11�h13i½3q3�Þ
�
� _�2�K

� _�
1

½�2�
�

2ðQ�Þ

� ðm½q1q3��2 � ½2q3�½q11���1
þ ½2q1�½q33���3Þ: (C11)

Unequal masses can be incorporated into the above calcu-
lation without essential difficulty.
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