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Using the Fedosov theory of deformation quantization of an endomorphism bundle we construct several

models of pure geometric, deformed vacuum gravity, corresponding to an arbitrary symplectic non-

commutativity tensor. Deformations of Einstein-Hilbert and Palatini actions are investigated. Coordinate

covariant field equations are derived up to the second order of the deformation parameter. For some

models they are solved and explicit corrections to an arbitrary Ricci-flat metric are pointed out. The

relation to the theory of the Seiberg-Witten map is also studied and the correspondence to the spacetime

noncommutativity described by the Fedosov �-product of functions is explained.
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I. INTRODUCTION

The present paper is dedicated to a study of some
possible global and geometric models of relativity on non-
commutative spacetimes within the framework of Fedosov
deformation quantization of an endomorphism bundle. The
motivation for such investigation originates in the convic-
tion that whatever ‘‘noncommutative gravity’’ would be,
it should preserve the basic symmetry of the classical
theory—the full diffeomorphism invariance. Presented
analysis aims at showing that Fedosov quantization of an
endomorphism bundle can serve as a tool for building
geometric field theories on noncommutative spacetimes.

The general strategy we are going to adopt can be
summarized in the following steps.

(1) Take some symplectic manifold and an action on it
which leads to the general relativity.

(2) Rewrite the action by representing the Lagrangian
as a product of endomorphisms of some bundle.

(3) Replace the product of endomorphisms by a
Fedosov �-product of endomorphisms.

(4) Replace the integral by a Fedosov trace functional.
(5) Do the variations to obtain the field equations.
(6) Observe that steps 3 and 4, together with results of

[1], infer that the theory is locally equivalent to the
theory with the Seiberg-Witten map applied on
endomorphisms.

There is vast literature concerning construction of non-
commutative gravity by means of the Moyal product and
the Seiberg-Witten map. Hence, one can point out a series
of works [2–4] based on a combination of infinitesimal
soð3; 1Þ gauging with infinitesimal coordinate transforma-
tions, preserving (at first order of deformation) a constant
deformation parameter �ij. Another approach is given
by [5–9], where SOð4; 1Þ [or Uð2; 2Þ] symmetry is inves-
tigated. In such a setting, the gauge potential carries
information about both the tetrad field and the usual
SOð3; 1Þ-connection. The standard gravity is recovered

by the procedure of contraction of the gauge group.
There are also investigations based on some variants of
SLð2;CÞ symmetry [10,11]. The common feature of all of
these approaches is vanishing first-order corrections to the
field equations. On the other hand, the common issue is
the lack of diffeomorphism invariance.1 More general
types of noncommutativity were also studied—e.g., a Lie
algebraic one [14] or given by the Kontsevich theory
[15,16]. In [17] theories based on the Moyal product and
the Seiberg-Witten map were geometrized. The resulting
structure is invariant under passive diffeomorphisms, but
at the price of nonassociativity of the corresponding
�-product. One should also mention some other approaches
to noncommutative gravity related somehow to �-products
and the Seiberg-Witten map. These are [18–23], where
the method of Lie algebra twisting has been used to rep-
resent deformation of diffeomorphism symmetry. One of
the remarkable results of [20] is the construction of an
action which is geometric (i.e. described by globally
defined 4-form) being simultaneously invariant under de-
formed diffeomorphism symmetry. Finally there are inves-
tigations which are strictly related to some particular
models emerging in the context of the string theory, e.g.
[24,25].
The paper is organized as follows. In Sec. II a brief

overview of results of the Fedosov construction is pre-
sented, and also some further conventions are fixed. In
Secs. III and IV deformations of Einstein-Hilbert and
Palatini actions are investigated. The fifth section is de-
voted to analysis of the interrelation between presented
models and the theory of the Seiberg-Witten map. We also
clarify how obtained results are related to the noncommu-
tativity of the spacetime described by the Fedosov
�-product of functions. Finally some concluding remarks
(Sec. VI) are given.

*michal.dobrski@p.lodz.pl

1We are going to distinguish passive and active diffeomor-
phism invariance (compare e.g. [12,13]). Here we mean non-
invariance in both above senses.
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II. PRELIMINARIES

A. The Fedosov construction

The main tool used in this paper is the Fedosov con-
struction of deformation quantization of an endomorphism
bundle formulated in [26]. We are not going to concern
ourselves with technical or ‘‘internal’’ details of this theory
(which are interesting and beautiful in their own) but rather
to make use of some of its particular results. Interested
readers may find a short exposition of the Fedosov con-
struction in its simplest form, suitable for present purposes,
in [1]. Further geometric and algebraic interpretations are
provided by [27,28]. Some other analysis and examples
can be found in [29–31]. Thus, we limit ourselves to the
very brief, notation-fixing description of the Fedosov
�-product.

The starting point is given by the Fedosov manifold
ðM; !; @SÞ i.e. the 2n-dimensional symplectic manifold
ðM; !Þ with some fixed symplectic (torsionless and pre-
serving !) connection @S [32,33]. The corresponding
Poisson tensor (given by the inverse of !ij) is going to

be denoted as �ij. These data generate2 global, geometric,
and associative deformation of the product of functions on
M. Its explicit form can be computed up to an arbitrary
power of deformation parameter h (which has nothing to
do with the Planck constant in our context) by means of
Fedosov’s recursive techniques.

For the vector bundle E over M, equipped with a
connection @E , one can construct global, geometric, and
associative deformation of the product of sections of
EndðEÞ. Locally it can be understood as a deformation of
product of matrices. Denoting by @ ¼ @S � 1þ 1 � @E the
connection in TM � E (and by the same symbol its natural
extension to any other tensor product of TM, T�M, E, and
E�) one may calculate that for arbitrary two sections F,
G 2 C1ðEndðEÞÞ½½h��, the Fedosov �-product is given up
to h2 by the expression

F �G ¼ FG� ih

2
�ab@aF@bG

� h2

8
�ab�cdðf@bF; RE

acg@dGþ @bFfRE
ac; @dGg

þ @ða@cÞF@ðb@dÞGÞ þOðh3Þ; (1)

where RE
ab¼ @

@xa�
E
b� @

@xb
�E
aþ½�E

a;�
E
b� (for @Ei ¼ @

@xi
þ �E

i )

is the curvature of @E , and f�; �g stands for the anticommu-
tator. It is clear that in the above formula the usual product of
endomorphisms (noncommutative from the beginning)
has been used. For the special case of flat @E and the local
frame with �E � 0, the Fedosov �-product of endomor-
phisms becomes a product of matrices with commutative

multiplication of entries replaced by the noncommutative
Fedosov product of functions. Such product of matrices is
going to be denoted as �S. (The same symbol will be used
for the Fedosov product of functions). If additionally @S is
flat and we work in local Darboux coordinates for which
coefficients of @S vanish, then the Fedosov product of
functions becomes a Moyal product �T . Thus, in such a
special case, we are dealing withmultiplication used in [34]
for the description of deformed gauge transformations.
The object which needs some more attention is the

Fedosov trace functional (sixth section of the fifth chapter
in [26]). Given some Fedosov product � one is able to
construct a trace functional tr� taking values in C½½h�� and
acting on compactly supported sections belonging to
C1ðEndðEÞÞ½½h��, with the property

tr �ðF � GÞ ¼ tr�ðG � FÞ: (2)

If one requires additionally, that for arbitrary (global or
local) isomorphismM between �-algebras with products �1
and �2 [i.e. for M fulfilling MðF �1 GÞ ¼ MðFÞ �2 MðGÞ],
the relation

tr �1ðFÞ ¼ tr�2ðMðFÞÞ (3)

holds, then it follows that the trace functional is unique up
to a constant normalizing factor. The proof of this fact
relies (1) on the observation that for the Moyal product �T
the trace is given by

tr �T ðFÞ ¼ const
Z
R2n

TrðFÞ!
n

n!
; (4)

where Tr stands for the trace of a matrix, and (2) on
possibility of representing tr� in terms of traces on Moyal
algebras by a partition of unity f�ig and a compatible set of
local isomorphisms fMig between � and theMoyal product.
It turns out that tr� is independent of the particular choice
of f�ig and fMig. Unlike the convention of [26], we fix the
normalizing constant to be equal to 1. The construction
presented in [26] enables calculation of an explicit form of
tr�. Up to h2 it reads3

tr�ðFÞ¼
Z
M

Tr

�
Fþ ih

2
�abRE

abF

þh2
�
�3

8
�½ab�cd�RE

abR
E
cdþs21

�
FþOðh3Þ

�
!n

n!
;

(5)

where 1 is the identity endomorphism and the scalar4

2Precisely, one has also to fix curvature and the normalizing
condition for the Abelian connection generating the Fedosov
�-product [26]. Within this paper, standard normalization � � 0
and curvature � ¼ �! are used.

3The computation leading to (5) is quite laborious as one has
to deal with connection coefficients which in the final step
massively cancel and the remaining terms can be grouped to
yield tensorial expressions. Large parts of this work have been
performed with the significant use of XACT tensor manipulation
package [35].

4Index 2 corresponds to the presence s2 at h2. Such a defined
scalar is a symplectic part of what is called trace density in [26].
With similar conventions s1 ¼ 0.
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s2 ¼ 1

64
�½ab�cd�R

S k

labR
S l

kcd þ 1

48
�ab�cd@Se@

S
aR

S e

bcd (6)

has been introduced for the sake of simplicity of further notations. In the above formula R
S i

jab stands for the curvature tensor
of @S. It is useful to write down the explicit form of tr�ðF �GÞ. Substitution of (1) into (6) after some manipulations yields5

tr�ðF �GÞ ¼
Z
M

Tr

�
FGþ ih

4
�abRE

abfF;Gg

þ h2
�
s2FGþ 1

8
�ab�cd

�
RE
ab½@cF; @dG� � @ða@cÞF@ðb@dÞG� 3

2
RE
½abR

E
cd�fF;Gg

��
þOðh3Þ

�
!n

n!
: (7)

B. Some further conventions

The important problem related to the program pre-
sented in the introduction is the incompatibility of the vol-
ume forms. In (5) the symplectic volume form volS ¼ !n

n!

must be used, and in general relativity the metric one
volM ¼ ffiffiffiffiffiffiffi�g

p
dx1 ^ . . . ^ dx2n more or less explicitly ap-

pears. Since the two must be proportional one can write
volM ¼ vvolS defining the function v:M ! R this way.
The above-mentioned incompatibility should be handled
somehow, and in what follows two possible approaches are
investigated. First, one can simply rescale one of the endo-
morphisms by multiplying it by v. Thus, let us fix the

convention that �F ¼ vF. The other option is given by
introducing endomorphism V ¼ v1, which multiplies the
endomorphism under the action. Both methods are com-
pletely equivalent at the undeformed level, but become
different after deformation.

Let us also point out the following issue concerning the
tangent bundle TM. In presented models it appears in two
distinct roles. First as a ‘‘component’’ of bundle E, and then
as an object which carries information about the symplec-
tic structure and the covariant derivations producing quan-
tization formalism. This distinction becomes important
when applying covariant derivation to tensors involving
indices from both copies of TM. The @ connection acts in
this case by means of @E (which is going to be chosen as
a metric connection) and the symplectic connection @S

respectively. Thus, one needs some way of ‘‘marking’’

indices which should be differentiated by @E and we are

going to put a prime on them (e.g. REa0
b0lm). The ambiguity

may be also postponed by using index-free notation for
endomorphisms, and this approach is also used. Finally,
the primes are omitted in the field equations, as they are no
longer needed and may tend to obscure the result.
Finally, let us mention that all indices in subsequent

sections are manipulated by means of corresponding met-
ric tensors [with the exception of relations (10d)–(10g),
(11), and (12) where the undeformed part of the metric is
used; this is also recalled within the text]. These metric
tensors are gab and also �AB for the case of deformation
of the Palatini action. To avoid ambiguities (or even in-
consistencies), we abandon the convention of using the
symplectic form for raising or lowering indices. All for-
mulas taken from the Fedosov theory are rewritten in such
a manner that they do not involve manipulation of indices
by means of symplectic form.

III. EINSTEIN-HILBERTACTION

Now, let us analyze some possible applications of
the Fedosov theory in the general relativity on noncommu-
tative spacetime. We are going to proceed using the pro-
gram sketched in the introduction and assuming that
symplectic form ! and compatible symplectic connection
@S are fixed. First, let us focus on the Einstein-Hilbert
action. Thus, there is a metric gab with determinant g, its
torsionless Levi-Civita connection r, Riemann curvature

tensor Ra0
b0cd (also used with all indices primed6 Ra0

b0c0d0),

Ricci tensor Ra0b0 ¼ Rc0
a0c0b0 , and Ricci scalar R. Field

equations are going to be derived by the variation of the
metric.

Let us introduce the notation Ra0
b0 ¼ Ra0

b0 and

Ra0b0
c0d0 ¼ Ra0b0

c0d0 . (This becomes convenient when distin-

guishing between endomorphisms R, R and the scalar R).

Also, let

5The formula has been rearranged to explicitly exhibit sym-
metry tr�ðF �GÞ ¼ tr�ðG � FÞ. For the term at h this can be done
quickly using integration by parts and definition of RE . For terms
at h2 one can proceed in the following manner. (1) Take what
appears at h2 after simple substitution of (1) into (6). Let it call
h2QðF;GÞ. (2) Rewrite it as h2=2ðQðF;GÞ þQðG;FÞÞ þ
h2=2ðQðF;GÞ �QðG;FÞÞ. Drop the antisymmetric part. (3)
Check that discarded terms are indeed equal to zero (as they
should be, by the construction). When integrated by parts, the
terms with a single covariant derivative of RE vanish by virtue of
the Bianchi identity, while the ones with double @ can be
replaced by RE and, in turn, sum up with remaining terms to
give 0. Such calculation can be treated as an additional verifi-
cation of the formula (5).

6As we use exactly the same frame (e.g. coordinate one) for
both primed and unprimed indices we can consistently define
primed tensors from unprimed ones and vice versa. The prime is
used only as a marking for covariant derivation @.
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Yijk0l0 ¼ �½ij�ab�Rk0l0
ab

Xi0j0k0l0 ¼ �½ab�cd�Ri0j0
abR

k0l0
cd ¼ Ri0j0

abY
abk0l0

Z ¼ 1ffiffiffiffiffiffiffi�g
p �ij�kl@Si @

S
k@

S
j @

S
l

ffiffiffiffiffiffiffi�g
p

:

A. Deformed actions and field equations

1. �R as an endomorphism of TM

The Einstein-Hilbert action can be quickly rewritten as

S EH1A
¼

Z
M

Tr �R
!n

n!
:

Thus, we are going to treat rescaled Ricci tensor �Ra0
b0 ¼

vRa0
b0 as an endomorphism of E ¼ TM. In order to define

the �-product of endomorphisms one needs some connec-
tion in E. Let us fix @E ¼ r and consequently RE is given
by the Riemann tensor. The corresponding �-product is
going to be denoted by �EH1

. Under these assumptions the

deformed action is given by

Ŝ EH1A
¼ tr�EH1

ð �RÞ ¼
Z
M

Tr

�
�Rþ h2

�
� 3

8
�½ab�cd�RE

abR
E
cd þ s2

�
�RþOðh3Þ

�
!n

n!

¼
Z
M

�
R� 3

8
h2Xk0

l0
l0
m0Rm0

k0 þ h2s2RþOðh3Þ
�
volM:

Variation of the metric yields the following field equations:

Rab � 1

2
gabRþ h2

�
3

8

�
�Rða

kXl
bÞkl þ 1

2
Rk

lX
l
m
m
kg

ab þrkrðaXbÞl
l
k � 1

2
rlrlXa

k
kb � 1

2
gabrkrlX

k
m
ml

� 2rkrlðRða
mYl

bÞmkÞ þ 2rkrlðRkmYlða
m
bÞÞ
�
� 1

2
gabRs2 þ Rabs2 þ gabrlrls2 �rarbs2

�
þOðh3Þ ¼ 0:

2. R and V as endomorphisms of TM

Now, keeping an unmodified �-product structure given by �EH1
, we are going to investigate another possibility of forcing

correct volume form at h ¼ 0. The Einstein-Hilbert action written as

S EH1B
¼

Z
M

TrRV
!n

n!

may be deformed into7

Ŝ EH1B
¼ tr�EH1

ðR �EH1
VÞ ¼

Z
M

Tr

�
RV þ h2

�
� 1

8
�ab�cdð@ða@cÞR@ðb@dÞV þ 3RE

½abR
E
cd�RVÞ þ s2RV

�
þOðh3Þ

�
!n

n!

¼
Z
M

�
R� 3

8
h2Xk0

l0
l0
m0Rm0

k0 �
1

8
h2�ab�cd@Sb@

S
d@

S
a@

S
cRþ h2s2RþOðh3Þ

�
volM:

Then, the field equations become

Rab � 1

2
gabRþ h2

�
3

8

�
�Rða

kXl
bÞkl þ 1

2
Rk

lX
l
m
m
kg

ab þrkrðaXbÞ
l
lk � 1

2
rlrlXa

k
kb � 1

2
gabrkrlX

k
m
ml

� 2rkrlðRða
mYl

bÞmkÞ þ 2rkrlðRkmYlða
m
bÞÞ
�
þ 1

8

�
�RabZþrarbZ� gabrlrlZþ 1

2
gab�jk�lm@Sk@

S
m@

S
j @

S
l R

�

� 1

2
gabRs2 þ Rabs2 þ gabrlrls2 �rarbs2

�
þOðh3Þ ¼ 0:

7The term with @ða@cÞR@ðb@dÞV is integrated by parts twice, then the covariant derivatives are commuted with the trace and the
torsionless property of @S is used to get rid of symmetrizations.
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3. �R as an endomorphism of TM � TM

This time, we start with the action

S EH2A
¼

Z
M

Tr �R
!n

n!
:

Here, the rescaled Riemann tensor is treated as an
endomorphism of E ¼ TM � TM whose action on

l 2 TM � TM yields ð �RlÞa0b0 ¼ vRa0b0
c0d0l

c0d0 . As a

connection in E we take @E ¼ r� 1þ 1 � r. Its curva-

ture is given by RE
ab ¼ Rr

ab � 1þ 1 � Rr
ab, with Rr

ab

being the curvature of r treated as an endomorphism
of TM. Let �EH2

be the corresponding �-product.
Thus

Ŝ EH2A
¼ tr�EH2

ð �RÞ ¼
Z
M

Tr

�
�Rþ h2

�
� 3

8
�½ab�cd�RE

abR
E
cd þ s2

�
�RþOðh3Þ

�
!n

n!

¼
Z
M

�
R� 3

4
h2ðXk0

l0
l0
m0Rm0

k0 þ Xk0
l0
m0

p0Rl0p0
k0m0 Þ þ h2s2RþOðh3Þ

�
volM;

yielding

Rab � 1

2
gabRþ h2

�
3

4

�
�Rða

kXl
bÞkl þ 1

2
Rk

lX
l
m
m
kg

ab þrkrðaXbÞ
l
lk � 1

2
rlrlXa

k
kb � 1

2
gabrkrlX

k
m
ml

� 2rkrlðRða
mYl

bÞmkÞ þ 2rkrlðRkmYlða
m
bÞÞ þ Rkm

lðaXbÞmk
l þ

1

2
rkrlX

kðabÞl þ 2rkrlðRmjkðaYbÞl
mjÞ

þ 1

2
Rlm

jkX
j
l
k
mg

ab

�
� 1

2
gabRs2 þ Rabs2 þ gabrlrls2 �rarbs2

�
þOðh3Þ ¼ 0:

4. R and V as endomorphisms of TM � TM

Analogously to Sec. III A 2, one may keep the product �EH2
unchanged, but rewrite the action using V

S EH2B
¼

Z
M

TrRV
!n

n!
:

After the deformation the action takes form

Ŝ EH2B
¼ tr�EH2

ðR �EH2
VÞ ¼

Z
M

Tr

�
RV þ h2

�
� 1

8
�ab�cdð@ða@cÞR@ðb@dÞV þ 3RE

½abR
E
cd�RVÞ þ s2RV

�
þOðh3Þ

�
!n

n!

¼
Z
M

�
R� 3

4
h2ðXk0

l0
l0
m0Rm0

k0 þ Xk0
l0
m0

p0Rl0p0
k0m0 Þ � 1

8
h2�ab�cd@Sb@

S
d@

S
a@

S
cRþ h2s2RþOðh3Þ

�
volM:

The field equations are given by

Rab � 1

2
gabRþ h2

�
3

4

�
�Rða

kXl
bÞkl þ 1

2
Rk

lX
l
m
m
kg

ab þrkrðaXbÞ
l
lk � 1

2
rlrlXa

k
kb � 1

2
gabrkrlX

k
m
ml

� 2rkrlðRða
mYl

bÞmkÞ þ 2rkrlðRkmYlða
m
bÞÞ þ Rkm

lðaXbÞmk
l þ

1

2
rkrlX

kðabÞl þ 2rkrlðRmjkðaYbÞl
mjÞ

þ 1

2
Rlm

jkX
j
l
k
mg

ab

�
þ 1

8

�
�RabZþrarbZ� gabrlrlZþ 1

2
gab�jk�lm@Sk@

S
m@

S
j @

S
l R

�

� 1

2
gabRs2 þ Rabs2 þ gabrlrls2 �rarbs2

�
þOðh3Þ ¼ 0:

B. Structure of deformed theories

Let us briefly comment on formulas obtained in the
previous subsection. In all cases the h1 terms in de-
formed actions have vanished due to Rk

labR
l
k ¼ 0.

Also, in all deformed Lagrangians one is dealing with a

h2L
ð2Þ

s ¼ h2s2R term, originating in the part of the trace

formula (5) generated by the curvature of symplectic

connection. L
ð2Þ

s gives rise to the field equations by the
expression

� 1

2
gabRs2 þ Rabs2 þ gabrlrls2 �rarbs2;
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and describes interaction of the metric gab with symplectic
connection, which defines s2.

Now, let us write Lagrangians (with respect to volM) as

L̂ EH1A
¼ LEH þ h2L

ð2Þ
�R þ h2L

ð2Þ

s þOðh3Þ;

L̂EH1B
¼ LEH þ h2L

ð2Þ

R�EH1
V þ h2L

ð2Þ

s þOðh3Þ;

L̂EH2A
¼ LEH þ h2L

ð2Þ
�R þ h2L

ð2Þ

s þOðh3Þ;

L̂EH2B
¼ LEH þ h2L

ð2Þ

R�EH2
V þ h2L

ð2Þ

s þOðh3Þ;

with LEH ¼ R. Hence, L
ð2Þ

�R, L
ð2Þ

R�EH1
V , L

ð2Þ
�R, and L

ð2Þ

R�EH2
V

represent terms produced by the part of the trace gene-
rated by RE. It follows that choosing E ¼ TM and

�R as the endomorphism yields L
ð2Þ

�R ¼ � 3
8X

k0
l0
l0
m0Rm0

k0 ,

while taking E ¼ TM � TM and �R produces L
ð2Þ

�R ¼
� 3

4 ðXk0
l0
l0
m0Rm0

k0 þ Xk0
l0
m0

p0Rl0p0
k0m0 Þ. Thus one can write

the relation L
ð2Þ

�R ¼ 2L
ð2Þ

�R � 3
4X

k0
l0
m0

p0Rl0p0
k0m0 . Switching

from endomorphism rescaling to multiplication by

V influences the deformed Lagrangians by L
ð2Þ

R�EH1
V ¼

L
ð2Þ

�R � 1
8h

2�ab�cd@Sb@
S
d@

S
a@

S
cR, and L

ð2Þ

R�EH2
V ¼ L

ð2Þ
�R �

1
8 h

2�ab�cd@Sb@
S
d@

S
a@

S
cR.

The term L
ð2Þ

�R contributes to the field equations by

3

8

�
�Rða

kXl
bÞkl þ 1

2
Rk

lX
l
m
m
kg

ab þrkrðaXbÞ
l
lk

� 1

2
rlrlXa

k
kb � 1

2
gabrkrlX

k
m
ml

� 2rkrlðRða
mYl

bÞmkÞ þ 2rkrlðRkmYlða
m
bÞÞ

�
:

Analogously, from � 3
4X

k0
l0
m0

p0Rl0p0
k0m0 one obtains

3

4

�
Rkm

lðaXbÞmk
l þ

1

2
rkrlX

kðabÞl þ 2rkrlðRmjkðaYbÞl
mjÞ

þ 1

2
Rlm

jkX
j
l
k
mg

ab

�
:

Finally, the expression� 1
8 h

2�ab�cd@Sb@
S
d@

S
a@

S
cR is respon-

sible for

1

8

�
�RabZþrarbZ� gabrlrlZ

þ 1

2
gab�jk�lm@Sk@

S
m@

S
j @

S
l R

�
;

being the second source of terms involving symplectic
connection.

C. Corrections to the metric

In all considered cases, field equations are of the form
Gab ¼ Wab þOðh3Þ, where Gab ¼ Rab � 1

2Rgab is the

Einstein tensor, and the termWab is of h
2 order i.e.Wab ¼

h2W
ð2Þ

ab þOðh3Þ. Let us investigate howWab influences the
metric. For this purpose one can rewrite gab as a formal
power series with respect to h

gab ¼ g
ð0Þ
ab þ hg

ð1Þ
ab þ h2g

ð2Þ
ab þ � � � :

Coefficients of Levi-Civita connection corresponding to
gab can be written as

�a
bc ¼ �

ð0Þa
bc þ h�

ð1Þa
bc þ h2�

ð2Þa
bc þ � � � :

One can quite easily calculate that

�
ð0Þa

bc ¼ 1

2
g
ð0Þak

�
@g

ð0Þ
kb

@xc
þ @g

ð0Þ
kc

@xb
� @g

ð0Þ
bc

@xk

�
; (8a)

�
ð1Þa

bc ¼ 1

2
g
ð0Þakðr

ð0Þ

cg
ð1Þ
kb þr

ð0Þ

bg
ð1Þ
kc �r

ð0Þ

kg
ð1Þ
bcÞ; (8b)

�
ð2Þa

bc ¼ 1

2
g
ð0Þakðr

ð0Þ

cg
ð2Þ
kb þr

ð0Þ

bg
ð2Þ
kc �r

ð0Þ

kg
ð2Þ
bcÞ � g

ð0Þak
g
ð1Þ
kl�

ð1Þ
l
bc; (8c)

where r
ð0Þ

denotes Levi-Civita connection of metric g
ð0Þ
ab.

Observe that �
ð1Þa

bc and �
ð2Þa

bc are tensorial objects. Hence,
for the Riemann tensor

Ra
bcd ¼ R

ð0Þa
bcd þ hR

ð1Þa
bcd þ h2R

ð2Þa
bcd þ � � � ;

one obtains

R
ð1Þa

bcd ¼ 2r
ð0Þ

½c�
ð1Þ
a
d�b; (9a)

R
ð2Þa

bcd ¼ 2r
ð0Þ

½c�
ð2Þ
a
d�b þ 2�

ð1Þ
a
k½c�

ð1Þ
k
d�b; (9b)

and R
ð0Þa

bcd is the Riemann tensor of metric g
ð0Þ
ab. Substituting

above relations into field equations and analyzing terms at
h0 and h1 one calculates that

R
ð0Þ
ab¼0; (10a)

g
ð0Þklðr

ð0Þ

kr
ð0Þ

ag
ð1Þ
blþr

ð0Þ

kr
ð0Þ

bg
ð1Þ
al�r

ð0Þ

kr
ð0Þ

lg
ð1Þ
ab�r

ð0Þ

ar
ð0Þ

bg
ð1Þ
klÞ¼0;

(10b)

where R
ð0Þ
ab is a zeroth order term in power series expansion

of Rab and also a Ricci tensor of g
ð0Þ
ab. For h

2 the following
relation can be derived:

g
ð0Þ klðr

ð0Þ

kr
ð0Þ

ag
ð2Þ
bl þr

ð0Þ

kr
ð0Þ

bg
ð2Þ
al �r

ð0Þ

kr
ð0Þ

lg
ð2Þ
ab �r

ð0Þ

ar
ð0Þ

bg
ð2Þ
klÞ

¼ 2W
ð2Þ

ab � 1

n� 1
g
ð0Þ
abW

ð2Þ � 4�
ð1Þk

l½k�
ð1Þl

b�a

þ 4g
ð0Þrkr

ð0Þ

½rð�
ð1Þl
b�ag

ð1Þ
klÞ; (10c)
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where W
ð2Þ ¼ g

ð0Þrs
W
ð2Þ

rs. The term W
ð2Þ

ab is given by the following formulas8 for:

(i) ŜEH1A

W
ð2Þ

ab ¼ � 3

8

�
r
ð0Þ

kr
ð0Þ

ðaX
ð0Þ
bÞl

lk � 1

2
r
ð0Þ

lr
ð0Þ l
X
ð0Þ
ak

k

b � 1

2
g
ð0Þ
abr

ð0Þ

kr
ð0Þ

lX
ð0Þk

m

ml
�
� g

ð0Þ
abr

ð0Þ

lr
ð0Þ l
s2 þr

ð0Þ

ar
ð0Þ

bs2; (10d)

(ii) ŜEH1B

W
ð2Þ

ab ¼ � 3

8

�
r
ð0Þ

kr
ð0Þ

ðaX
ð0Þ
bÞl

lk � 1

2
r
ð0Þ

lr
ð0Þ l
X
ð0Þ
ak

k

b � 1

2
g
ð0Þ
abr

ð0Þ

kr
ð0Þ

lX
ð0Þk

m

ml
�
� 1

8

�
r
ð0Þ

ar
ð0Þ

bZ
ð0Þ � g

ð0Þ
abr

ð0Þ

lr
ð0Þ l
Z
ð0Þ�� g

ð0Þ
abr

ð0Þ

lr
ð0Þ l
s2 þr

ð0Þ

ar
ð0Þ

bs2;

(10e)

(iii) ŜEH2A

W
ð2Þ

ab ¼ � 3

4

�
r
ð0Þ

kr
ð0Þ

ðaX
ð0Þ
bÞl

lk � 1

2
r
ð0Þ

lr
ð0Þ l
X
ð0Þ
ak

k

b � 1

2
g
ð0Þ
abr

ð0Þ

kr
ð0Þ

lX
ð0Þk

m

ml þ R
ð0Þ

km
l
ðaX

ð0Þ
bÞ
mk

l þ 1

2
r
ð0Þ

kr
ð0Þ

lX
ð0Þk

ðabÞ
l

þ 2r
ð0Þ

kr
ð0Þ

l

�
R
ð0Þmjk

ðaY
ð0Þ
bÞ
l

mj

�
þ 1

2
R
ð0Þlm

jkX
ð0Þj

l

k

mg
ð0Þ
ab

�
� g

ð0Þ
abr

ð0Þ

lr
ð0Þ l
s2 þr

ð0Þ

ar
ð0Þ

bs2; (10f)

(iv) ŜEH2B

W
ð2Þ

ab ¼ � 3

4

�
r
ð0Þ

kr
ð0Þ

ðaX
ð0Þ
bÞl

lk � 1

2
r
ð0Þ

lr
ð0Þ l
Xak

k
b �

1

2
g
ð0Þ
abr

ð0Þ

kr
ð0Þ

lX
ð0Þk

m

ml þ R
ð0Þ
km

l

ðaX
ð0Þ
bÞ
mk

l þ 1

2
r
ð0Þ

kr
ð0Þ

lX
ð0Þk

ðabÞ
l þ 2r

ð0Þ

kr
ð0Þ

lðR
ð0Þmjk

ðaY
ð0Þ
bÞ
l

mjÞ

þ 1

2
R
ð0Þlm

jkX
ð0Þj

l

k

mg
ð0Þ
ab

�
� 1

8
ðr
ð0Þ

ar
ð0Þ

bZ
ð0Þ � g

ð0Þ
abr

ð0Þ

lr
ð0Þ l
Z
ð0ÞÞ � g

ð0Þ
abr

ð0Þ

lr
ð0Þl
s2 þr

ð0Þ

ar
ð0Þ

bs2; (10g)

where X
ð0Þijkl

, Y
ð0Þijkl

, Z
ð0Þ
are zeroth order terms in the power

series expansion of Xijkl, Yijkl, and Z, which can be ex-

pressed by means of R
ð0Þi

jkl and g
ð0Þ
ab.

Thus, in all cases equations which describe a deformed
metric are of the same structure. At h0 one is dealing

with an arbitrary Ricci-flat metric g
ð0Þ
ab. The h1 correction

g
ð1Þ
ab can be understood as a classical9 (undeformed) first-

order perturbation of g
ð0Þ
ab, governed by the linear homoge-

neous equations (10b). Noncommutativity appears for the

first time at h2. Correction g
ð2Þ
ab is given by linear, inhomo-

geneous equations (10c). The homogeneous part of (10c)
is expressed by the same linear operator as that of (10b).
The inhomogeneous part consists of two groups of terms—
the one describing interaction with first-order perturbation

g
ð1Þ
ab, and the other given by Wab, with purely noncommu-

tative origin. Discarding the first-order classical perturba-

tion by putting g
ð1Þ
ab ¼ 0, we are able to point out a special

solution of (10c) for actions ŜEH1A
and ŜEH1B

. It reads

g
ð2Þ

ab ¼ � 3

8
X
ð0Þ
ak

k

b � 1

n� 1

�
s2 � 3

16
X
ð0Þ
mk

km
�
g
ð0Þ
ab (11)

for ŜEH1A
, and

g
ð2Þ

ab ¼ � 3

8
X
ð0Þ
ak

k

b � 1

n� 1

�
s2 � 1

8
Z
ð0Þ � 3

16
X
ð0Þ
mk

km
�
g
ð0Þ
ab

(12)

for ŜEH1B
. [Here, like in (10d)–(10g), indices at X

ð0Þ
are

manipulated by g
ð0Þ
ab]. Let us observe that the difference

between the above solutions and the other arbitrary solu-

tion of (10c), with g
ð1Þ
ab ¼ 0, must be a solution of a homo-

geneous variant of (10c). Thus, such a difference may be

interpreted as a classical perturbation of metric g
ð0Þ
ab. For

this reason one can regard (11) and (12) as the solutions
carrying full information about the considered noncommu-
tativity at h2.

IV. PALATINI ACTION

Now, let us switch to the Palatini formalism with the
connection and the tetrad field as separate dynamical
variables. Thus, one is dealing with the vector bundle L
for which SOð3; 1Þ transformations preserve the canonical
form of the Lorentzian metric �AB. The bundle L is

equipped with some metric-compatible connection @L.
Its local coefficients are denoted as ��

AB

i
and are

8In Eqs. (10d)–(10g) indices are manipulated by means of

metric g
ð0Þ
ab.

9Arguments leading to (10b) are essentially identical to stan-
dard calculations concerning small perturbations of classical
vacuum relativity, e.g. in shortwave formalism ([36], Sec. 35.13).
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antisymmetric in AB. The corresponding curvature is given
by R�

A

Bij
. The bundle E is taken to be L � TM.

The tetrad field �Ab0 induces the metric ga0b0 ¼
�Aa0�AB�

B
b0 and the metric connection r in TM (not

necessarily torsionless). Local coefficients of r can be

computed from the expression �i0
j0k¼�A

i0��
A

Bk
�Bj0 þ

�A
i0 @
@xk

�Aj0 . The curvature tensors are related by

Ri0
j0kl ¼ �A

i0R�
A

Bkl
�Bj0 . As a connection in E we choose

@E ¼@L�1þ1�r. These data encode the �-product �P.
We are going to make use of the following two endo-

morphisms ofL � TM: �R�, i.e. rescaled
10 by the v version

of R�
A

B

a0

b0
(defined by the curvature of @L and the tetrad

which raises index a0), and� given by�A
B
a0
b0 ¼ �Aa

0
�Bb0 .

As a starting point one may take the following version of
Palatini action:

S P ¼
Z
M

Tr �R��
!n

n!
:

The deformation procedure yields a particularly simple
expression due to @i� ¼ 0, TrðRE

abfR�;�gÞ ¼ 0, and

TrðRE
abR

E
cdfR�;�gÞ ¼ 0,

Ŝ P ¼ tr�P ð �R� �P �Þ

¼
Z
M

TrðR��þ h2s2R��þOðh3ÞÞvolM: (13)

The variation with respect to �� leads to the equations

ð1þ h2s2Þ
�
Rab � 1

2
gabR

�
þOðh3Þ ¼ 0; (14a)

clearly equivalent (up to h2) to the condition Rab ¼ 0. The
variation of the connection field ��� produces11

ð1þ h2s2ÞQa
bc ¼

h2

n� 1
�a

½b
@s2

@xc�
þOðh3Þ; (14b)

where Qa
bc ¼ �a

cb � �a
bc is the torsion tensor of the

connection r. Thus, one obtains the theory with vanishing
Ricci tensor and nonvanishing torsion generated by the
scalar s2. A quick calculation shows that the trace-free
part ofQc

ab is equal to zero. Equation (14b) means that for

Qa
bc ¼ Q

ð0Þa
bc þ hQ

ð1Þa
bc þ h2Q

ð2Þa
bc þ . . .

one has Q
ð0Þa

bc ¼ Q
ð1Þa

bc ¼ 0 and

Q
ð2Þ a

bc ¼ 1

n� 1
�a

½b
@s2

@xc�
:

Connection coefficients for r are given by

�a
bc¼

1

2
gak

�
@gbk
@xc

þ@gck
@xb

�@gbc
@xj

þQbkcþQckb�Qkbc

�
:

Hence, �
ð0Þa

bc and �
ð1Þa

bc are still expressed by relations (8a)

and (8b). For �
ð2Þa

bc one computes that

�
ð2Þa

bc ¼ 1

2
g
ð0Þakðr

ð0Þ

cg
ð2Þ
kb þr

ð0Þ

bg
ð2Þ
kc �r

ð0Þ

kg
ð2Þ
bcÞ � g

ð0Þak
g
ð1Þ
kl�

ð1Þl
bc

þ 1

2ðn� 1Þ
�
�a

c

@s2
@xb

� g
ð0Þ
bcg

ð0Þak @s2
@xk

�
: (15a)

Corrections to the Riemann tensor are again given by (9).
Substituting them to Rab ¼ 0 we obtain that for h0 and h1

relations (10a) and (10b) remain valid. However, equations

for g
ð2Þ
ab take the following form:

g
ð0Þklðr

ð0Þ

kr
ð0Þ

ag
ð2Þ
bl þr

ð0Þ

kr
ð0Þ

bg
ð2Þ
al �r

ð0Þ

kr
ð0Þ

lg
ð2Þ
ab �r

ð0Þ

ar
ð0Þ

bg
ð2Þ
klÞ

¼ 2r
ð0Þ

ar
ð0Þ

bs2 þ 1

n� 1
g
ð0Þ
abg

ð0Þklr
ð0Þ

kr
ð0Þ

ls2 � 4�
ð1Þk

l½k�
ð1Þl

b�a

þ 4ð0Þrkg r
ð0Þ

½rð�
ð1Þl

b�ag
ð1Þ
klÞ: (15b)

Like in the case of Einstein-Hilbert action, one can easily

guess special solution of (15b) by requiring that g
ð1Þ
ab ¼ 0,

i.e. that classical first-order perturbation vanish. It reads

g
ð2Þ

ab ¼ � 1

n� 1
s2g

ð0Þ
ab: (16)

For such case the correction �
ð1Þa

bc is equal to zero, and �
ð2Þa

bc

is given by

�
ð2Þ a

bc ¼ � 1

2ðn� 1Þ�
a
b

@s2
@xc

: (17)

Repeating arguments of the previous section, one can point

out that the other arbitrary solution of (15b), with g
ð1Þ
ab ¼ 0,

differs from (16) by a classical perturbation of g
ð0Þ
ab. Let

us observe that since deformation of the action given by
(13) depends up to h2 solely on s2, then corrections
(16) and (17) are also expressible in terms of s2. Now, s2
is related to the curvature of @S by the formula (13). In

10The function v modifying R is taken with respect to the
metric gab induced by the tetrad. Obviously volM and the volume
form given by the determinant of � coincide in such case.
11The variation gives

wð�c
ab � �c

baÞ ¼ �c
a

�
@w

@xb
� �d

bdw

�
� �c

b

�
@w

@xa
� �d

adw

�

with the tensor density w ¼ ffiffiffiffiffiffiffi�g
p ð1þ h2s2Þ. Contraction of this

relation enables expressing �d
ad in terms of �d

da, leading in turn
to (14b).
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particular this means, that for the Moyal case of flat @S, one
is dealing with undeformed theory even at h2.

V. RELATION TO THE THEORY OF
THE SEIBERG-WITTEN MAP

Let us explain how proposed models can be understood
in terms of the theory of the Seiberg-Witten map. This
becomes quite straightforward when one combines results
of [1] with the property (3). Indeed, what [1] states is that
the Seiberg-Witten map is a local isomorphism of
�-product algebras, while the relation (3) says that the trace
functional is invariant on such isomorphisms.

More precisely, suppose that one prescribes to each
frame e in E �-product isomorphismMhei which transforms

the initial global product � to the local one �S. (Recall that
�S is nothing but matrix multiplication with the commuta-
tive product of entries replaced by the Fedosov �-product
of functions). Thus

MheiðFhei � GheiÞ ¼ MheiðFheiÞ �S MheiðGheiÞ;
where Fhei, Ghei are matrices representing endomorphisms

F and G in the frame e. It turns out (Sec. IIIA in [1]) that if
we switch to a different frame ~e ¼ eg�1, then Mhei and
Mh~ei are related by

Mh~eiðFh~eiÞ ¼ ĝheiðg;�EÞ �S MheiðFheiÞ �S ĝ�1
hei ðg;�EÞ; (18)

with ĝheiðg;�EÞ ¼ gþOðhÞ dependent both on g and con-

nection one-forms �E
i in the frame e and their derivatives.

Moreover, if we combine two gauge transformations, then
ĝ fulfills ‘‘consistency conditions’’ (compare [37,38])
given by

ĝ heiðg0g;�EÞ ¼ ĝh~eiðg0; g�Eg�1 þ gdg�1Þ �S ĝheiðg;�EÞ:
(19)

Thus,M and ĝ behave exactly like the Seiberg-Witten map
[34]. Indeed, if M is set up with Fedosov’s techniques of
generating �-product isomorphisms, then one can com-
pute12 M and ĝ, and for the case of �S given by the
Moyal product �T , obtain results which are well-known
expressions for the Seiberg-Witten map (Sec. IV in [1]).

We are going to rewrite investigated actions in terms of

the Seiberg-Witten map. LetMðFÞ ¼ F̂, as it is justified by
relations (19) and (18). Also, let us separately distinguish
theMoyal case of �S¼�T , for which @S is flat, oneworks in
Darboux coordinates with coefficients of @S equal to zero,
and the trace functional tr�T is given by the integral (4).

Suppose that supports of endomorphisms under considera-
tion are small enough to be covered by a single frame in E,

and—in the Moyal case—by a single Darboux coordinate
system. Then, due to property (3), actions considered in this
paper can be locally rewritten as follows:

Arbitrary �S �S ¼ �T
ŜEH1A

¼ tr�S ð �̂RÞ
R
R2n Trð �̂RÞd2nx

ŜEH1B
¼ tr�S ðR̂ �S V̂Þ

R
R2n TrðR̂ �T V̂Þd2nx

ŜEH2A
¼ tr�S ð �̂RÞ

R
R2n Trð �̂RÞd2nx

ŜEH2B
¼ tr�S ðR̂ �S V̂Þ

R
R2n TrðR̂ �T V̂Þd2nx

ŜP ¼ tr�S ð �̂R� �S �̂Þ R
R2n Trð �̂R� �T �̂Þd2nx

Let us observe that such a setting clarifies how considered
models are related to the spacetime noncommutativity
described by �S. Indeed, due to (2), above mentioned local
versions of action functionals are invariant with respect to
gauge transformations (18) realized by means of �S. Thus,
one is able to reasonably claim that models considered in
this paper correspond to noncommutativity of spacetime
generated by the Fedosov product of functions �S.

VI. DISCUSSION

We have obtained a number of nonequivalent geometric
deformations of vacuum Einstein relativity. They have
been analyzed at h2 order, starting from the action func-
tional, through field equations, up to corrections to the
metric which have been explicitly given for the case of

ŜEH1A
, ŜEH1B

and ŜP. Using the results of [1], we have

pointed out the relation between proposed models, the
theory of the Seiberg-Witten map, and the noncommuta-
tivity of the spacetime described by the Fedosov �-product
generated by symplectic form ! and symplectic connec-
tion @S.
The construction scheme we have adopted, relies on the

geometric deformation of the product of endomorphisms,
but it does not include deformations of other geometric
data like connection, tensor product, exterior algebra of
forms, or a contraction operator. (Approaches aiming at
modifying various structures of classical geometry in the
deformation quantization framework certainly exist. These
are e.g. [39–41]). The advantage of our approach consists
in immediate interpretation in terms of the Seiberg-Witten
map. On the other hand, the price is that the noncommu-
tativity does not appear as a fundamental structure mod-
ifying all the geometry, but rather may seem to be a kind of
‘‘extra interaction’’ entering to action functionals via the
procedure described in the introduction.
The multiplicity of models arises as a consequence of

ambiguity in translating traditional action functionals to the
language of traces of endomorphisms of some bundle. From

the gauge simplicity point of view, actions ŜEH1A
and ŜEH1B

seem to be most straightforward as they correspond to the

natural GLð2n;RÞ gauging. On the other hand, action ŜP

produces especially simple expressions for deformed field
equations and for corrections to the metric.

12The Fedosov construction enables computation of the
Seiberg-Witten map, up to arbitrary order in h, by its recursive
techniques. This situation is rather different from the usual
framework, where the Seiberg-Witten equations must be solved.
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The remarkable problem related to presented models
concerns incompatibility of the volume forms—metric
and symplectic ones. Both proposed solutions (rescaling
one of the endomorphisms and multiplication by V) seem
to be a bit unnatural. One can suspect that this problem is
related to fixing symplectic structure as a nondynamical
background. Notice, however, that the Fedosov construc-
tion provides a natural framework for the variation of the
symplectic data. Moreover, it could turn out that some
refinements to the Fedosov theory should be made, to put
the metric into the internal structure of the deformation
quantization procedure. Such considerations are hoped to
be covered in the author’s subsequent work.

Let us briefly discuss diffeomorphism invariance of
the proposed models. Clearly they are diffeomorphism
invariant in the passive sense, since all actions, field equa-
tions, and derived corrections to the metrics are given
in either explicitly global or coordinate covariant manner.
However, they are not invariant under active diffeomor-
phisms. Again, this issue originates in fixing symplectic
data as a nondynamical background. Such an observa-
tion is a further argument for considering the dynamics
of ! and @S as a natural next step within the Fedosov
formalism.

Because of the symmetries of the Riemann tensor, in all
considered cases imaginary terms at h1 have vanished. It
must be stressed, however, that we have no clear evidence
that the same stays true for other odd powers of h. Thus,

some further analysis of the reality of proposed actions
should be performed. This suggests deeper investigation of
the structure of the trace functional, which seems to be a
rather difficult task (but not hopeless, as can be inferred
from Fedosov’s results [42,43] on relating tr�ð1Þ to inte-
grals of characteristic classes of TM and EndðEÞ). On the
other hand, construction of some appropriate involution
operator in the Fedosov algebra may be useful and it is also
a matter for the author’s further interest.
Finally one could be interested in how the present work

is related to the well-known existence of closed �-products
(compare e.g. [44]). First of all, the existence of such
products has been investigated for functions but not for
endomorphisms (to the best of the author’s knowledge).
Moreover, if one is going to treat the Seiberg-Witten map
in more or less fundamental manner, then nontriviality of
the trace is what should be expected. Indeed, as was argued
in the previous section, the nontrivial trace could be inter-
preted as the object carrying information about the global-
ization of the Seiberg-Witten map.
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Classical Quantum Gravity 23, 1883 (2006).

[20] P. Aschieri and L. Castellani, J. High Energy Phys. 06
(2009) 086.

[21] P. Aschieri and L. Castellani, J. Geom. Phys. 60, 375
(2010).

[22] F. Meyer, arXiv:hep-th/0510188.

MICHAŁ DOBRSKI PHYSICAL REVIEW D 84, 065005 (2011)

065005-10

http://dx.doi.org/10.1142/S021988781100521X
http://dx.doi.org/10.1142/S021988781100521X
http://dx.doi.org/10.1103/PhysRevD.72.045010
http://dx.doi.org/10.1103/PhysRevD.72.045010
http://dx.doi.org/10.1103/PhysRevD.74.047702
http://dx.doi.org/10.1103/PhysRevD.74.047702
http://dx.doi.org/10.1103/PhysRevD.74.027702
http://dx.doi.org/10.1103/PhysRevD.74.027702
http://dx.doi.org/10.1016/S0370-2693(01)00272-6
http://dx.doi.org/10.1063/1.1572199
http://dx.doi.org/10.1063/1.1572199
http://dx.doi.org/10.1088/0264-9381/20/8/101
http://dx.doi.org/10.1088/0264-9381/20/8/101
http://dx.doi.org/10.1016/j.physletb.2008.01.029
http://dx.doi.org/10.1016/j.physletb.2008.01.029
http://dx.doi.org/10.1103/PhysRevD.77.064014
http://dx.doi.org/10.1103/PhysRevD.77.064014
http://dx.doi.org/10.1103/PhysRevD.69.024015
http://dx.doi.org/10.1103/PhysRevD.69.024015
http://dx.doi.org/10.1103/PhysRevD.68.044015
http://dx.doi.org/10.1103/PhysRevD.75.125020
http://dx.doi.org/10.1103/PhysRevD.75.125020
http://dx.doi.org/10.1103/PhysRevD.82.084017
http://dx.doi.org/10.1103/PhysRevD.82.084017
http://dx.doi.org/10.1103/PhysRevD.83.024023
http://dx.doi.org/10.1103/PhysRevD.83.024023
http://dx.doi.org/10.1103/PhysRevD.79.025004
http://dx.doi.org/10.1103/PhysRevD.79.025004
http://dx.doi.org/10.1088/0264-9381/22/17/011
http://dx.doi.org/10.1088/0264-9381/22/17/011
http://dx.doi.org/10.1088/0264-9381/23/6/005
http://dx.doi.org/10.1088/1126-6708/2009/06/086
http://dx.doi.org/10.1088/1126-6708/2009/06/086
http://dx.doi.org/10.1016/j.geomphys.2009.11.009
http://dx.doi.org/10.1016/j.geomphys.2009.11.009
http://arXiv.org/abs/hep-th/0510188
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Schwachhöfer, Int. J. Geom. Methods Mod. Phys. 3, 375
(2006).

[34] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999)
032.

[35] J. M. Martı́n-Garcı́a, ‘‘xAct: Efficient Tensor Computer
Algebra for MATHEMATICA,’’ http://www.xact.es.

[36] C. Misner, K. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).
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