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For neutrino oscillations to take place the entangled quantum state of a neutrino and a charged lepton

produced via charged current interactions must be disentangled. Implementing a nonperturbative Wigner-

Weisskopf method we obtain the correct entangled quantum state of neutrinos and charged leptons from

the (two-body) decay of a parent particle. The source lifetime and disentanglement length scale lead to a

suppression of the oscillation probabilities in short-baseline experiments. The suppression is determined

by �Ls=Losc where Ls is the smallest of the decay length of the parent particle or the disentanglement

length scale. For Ls � Losc coherence and oscillations are suppressed. These effects are more prominent

in short base line experiments and at low neutrino energy. We obtain the corrections to the appearance and

disappearance probabilities modified by both the lifetime of the source and the disentanglement scale and

discuss their implications for accelerator and reactor experiments. These effects imply that fits to the

experimental data based on the usual quantum mechanical formulation underestimate sin2ð2�Þ and �m2,

and are more dramatic for �m2 ’ eV2, the mass range for new generations of sterile neutrinos that could

explain the short-baseline anomalies and long disentanglement length scales.
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I. INTRODUCTION

Neutrino masses, mixing and oscillations are the clearest
evidence yet of physics beyond the standard model [1–3].
They provide an explanation of the solar neutrino problem
[4–6] and have important phenomenological [1–3,7–11],
astrophysical [5,12,13] and cosmological [14] consequen-
ces. A remarkable series of experiments have confirmed
mixing and oscillations among three ‘‘active’’ neutrinos
with �m2 ¼ 10�4–10�3 eV2 for atmospheric and solar
oscillations respectively [15].

A fascinating aspect of neutrino oscillations is that they
provide an extraordinary example of macroscopic quantum
coherence maintained over hundreds of kilometers. It is
particularly this aspect that has sparked an ongoing dis-
cussion in the field that seeks to clarify the main concepts
behind the physical interpretation of oscillations.

As neutrino oscillations open a window to explore
physics beyond the standard model, it is important to under-
stand the underlying phenomena at the deepest level, and
the domain of validity of the various calculations of oscil-
lation probabilities and their impact on experiments. In
particular, the standard approach of treating neutrino oscil-
lations by analogy with Rabi-oscillations in a two-state
system (see, for example, [1–3,7,8] and references therein)
while simple and intuitive, has motivated a wide ranging
discussion. Deeper investigations of this basic paradigm
have already raised a number of important and fundamental
questions [16–19] that are still being debated [20].

A correct interpretation of the results from oscillation
experiments require understanding of both the production
and detection mechanisms [21–23]. Neutrino detection is

indirect through charged or neutral current processes and
mostly through the detection of the associated charged
lepton. As for the production mechanism, the neutrino state
is produced by the decay of a parent particle via charged
current interactions. Coherence (and decoherence) aspects
of the production and detection of neutrinos [23–25] and
lifetime of the source [26] have been discussed, however
only recently the recognition that the neutrino state pro-
duced by the decay of a parent particle via charged current
interactions is in fact entangled with that of the charged
lepton [18,27–34] has become the focus of a reassessment
of the dynamics of neutrino oscillations.
Quantum entanglement is a direct consequence of conser-

vation laws in the production process [18,27] which result in
a correlated quantum state of the neutrino and its charged
current lepton partner. As observed in Refs. [28,29] in order
for neutrino mass eigenstates to interfere coherently and
oscillate, the quantum state must be disentangled: entangle-
ment surviving for a very long time projects out states of
definite energy and prevent oscillations. In a typical experi-
ment disentanglement of the charged lepton occurswhen this
particle is measured, absorbed or decays, after disentangle-
ment the quantum state is reduced and is reset. The full
dynamics of the process of production of the entangled state,
disentanglement and further evolution to production of an-
other charged lepton at a (far) detectorwas studied in amodel
in Ref. [29] with a focus on long baseline experiments.
Ref. [34] studied the free time evolution of a disentangled
wave-packet produced from pion decay including lifetime
effects but without addressing the production of charged
leptons by the disentangled state and detection process.
The results of Ref. [29] show that if disentanglement

occurs on time scales much shorter than the oscillation
scale, namely, for long baseline experiments, the familiar*boyan@pitt.edu
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result obtained from the simple quantum mechanical pic-
ture and factorization is reproduced, but also point out
possible subtle consequences if the disentanglement pro-
cess occurs on time scales of the same order of or longer
than the oscillation time scale, with potential impact on
short-baseline experiments. This possibility is also hinted
at in Ref. [31].

In the last few years several experimental results have
been accumulating that cannot be interpreted within the
‘‘standard paradigm’’ of mixing and oscillations among
three active neutrinos with �m2 ’ 10�4–10�3. The early
results from the LSND experiment [35] have recently been
confirmed by MiniBooNE running in antineutrino mode
[36] both suggesting the possibility of new ‘‘sterile’’ neu-
trinos with �m2 � eV2. More recently, a reexamination of
the antineutrino flux [37] in anticipation of the Double
Chooz reactor experiment resulted in a small increase in
the flux of about 3.5% for reactor experiments leading to a
larger deficit of 5.7% suggesting a reactor anomaly [38]. If
this deficit is the result of neutrino mixing and oscillation
with baselines L & 10–100 m, it requires the existence
of at least one sterile neutrino with �m2 * 1:5 eV2 and
mixing amplitude sin2ð2�Þ ’ 0:115 [38]. Taken together
these results may be explained by models that incorporate
one or more sterile neutrinos that mix with the active ones
[39–42] including perhaps nonstandard interactions [43].
Furthermore the latest analysis of the cosmic microwave
background anisotropies by WMAP [44] suggests that the
effective number of neutrino species is Neff ¼ 4:34� 0:86
and

Pðm�Þ< 0:58 eV bolstering the case for sterile neu-
trino(s) with m & eV.

The common aspect of accelerator and reactor anoma-
lies is that these are all short-baseline experiments with
10 m & L & 600 m and this aspect, when considered
along with the potentially relevant corrections from disen-
tanglement discussed above, motivate our study of the
disentanglement and lifetime effects on short-baseline os-
cillations. Although the effect of the muon lifetime on
neutrino oscillations has been studied in Ref. [45] and
more recently Ref. [46] argued that the pion lifetime
introduces decoherence on oscillations �� � �s at the

near detector of the MINOS experiment, the combined
effect of lifetime of the source and disentanglement of
charged leptons have not yet been discussed with regard
to the distortion of the spectrum for charged lepton events
at the detector in short-baseline experiments.

Goals: The accumulation of experimental evidence of
short-baseline anomalies and the recognition that entangle-
ment and lifetime effects may lead to corrections in the
oscillation probabilities precisely in short-baseline experi-
ments motivates us to understand the impact of these
effects on the appearance and disappearance probabilities,
and their possible experimental implications.

In this article, we seek to understand the subtle aspects
arising from quantummechanical correlations as a result of

the fact that the neutrino states produced at charged current
vertices are entangled with the charged lepton partner.
Measurement, absorption or decay of this charged lepton
disentangles the quantum state, but the emerging neutrino
state carries information on the quantum correlations in its
evolution. These correlations along with intrinsic energy
uncertainties associated with the lifetime of the parent
particle whose decay produces the neutrinos, influence
the oscillation probabilities. Our goal is to study these
corrections in the simplest and most clear setting that allow
a systematic calculation of the effects and to extract the
possible impact of these effects on the experimental ob-
servables and their interpretation.
Results:
The dimensionless parameter that determines the impact

of the lifetime of the source and the disentanglement time
scale on the oscillation probabilities is

�Ls=Losc

where Ls is the smaller between the decay length of the
source and the disentanglement length scale at which
the charged lepton produced with the neutrino is measured,
absorbed or decays and Losc/E�=�m

2 is the oscillation
length.
A detailed analysis of the production and disentangle-

ment of the quantum states of neutrinos produced in
charged current vertices reveals that the usual
‘‘Pontecorvo’’ states familiar from the simple quantum
mechanical approach, are a reliable description only
when Ls � Losc in which case appearance and disappear-
ance probabilities are given by the usual expressions, but
for Ls � Losc the energy uncertainties become smaller
than the distance between energy eigenstates and coher-
ence is suppressed with a concomitant suppression of the
appearance probability.
Appearance probabilities are suppressed in short-

baseline experiments where both the lifetime of the source
and the disentanglement scale are comparable to or a large
fraction of the baseline.
We find that at MiniBooNE the dominant source of

suppression is the decay length of the pions, whereas at
LSND and reactor experiments we argue that the relevant
length scale is the disentanglement distance.
In all these cases, fits of the experimental data to the

usual quantum mechanical appearance and disappearance
probabilities underestimate both �m2 and sin2ð2�Þ. These
fits are much less reliable at low neutrino energy (for fixed
�m2, L) because for low energy events the ratio Ls=Losc is
larger and the suppression of the oscillation probability is
stronger.
The corrections from lifetime and disentanglement ef-

fects on short-baseline experiments are more dramatic for
the mass range �m2 � 1eV2 which is the putative mass
range for sterile neutrinos that could explain the short-
baseline anomalies, and for low neutrino energy.
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II. A MODEL OF ‘‘NEUTRINO’’ OSCILLATIONS

In order to exhibit the main results in a clear and simple
manner, we introduce a bosonic model that describes mix-
ing, oscillations and charged current weak interactions
reliably. The complications associated with fermionic
and gauge fields are irrelevant to the physics of mixing
and oscillations, as is obviously manifest in the case of
meson mixing.

We study the model defined by the Lagrangian density

L ¼ L0½W; l�� þL0½��� þLint½�;W; l�; ���;
� ¼ e;�

(2.1)

with

L 0½�� ¼ 1

2
½@��T@����TM��; (2.2)

where � is a flavor doublet representing the neutrinos

� ¼ �e

��

� �
; (2.3)

and M is the mass matrix

M ¼ mee me�

me� m��

� �
: (2.4)

The interaction Lagrangian is similar to the charged cur-
rent interaction of the standard model but explicitly in-
cludes a vertex that describes the decay of a parent particle
(here the pion) into a charged lepton and its flavor neutrino
� ! ���, namely

L intð ~x; tÞ ¼ g��ð ~x; tÞ�ð ~x; tÞ��ð ~x; tÞ þ gWð ~x; tÞ
� ½eð ~x; tÞ�eð ~x; tÞ þ�ð ~x; tÞ��ð ~x; tÞ�; (2.5)

where g plays the role of the electroweak charged current
coupling, and g� includes the pion decay constant. �ðxÞ
represents the pion field or alternatively any parent particle
that decays into a charged lepton and its associated neu-
trino, WðxÞ represents the vector boson, and l ¼ e, � the
two charged leptons.

Obviously this simple model cannot describe CP violat-
ing effects or distinguish between neutrino vs. antineutrino
modes, however our goal is to understand decoherence
effects associated with lifetime of the source and disentan-
glement of charged leptons.

The mass matrix is diagonalized by a unitary transfor-
mation

U�1ð�ÞMUð�Þ¼ m1 0

0 m2

 !
; Uð�Þ¼ cos� sin�

�sin� cos�

 !
:

(2.6)

In terms of the doublet of mass eigenstates, the flavor
doublet can be expressed as

�e

��

� �
¼ Uð�Þ �1

�2

� �
: (2.7)

This bosonic model clearly describes charged current weak
interactions reliably as it includes all the relevant aspects of
mixing and oscillations. Furthermore the coupling ����

allows us to study the dynamics of the production process
including the lifetime of the source (pion) within the same
model.
In order to clearly separate the effects from the lifetime

of the source and disentanglement time scale from the
effects of wave-packet localization, this article is primarily
devoted to the analysis in terms of plane waves, in Sec. V
we comment on the modifications from a wave-packet
treatment, but postpone the full treatment with wave-
packets to a more thorough forthcoming study [47].
We consider the case in which a neutrino and its flavor

charged lepton partner are produced via the decay of a parent
particle, in this case a pion, however, the discussion and the
main consequences are general, with the only difference
being the associated many-particle phase space if the decay
is in more than two particles. The production process
corresponds to � ! ��� where the � is ‘‘observed’’ or is

absorbed (or decays) at a ‘‘disentanglement’’ time scale t�,

the disentangled neutrino is detected via a charged current
interaction �� ! Wl where l ¼ e, � is the charged lepton.

The Wigner-Weisskopf [48,49] method described in the
appendix yields the entangled state that results from pion
decay, the relevant part of the interaction Hamiltonian in
the interaction picture is

H�
I ðtÞ ¼ g�

Z
d3x�ð ~x; tÞ�ð ~x; tÞ��ð ~x; tÞ (2.8)

where the time evolution is that of free fields. The neutrino
field operator

��ð ~x; tÞ ¼ cosð�Þ�2ð ~x; tÞ � sinð�Þ�1ð ~x; tÞ; (2.9)

where �1;2ð ~x; tÞ are expanded, as usual, in annihilation and

creation operators of mass eigenstates a1;2ð ~pÞ;ay1;2ð ~pÞ re-
spectively, with the single particle mass eigenstates being

ayi ð ~pÞj0i ¼ j� ~p;ii (2.10)

where j0i is the vacuum state annihilated by aið ~pÞ. We note
that the transformation law (2.7) applies to the field opera-
tors not to the single particle states.
Consider that the initial state, at t ¼ 0 is given by a

single particle pion state described by a plane wave with

momentum ~k, namely

j�ðt ¼ 0Þi ¼ j�~ki: (2.11)

H�
I connects the single particle pion state to the states

j�i¼j�~q;ij� ~p;ii. The transition matrix element is given by

h�~q; � ~p;ijH�
I ðtÞj� ~ki 	 Mið ~k; ~q; ~p; tÞ

¼ g�ffiffiffiffi
V

p U�i� ~k; ~pþ ~q

e�iðE�ðkÞ�E�ðqÞ��iðpÞÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8E�ðkÞE�ðqÞ�iðpÞ

q
(2.12)
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where �iðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
are the energies of the neutrino

mass eigenstates.
We are now in position to use the results of the appendix

for the time evolved state in the Schroedinger picture
resulting from pion decay, it is given by Eq. (A27) with
CAð0Þ ¼ C�ð0Þ ¼ 1 and the set � described above, we find

j�ðtÞiS ¼ e�iE�ðkÞte�ð��ðkÞ=2Þtj�~ki
� X

i; ~p; ~q

Cið ~k; ~q; ~p; tÞe�iðE�ðqÞþ�iðpÞÞtj�~qij� ~p;ii;

~q ¼ ~k� ~p; (2.13)

where the amplitudes

Cið ~k; ~q; ~p;tÞ¼Mið ~k; ~q; ~p;t¼0Þ
�
1�e�iðES��iðpÞÞte���ðkÞt=2

ES��iðpÞ� i
2��ðkÞ

�
;

ES¼E�ðkÞ�E�ðqÞ (2.14)

E�ðkÞ is the fully renormalized pion energy (including the
self-energy correction from the intermediate states, see
appendix) and ��ðkÞ ¼ M��o=E�ðkÞ where �o is the de-
cay rate of the pion at rest. For �� ¼ 0 the entangled state
(2.13) is the same as that obtained in Ref. [29] in lowest
order in perturbation theory.

Although the particular form of Mið ~k; ~q; ~p; tÞ for the
bosonic theory considered here is given by (2.12) the
results (2.13) and (2.14) are general in terms of the tran-

sition matrix element Mið ~k; ~q; ~p; t ¼ 0Þ.
The state (2.13) is an entangled state of the neutrino

mass eigenstates and the muon, the entanglement is evident
in that it is a sum of product states, not a simple product
state, the amplitudes C are a measure of the correlation
between �i and the charged lepton. The entanglement is a

consequence of momentum conservation since ~q ¼ ~k� ~p.
The ‘‘observation’’, measurement or decay of the muon
state at time t� disentangles the neutrino state. If the muon

is ‘‘measured’’ in a plane wave state with momentum ~Q the
disentangled state is obtained by projecting the quantum
state (2.13) onto the state j� ~Qi, namely, the disentangled

neutrino state is given by

jV�ðt�Þi ¼ h� ~Qj�ðt�ÞiS

¼ � g�e
�iE�ðQÞt�

½4VE�ðkÞE�ðQÞ�1=2
X
i¼1;2

U�;ie
�i�iðpÞt�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�iðpÞ
p

� Fi½k;Q; p; t��j� ~p;ii;
~p ¼ ~k� ~Q (2.15)

where

Fi½k;Q; p; t�� ¼
�
1� e�iðES��iðpÞÞt�e���ðkÞt�=2

ES ��iðpÞ � i
2 ��ðkÞ

�
;

ES ¼ E�ðkÞ � E�ðQÞ;
(2.16)

The functions Fi encode the information of production of
the entangled charged-lepton-neutrino pair and the mea-
surement of the charged lepton, it features both time scales:
the lifetime of the source and the disentanglement time
scale t�.

The number of muons of momentum ~Q detected at t� is

given by

N �ð ~Q; t�Þ 	 ð2�Þ3 d6N�

d3xd3 ~Q

¼ h�ðt�Þjay�ð ~QÞa�ð ~QÞj�ðt�Þi
¼ hV�ðt�ÞjV�ðt�Þi; (2.17)

where ay�, a� are creation and annihilation operators for

muons. Thus the normalization of the disentangled neu-
trino state is completely determined by the number density
of muons detected at t�.

We find

N �ð ~Q;t�Þ¼ g2�
½4VE�ðkÞE�ðQÞ�

�
cos2ð�Þ
2�2ðpÞjF2ðk;Q;p;t�Þj2

þ sin2ð�Þ
2�1ðpÞjF1ðk;Q;p;t�Þj2

�
: (2.18)

This expression becomes familiar from the following
analysis: the functions

jFiðk;Q; p; t�Þj2 ¼
ð1� e�ð��ðkÞ=2Þt�Þ2 þ 4e�ð��ðkÞ=2Þt�sin2½ðES ��iðpÞÞ t�2 �

ðES ��iðpÞÞÞ2 þ �2
�ðkÞ
4

(2.19)

are strongly peaked atES ¼ E�ðkÞ � E�ðQÞ ¼ �iðpÞwith
width determined by the largest of ��ðkÞ; 2�=t� becoming
proportional to energy conserving delta functions in the
limit when these become very small. This is clearly seen in
two relevant limits:

(i) the narrow width limit with ��ðkÞt� � 1 but large

t� where

jFiðk;Q; p; t�Þj2 ’
4sin2½ðES ��iðpÞÞ t�2 �

ðES ��iðpÞÞÞ2
; (2.20)

This limit corresponds to a long disentanglement
time scale but t� � T�ðkÞ where T�ðkÞ ¼ 1=��ðkÞ
is the pion lifetime in the laboratory frame. This
function is strongly peaked at ES ¼ �iðpÞ with
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maximum height t2� and width 2�=t� which is the

largest of ��ðkÞ and 2�=t� for this case. As t�
becomes very large,

jFiðk;Q; p; t�Þj2 ’ 2�t��ðES ��iðpÞÞ: (2.21)

(ii) the opposite limit, for ��ðkÞt� � 1, in which the

disentanglement time scale t� is much longer than

T�ðkÞ, where

jFiðk;Q; p; t�Þj2 ’ 1

ðES ��iðpÞÞ2 þ �2
�ðkÞ
4

: (2.22)

The function is strongly peaked at ES ¼ �iðpÞ of
height 4=�2

�ðkÞ and width ��ðkÞ=2 which is the
largest of ��; 2�=t� in this case. In the narrow

width limit

jFiðk;Q;p;t�Þj2’2�T�ðkÞ�ðES��iðpÞÞ: (2.23)

It is clear from this discussion that jFij2 describe ap-
proximate energy conservation at the production vertex,
approximate because the finite disentanglement time scale
t� and/or the pion lifetime T�ðkÞ broaden the energy con-

serving delta functions with an energy resolution deter-
mined by the width which is the largest of 2�=t� or

2�=T�ðkÞ respectively, namely, the shortest time scale.
For the general form (2.19), a straightforward integration

yieldsZ 1

�1
jFij2dES ¼ 2�T�ðkÞ½1� e���ðkÞt��; (2.24)

therefore, assuming that the energy distribution is very
sharply peaked at Es ¼ �iðpÞ, we can approximate

jFiðk;Q;p;t�Þj2’2�T�ðkÞ½1�e���ðkÞt���ðES��iðpÞÞ:
(2.25)

In this approximation the total number of muons mea-
sured at the disentanglement time scale is

N�¼
Z
d3x

Z d3Q

ð2�Þ3N �ð ~Q;t�Þ’��ðkÞT�ðkÞ½1�e���ðkÞt��
(2.26)

where

��ðkÞ ¼ cos2ð�Þ��!��2
ðkÞ þ sin2ð�Þ��!��1

ðkÞ (2.27)

is the total pion decay rate (in this simple model) and

��!��iðkÞ ¼
g2�

32�2E�ðkÞ
Z d3Q

E�ðQÞ�iðpÞ�ðE�ðkÞ

� E�ðQÞ ��iðpÞÞ;
~p ¼ ~k� ~Q (2.28)

are the partial widths for pion decay into the neutrino mass
eigenstates. Although this result applies to the simple

model considered here, clearly it is general and concep-
tually correct: the particle decays into mass eigenstates
which are the correct eigenstates of the unperturbed
Hamiltonian, with the probabilities determined by
cos2ð�Þ, sin2ð�Þ respectively.
In what follows, we consider ultrarelativistic and nearly

degenerate neutrinos and write

�1ðpÞ’E�ðpÞ��ðpÞ; �2ðpÞ’E�ðpÞþ�ðpÞ; (2.29)

where

E�ðpÞ ¼
�
p2 þm2

1 þm2
2

2

�
1=2

; �ðpÞ ¼ �m2

4E�ðpÞ ;
�m2 ¼ m2

2 �m2
1; (2.30)

and take �ðpÞ � E�ðpÞ as is the experimentally relevant
case. For �=E� � 1 the energy conserving �ðE�ðkÞ �
E�ðQÞ ��iðpÞÞ in (2.28) may be replaced by �ðE�ðkÞ �
E�ðQÞ � E�ðpÞÞ in the integral, because for the

experimental range �m2 & 1 eV2; E� * 1 MeV the rela-
tive error incurred / ð�=E�Þ & 10�12 ismuch smaller than
typical experimental resolution.
The detection or measurement of the muon at time t�

resets the quantum state to jV�ðtuÞi, upon further evolu-

tion in time this disentangled state evolves into

jV�ðtÞi ¼ e�iH0tUðt; t�ÞeiH0t� jV�ðt�Þi; (2.31)

where

U ðt; t�Þ ¼ Tðei
R

t

t�
dt0
R

d3xLintð ~x;t0ÞÞ (2.32)

is the time evolution operator in the interaction picture with
boundary condition Uðt�; t�Þ ¼ 1.

The usual Pontecorvo quantum state familiar in the lit-
erature are simple linear superpositions j�li¼P

iUlij�ii,
where Uli are the elements of the mixing matrix (2.6), and
the corresponding muon neutrino state at any time t is

j��iðtÞ¼cosð�Þe�i�2ðpÞtj�2i�sinð�Þe�i�1ðpÞtj�1i: (2.33)

Instead, the corresponding quantum state evolved freely in
time from t� up to t from the disentangled state jV�ðtuÞi, is
obtained from (2.31) by settingUðt; t�Þ ¼ 1, it is given by

jV�ðtÞi ¼ e�iH0ðt�t�ÞjV�ðt�Þi
¼ N½cosð�ÞF2ðk;Q; p; t�Þe�i�2ðpÞtj� ~p;2i

� sinð�ÞF1ðk;Q; p; t�Þe�i�1ðpÞtj� ~p;1i� (2.34)

where the prefactor N can be read off (2.15) and we have
neglected terms ofOð�ðpÞ=E�ðpÞÞ2 thereby approximatingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�iðpÞ

p ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�ðpÞ

p
in (2.15) including this factor

in N. Consequently we also replace �1;2ðpÞ ! E�ðpÞ in
(2.18).
Obviously the usual Pontecorvo states emerge up to

the overall normalization factor if jF1j¼jF2j since time
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independent phases can be absorbed in the definition of the
mass eigenstates. The conditions under which this equality
is fulfilled is analyzed below.

Following the familiar quantum mechanical approach to
obtain the survival probability we find

P ��!��
ðt; t�Þ

¼ jhV�ðt�ÞjV�ðtÞij2

¼ jNj4
�
½cos2ð�ÞjF2j2 þ sin2ð�ÞjF1j2�2

� jF2j2jF1j2sin2ð2�Þsin2
�

�m2

4E�ðpÞ ðt� t�Þ
��

(2.35)

Obviously if jF1j ¼ jF2j there is agreement with the
usual result from Pontecorvo states up to an overall
normalization.
We note that invoking the approximation (2.25) for jFij2

yields jF1F2j2 ¼ 0 as the product of delta functions van-
ishes for�1 � �2 thereby leading to the hasty conclusion
that coherence is completely suppressed, however (2.25) is
an approximation that neglects the fact that jFij2 are not
sharp distributions but broadened with typical widths �� or
2�=t�. Thus an assessment of the coherence leading to

oscillations and interference requires a careful and detailed
examination of the product jF1F2j2.
It proves convenient to use (2.16) and (2.19) and write

jF1ðk;Q; p; t�Þj2 ¼
ð1� e�ð��ðkÞ=2Þt�Þ2 þ 4e�ð��ðkÞ=2Þt�sin2½ðES þ �ðpÞÞ t�2 �

ðES þ�ðpÞÞ2 þ �2
�ðkÞ
4

(2.36)

jF2ðk;Q; p; t�Þj2 ¼
ð1� e�ð��ðkÞ=2Þt�Þ2 þ 4e�ð��ðkÞ=2Þt�sin2½ðES � �ðpÞÞ t�2 �

ðES ��ðpÞÞ2 þ �2
�ðkÞ
4

(2.37)

where

E S ¼ ES � E�ðpÞ: (2.38)

The limits studied above clarify the impact of the width
of the energy distribution,

(i) ��ðkÞt� � 1. In this case

jF1ðk;Q;p;t�Þj2’2T�ðkÞ
�
��ðkÞ
2

	
ðESþ�ðpÞÞ2þ�2

�ðkÞ
4

(2.39)

jF2ðk;Q;p;t�Þj2’2T�ðkÞ
�
��ðkÞ
2

	
ðES��ðpÞÞ2þ�2

�ðkÞ
4

(2.40)

where T�ðkÞ ¼ 1=��ðkÞ is the pion lifetime in the
laboratory frame. Each Lorentzian is peaked at ES ¼
��ðpÞ respectively with a height / T2

�ðkÞ and width
/ ��ðkÞ, their product is depicted in Fig. 1 for
��ðkÞ>�ðpÞ and ��ðkÞ � �ðpÞ respectively. For
��ðkÞ � �ðpÞ the product is similar to one
Lorentzian peaked at ES � 0 because the width of
the individual Lorentzians ( ’ ��ðkÞ) is larger than
their separation ( ’ �ðpÞ), therefore the lifetime of
the source introduces a large energy uncertainty that
cannot resolve between the nearly degenerate energy
eigenstates and blurs the individual peaks under one
broad peak. In this case jF1j2 ’ jF2j2 and the disen-
tangled state jV�ðtÞi is proportional to the corre-

sponding Pontecorvo state. On the other hand if

FIG. 1. The product jF1ðk;Q; p; t�ÞF2ðk; Q; p; t�Þj2 vs. ES in units of � for ��ðkÞ ¼ 2; 0:2 respectively for ��ðkÞt� � 1.
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��ðkÞ � �ðpÞ the product is a double peaked
distribution with peaks at ES ’ ��ðpÞ of widths ’
��ðkÞ but with height 1=ð�2ðpÞ�2

�ðkÞÞ � 1=�4
�ðkÞ1

as is the case for jF1;2j4 which are the terms that do

not feature oscillations. In this case the distance
between the peaks ’ �ðpÞ is much larger than the
width of the individual peaks ’ ��ðkÞ and the energy
uncertainty���ðkÞ is small enough that the individ-
ual mass eigenstates are resolved. This can be seen
more efficiently from the identity

jF1j2jF2j2¼ 1

E2
Sþ�2ðpÞþ�2

�ðkÞ
4

1

2
½jF1j2þjF2j2�

’ 1

2�2ðpÞþ�2
�ðkÞ
4

1

2
½jF1j2þjF2j2� (2.41)

where the last approximate equality follows from the
fact that jF1;2j2 are strongly peaked at ES 
 �ðpÞ.
Therefore, the conclusion is that when�ðpÞ���ðkÞ
and t� � T� it follows that jF1j2jF2j2 � jF1;2j4
and coherence and oscillations are suppressed.

(ii) ��ðkÞt� � 1. In this case

jF1ðk;Q;p;t�Þj2’
ð��ðkÞ

2 t�Þ2þ4sin2½ðESþ�ðpÞÞ t�2 �
ðESþ�ðpÞÞ2þ�2

�ðkÞ
4

(2.42)

jF2ðk;Q;p;t�Þj2¼
ð��ðkÞ

2 t�Þ2þ4sin2½ðES��ðpÞÞt�2 �
ðES��ðpÞÞ2þ�2

�ðkÞ
4

:

(2.43)

These are sharply peaked distributions that feature
maxima at E ¼ 
�ðpÞ respectively with heights t2�
and widths’2�=t�, displayed in Fig. 2 for�ðpÞ¼1;

��ðkÞ ¼ 0:01; t� ¼ 2; 20. If 2�=t� > �ðpÞ the two
peaks are blurred into one broad peak, whereas if
2�=t���ðpÞ the peaks are separated, this is a

manifestation of the separation of mass eigenstates
in real time as a consequence of the energy-time
uncertainty, nevertheless, the product jF1F2j2 is
not only not vanishing but with large support at the
individual peaks. An important case is when ��¼0,
namely, a stationary source, which will be important
in the discussion below. In this case for large t�

jF1;2j2¼4
sin2½ðES��ðpÞÞ t�2 �

ðES��ðpÞÞ2 ’2�t��ðES��ðpÞÞ
(2.44)

whereas

jF1F2j¼4
sin½ðES��Þ t�2 �

ðES��Þ
sin½ðESþ�Þ t�2 �

ðESþ�Þ

¼sinð�t�Þ
�

�
sin½ðES��Þt��

ðES��Þ

þsin½ðESþ�Þt��
ðESþ�Þ

�
þ2

cosð�t�Þ
�

�
�
sin2½ðES��Þt�2 �

ðES��Þ �sin2½ðESþ�Þt�2 �
ðESþ�Þ

�
:

(2.45)

In the long time limit, in the first line we can replace

sin½ðES ��Þt��
ðES � �Þ ’ ��ðES ��Þ; (2.46)

whereas the second term is subleading in the
limit t�!1;�!0, therefore jF1F2j’sinð�ðpÞt�Þ=
ð�ðpÞt�ÞjF1;2j2, namely, in Eq. (2.35) the interfer-

ence term is of the same order as the direct terms for
�ðpÞt� � 1 but suppressed for �ðpÞt� � 1.

FIG. 2. The product jF1ðk; Q; p; t�ÞF2ðk; Q; p; t�Þj2 vs. ES in units of � for ��ðkÞ ¼ 0:01 for ��ðkÞt� � 1 for t� ¼ 2; 20
respectively.

1This suppression is not manifest in Fig. 1 because we have
chosen � as the overall scale for presentation purposes.
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We highlight that �ðpÞ ¼ �=tosc where tosc is the oscil-
lation time scale, therefore the conclusion from the analy-
sis above is that F1 ’ F2 when the smallest of T�ðkÞ,
t� � tosc and the time uncertainty due to either the life-

time of the source or the disentanglement time scale leads
to an energy uncertainty ’ ��ðkÞ, 2�=t� that cannot dis-

tinguish between the mass eigenstates, and the resulting
quantum state is similar to a Pontecorvo state, namely, a
coherent superposition of mass eigenstates leading to os-
cillations with the familiar quantum mechanical survival
probability.

On the other hand if T�ðkÞ, t� * tosc the mass eigenstates

separate in time as the energy uncertainty becomes smaller
than the distance between the broadened ‘‘delta functions’’,
the coherence and interference between the mass eigen-
states is suppressed by this separation and the disentangled
state is not of the form of a ‘‘Pontecorvo state’’.

The energy uncertainty is determined by the smallest of
the lifetime of the source and the disentanglement time
scale. When this uncertainty is larger than the energy sepa-
ration between neutrino mass eigenstates, the disentangled

quantum states is the Pontecorvo state, but if the uncertainty
is much smaller than the energy separation coherence and
oscillations are suppressed.
Therefore entanglement during a time scale of the order

of or longer than the oscillation time scale suppress co-
herence and oscillations.
These are some of the main results of this article.
These results were obtained from the free evolution of

the disentangled state, however, what is needed is an
assessment of how these considerations are manifest in
the energy spectrum of the charged leptons that are mea-
sured at the detector.

III. CHARGED LEPTON DETECTION:

To obtain the transition probability to a final state with a
charged lepton, which is the state finally detected, we must
go to first order in the charged current interaction in (2.5),
evolving the disentangled state jV�ðt�Þi up to time tD at

which the charged lepton is detected. In first order in the
charged current interaction we find from (2.31)

jV�ðtDÞið1Þ ¼ e�iH0tDð�igÞX
l

Z tD

t�

dt0
Z

d3xUliWð ~x; t0Þlð ~x; t0Þ�ið ~x; t0ÞeiH0t� jV�ðt�Þi: (3.1)

The contributions that yield aW and a charged lepton l in the final state correspond to annihilating the neutrino states from
jV�ðt�Þi and creating the final W, l. A straightforward calculation yields,

jV�ðtDÞið1Þ ¼ ð�igg�Þe�iE�ðQÞt�
X
l

X
~ql

V�l

�
Ul2

cosð�Þ
2�2ðpÞF2½k;Q; p; t��G2½p; ql; tD; t��

�Ul1

sinð�Þ
2�1ðpÞF1½k;Q; p; t��G1½p; ql; tD; t��

�
e�iEDtD jW~kw

ijl ~qli (3.2)

where

~p ¼ ~k� ~Q; ~kw ¼ ~p� ~ql; ED ¼ EWðkwÞ þ ElðqlÞ;
ES ¼ E�ðkÞ � E�ðQÞ�l ¼ ½V42E�ðkÞ2E�ðQÞ2EWðkwÞ2ElðqlÞ��1=2

(3.3)

and

Gi½p; ql; tD; t�� ¼
Z tD

t�

dt0eiðED��iðpÞÞt0 ¼ eiðED��iðpÞÞðtDþt�Þ=2 sin½ðED ��iÞðtD � t�Þ=2�
½ðED ��iÞ=2� (3.4)

The functions F1;2 and G1;2 determine approximate energy conservation at the production (F1;2) and detection (G1;2)
vertices, respectively.

The relevant observable is the energy distribution of the charged leptons measured in the detector, namely

N lð ~ql; tDÞ ¼ ð1ÞhV�ðtDÞjayl ð ~qlÞalð ~qlÞjV�ðtDÞið1Þ (3.5)

using �iðpÞ � E�ðpÞ in the denominators, we find

N �ð ~q�; tDÞ ¼
�
gg�V��

2E�ðpÞ
�
2
�
cos4ð�ÞjF2j2jG2j2 þ sin4ð�ÞjF1j2jG1j2 þ 1

2
sin2ð2�ÞRe½F2F

�
1G2G

�
1�
�

(3.6)

N eð ~qe; tDÞ ¼
�
gg�V�e

2E�ðpÞ
�
2 1

2
sin2ð2�Þ

�
1

2
jF2j2jG2j2 þ 1

2
jF1j2jG1j2 � Re½F2F

�
1G2G

�
1�
�
: (3.7)
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The term Re½F2F
�
1G2G

�
1� describes the interference

between the mass eigenstates that include the initial corre-
lation in the entangled quantum state (2.13).

As a guide, we note that if jF1j ¼ jF2j and jG1j ¼ jG2j
then one would find

N �ð ~q�;tDÞ

¼
�
gg�V��

2E�ðpÞ
�
2jF2j2jG2j2

�
1�sin2ð2�Þsin2

�
�

2

��
(3.8)

N eð ~qe; tDÞ ¼
�
gg�V�e

2E�ðpÞ
�
2jF2j2jG2j2

�
sin2ð2�Þsin2

�
�

2

��
(3.9)

where� is the total phase in the product inside the real part
in (3.6) and (3.7). Clearly the terms inside the brackets in
(3.8) and (3.9) are the disappearance P ��!��

and appear-

ance P ��!�e
probabilities associated with Pontecorvo

states, respectively.
The general case is obtained by replacing F1;2 by (2.16)

and G1;2 by (3.4)in the interference term

I ¼ Re½F2F
�
1G2G

�
1�: (3.10)

Before we study this interference term in detail, let us
consider again the direct terms jF1;2j2 and jG1;2j2. The
functions jF1;2j2 are sharply peaked at ES ¼ �iðpÞ, there-
fore consider integrating either one of these functions with
a density of states that is varies smoothly near �iðpÞ,Z 1

�1
�ðESÞjFij2dES��ð�iÞ

Z 1

�1
jFij2dES

��ð�iÞ2�T�ðkÞ½1�e���ðkÞt�� (3.11)

where we used Eq. (2.24) which implies the identification
(2.25). Similarly for large tD � t�Z 1

�1
�ðEDÞjGij2dED��ð�iÞ

Z
jGij2dED��ð�iÞ2�ðtD�t�Þ

(3.12)

hence just as in Fermi’s golden rule we identify

jGij2 ¼ 2�ðtD � t�Þ�ðED ��iÞ: (3.13)

Furthermore for �m2 & 1ðeVÞ2 which is the putative
mass range of sterile neutrinos to explain the short-baseline
anomalies, and typical neutrino energies E� * 3 Mev with
the lower range applying to reactor neutrinos, then � &
10�7ðeVÞ and �=E� & 10�14. In typical neutrino experi-
ments, the energy spectrum is measured with a finite
resolution and ‘‘binned’’, namely, integrated over an energy
range determined by the resolution, however, such
resolution is always much larger than 10�7 eV and in all
experiments the relative error in energy resolution�E=E �
10�14. The point is that the measurement resolution is
nowhere near enough to discriminate an energy difference
�ðpÞ between the energy eigenstates in the ‘‘binning’’, and

replacing �ðES;D�E���Þ!�ðES;D�E�Þ is an excellent

approximation. Therefore we can safely replace

jF1j2 ¼ jF2j2 ¼ 2�T�ðkÞ½1� e���ðkÞt���ðES � E�ðpÞÞ
¼ 2�T�ðkÞ½1� e���ðkÞt���ðESÞ: (3.14)

jG1j2 ¼ jG2j2 ¼ 2�ðtD � t�Þ�ðED � E�ðpÞÞ
¼ 2�ðtD � t�Þ�ðEDÞ: (3.15)

The approximations above rely on that F1;2; G1;2 are

distributions that are sharply peaked and they must be
understood as being integrated with density of states,
which experimentally are insensitive to the energy differ-
ence �ðpÞ between the neutrinos. Under these approxima-
tions, consider the product

F2F
�
1¼

1�2ei�ðpÞt�e���ðkÞt�=2cosðESt�Þþe2i�ðpÞt�e���ðkÞt�

ðES��ðpÞ�i��ðkÞ
2 ÞðESþ�ðpÞþi��ðkÞ

2 Þ
(3.16)

This function features two poles in the complex ES plane at
ES ¼ �ð�ðpÞ þ i��ðkÞ=2Þ, being integrated with a density
of states that is insensitive to �ðpÞ in the narrow width
approximationZ 1

�1
�ðESÞF2F

�
1dES ’ �ð0Þ

Z 1

�1
F2F

�
1dES (3.17)

the integral can be done and we find

Z 1

�1
F2F

�
1dES¼2�T�ðkÞ

2
41þi2�ðpÞ��ðkÞ
1þ4�2ðpÞ

�2
�ðkÞ

3
5½1�e2i�ðpÞt�e���ðkÞt��

(3.18)

using these results for �� ¼ 0 we obtainZ 1

�1
�ðEDÞG2G

�
1dED ’ �ð0Þð2�Þe�i�ðpÞðtDþt�Þ

� sin½�ðpÞðtD � t�Þ�
�ðpÞ (3.19)

Therefore, under the assumption that the experimental
binning is insensitive to the neutrino energy difference we
can safely approximate the direct terms as,

jF1j2 ¼ jF2j2 ¼ 2�T�ðkÞ½1� e���ðkÞt���ðESÞ
jG1j2 ¼ jG2j2 ¼ 2�ðtD � t�Þ�ðEDÞ;

(3.20)

and for the interference terms

F2F
�
1¼2�T�ðkÞ

�
1þiR
1þR2

�
½1�e2i�ðpÞt�e���ðkÞt���ðESÞ

G2G
�
1¼2�e�i�ðpÞðtDþt�Þsin½�ðpÞðtD�t�Þ�

�ðpÞ �ðEDÞ (3.21)

where we have introduced the ratio
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R ¼ 2�ðpÞ
��ðkÞ ¼

�
�m2

2M��0

�
E�ðkÞ
E�ðpÞ ; (3.22)

where �0 is the rest-frame decay width of the pion.
With these approximations, the number (density) of

charged leptons (muons) measured at disentanglement
time t� (2.18), is obtained by using the approximation

(2.25) and �iðpÞ ’ E�ðpÞ, we find

N �ð ~Q; t�Þ ¼ 2�g2�T�ðkÞ½1� e���ðkÞt��
½8VE�ðkÞE�ðQÞE�ðpÞ� �ðESÞ; (3.23)

and the number (density) of charged leptons measured at
the detector is given by

N �ðtDÞ ¼ N �ðt�Þd��!W�

�
ðcos4ð�Þ þ sin4ð�ÞÞðt� t�Þ

þ 1

2
sin2ð2�ÞT ½tD; t��

�
(3.24)

and

N eðtDÞ¼N �ðt�Þd��!We

1

2
sin2ð2�Þfðt�t�Þ�T ½tD;t��g

(3.25)

where

T ½tD;t��¼ 1

1þR2

1

1�e���ðkÞt�
sin½�ðpÞðtD�t�Þ�

�ðpÞ
�fðcos½�ðpÞðtDþt�Þ�þRsin½�ðpÞðtDþt�Þ�Þ
�e���ðkÞt�ðcos½�ðpÞðtD�t�Þ�
þRsin½�ðpÞðtD�t�Þ�Þg (3.26)

and

d��!Wl ¼
�
2�g2�ðED � E�ðpÞÞ
8VEWðkwÞElðqlÞE�ðpÞ

�
; (3.27)

is the differential charged lepton production rate from the
reaction � ! Wl for a neutrino of energy E� at the
detector.

These expressions become more familiar if we calculate
the detection rate as is the usual procedure in S-matrix
theory, we find the simpler results

dN �ðtDÞ
dtD

¼ N �ðt�Þd��!W�P�!�ðtDÞ (3.28)

dN eðtDÞ
dtD

¼ N �ðt�Þd��!WeP�!eðtDÞ; (3.29)

where the survival (disappearance) and appearance proba-
bilities are

P�!�ðtDÞ ¼ 1� 1

2
sin2ð2�Þ

�
1� 1

1þR2

1

1� e���ðkÞt�

� ½ðcos½2�ðpÞtD� þR sin½2�ðpÞtD�Þ
� e���ðkÞt�ðcos½2�ðpÞðtD � t�Þ�
þR sin½2�ðpÞðtD � t�Þ�Þ�

�
(3.30)

P�!eðtDÞ ¼ 1

2
sin2ð2�Þ

�
1� 1

1þR2

1

1� e���ðkÞt�

� ½ðcos½2�ðpÞtD� þR sin½2�ðpÞtD�Þ
� e���ðkÞt�ðcos½2�ðpÞðtD � t�Þ�
þR sin½2�ðpÞðtD � t�Þ�Þ�

�
(3.31)

These expressions are in agreement with the previous
discussion: when �� � 2�ðpÞ and tD � t� (or tosc � t�)

the mass eigenstates cannot be discriminated during the
lifetime of the source, R ! 0 and the appearance and
disappearance probabilities are given by the usual result

P�!�ðtDÞ ¼ 1� sin2ð2�Þsin2
�

�m2

4E�ðpÞ tD
�
;

P�!eðtDÞ ¼ sin2ð2�Þsin2
�

�m2

4E�ðpÞ tD
�
:

(3.32)

However, in the opposite limit 2�ðpÞ � ��ðkÞ, namely
R � 1 or tosc ’ t� the mass eigenstates are completely

separated by the time evolution and the oscillation proba-
bilities are suppressed.
The origin of the discrepancy between between the

probabilities (3.30) and (3.31) and the familiar results given
by (3.32) is traced to the interference term Re½F2F

�
1G2G

�
1�,

the functions Fj,Gj are completely determined by the time

evolution of the quantum state and describe the approxi-
mate energy conservation at the production and detection
vertices. The functions F1;2 describe the initial correlations

in the entangled quantum state (2.13).
Therefore the physical reason behind the difference be-

tween the probabilities (3.30), (3.31), and (3.32) is that the
time scales associated with the lifetime of the source and the
entanglement of the charged lepton define energy uncertain-
ties which determinewhether the mass eigenstates are sepa-
rated during these time scales or not. Short lifetimes and
disentanglement time scales (T�ðkÞ; t� � tosc) introduce

large energy uncertainties and the mass eigenstates are
‘‘blurred’’ into a Pontecorvo state which yields the usual
quantummechanical result (3.32). In the opposite limit, long
lifetime and disentanglement scales (T�ðkÞ; t� � tosc) lead

to small energy uncertainties and the mass eigenstates are
separated leading to decoherence which is manifest in the
expressions (3.30) and (3.31) in terms ofR and t�.

It is important to highlight that the factorization in (3.28)
and (3.29) is a direct consequence of the fact that the
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binning or energy resolution in all current experiments
cannot distinguish the energy difference between the
mass eigenstates �ðpÞ & 10�7 eV and energy resolutions
�ðpÞ=E�ðpÞ & 10�14 therefore the approximations (3.14)
and (3.15) are amply justified.

The interplay between the lifetime of the source and the
disentanglement time scale and the suppression of the
oscillatory component of the transition probabilities is
more clearly exhibited in two simple cases:

Case I: ��ðkÞt� � 1: This corresponds to a disentan-

glement time scale much larger than the lifetime of the
source, in which case the energy uncertainty is determined
by ��.

In this case

P�!�ðtDÞ ¼ 1� 1

2
sin2ð2�Þ

�
1� 1

1þR2
½cos½2�ðpÞtD�

þR sin½2�ðpÞtD��
�

(3.33)

P�!eðtDÞ ¼ 1

2
sin2ð2�Þ

�
1� 1

1þR2
½ðcos½2�ðpÞtD�

þR sin½2�ðpÞtD�Þ�
�

(3.34)

This expressions make clear that when �ðpÞ � ��ðkÞ,
namely, for R � 1 oscillations are suppressed in agree-
ment with the analysis presented in the previous section.
The suppression is a consequence of the separation of the
mass eigenstates and the ensuing loss of coherence.

Note that whereas the usual expressions (3.32) valid for
R ¼ 0 are such that P�!� ! 1;P�!e ! 0 as tD ! 0,

for R � 0 this is not the case, because the expressions
(3.33) and (3.34) only hold for tD > t� � T�.

Case II: ��ðkÞt� � 1:

In this case the disentanglement time scale is much
shorter than the lifetime of the source, namely, the source
is nearly stationary during the time scale of disentangle-
ment and we can simply approximate this case by taking
��ðkÞ ! 0. This approximation correctly describes the fact
that the main energy uncertainty is determined by 2�=t� as

explained following Eqs. (2.42) and (2.43). In this case we
find

Fj ¼ e�iESt�=2ei�jt�=22i
sin½ðES ��jÞt�=2�

½ES ��j� (3.35)

and invoking the same approximations as in the previous
case we find

jF1j2 ¼ jF2j2 ¼ 2�t��ðES � E�ðpÞÞ (3.36)

N �ð ~Q; t�Þ ¼
2�g2�t��ðES � E�ðpÞÞ
½8VE�ðkÞE�ðQÞE�ðpÞ� : (3.37)

The interference term is given by

Re½F2F
�
1G2G

�
1�

¼ cosð�ðpÞtDÞ
sinð�ðpÞt�Þ

�ðpÞ
sinð�ðpÞðtD � t�ÞÞ

�ðpÞ
� ð2�Þ�ðES � E�ðpÞÞð2�Þ�ðED � E�ðpÞÞ; (3.38)

leading to the final results

dN �ðtDÞ
dtD

¼ N �ðt�Þd��!W�P�!�ðtDÞ (3.39)

dN eðtDÞ
dtD

¼ N �ðt�Þd��!WeP�!eðtDÞ; (3.40)

where the survival (disappearance) and appearance proba-
bilities are

P�!�ðtDÞ ¼ 1� 1

2
sin2ð2�Þ

�
1� sinð�ðpÞt�Þ

�ðpÞt�
� cos

�
2�ðpÞ

�
tD � t�

2

���
(3.41)

P�!eðtDÞ ¼ 1

2
sin2ð2�Þ

�
1� sinð�ðpÞt�Þ

�ðpÞt�
� cos

�
2�ðpÞ

�
tD � t�

2

���
: (3.42)

As �ðpÞt� ! 0, namely, when t�=tosc ! 0, the expres-

sions for the probabilities become the familiar ones, but
for �ðpÞt� � 1 the expressions above display two sources

of suppression through entanglement: the prefactor
sinð�ðpÞt�Þ=�ðpÞt�, and also a shortening of the effective
baseline from L ¼ ctD to Leff ¼ cðtD � t�

2 Þ.

IV. IMPLICATIONS FOR ACCELERATOR
AND REACTOR EXPERIMENTS:

The discussion of the previous sections hinges on two
generation mixing, however, if sterile neutrinos are the
correct explanation of the short-baseline anomalies then

sin 2ð2�Þ ! 4jUe4j2jU�4j2: (4.1)

It is convenient to write the probabilities in terms of the
baseline L ¼ ctD and introduce the disentanglement
length of the muon Ld ¼ ct�, writing as usual

�ðpÞtD ¼ 1:27
�m2

eV2

L=m

E�ðpÞ=MeV
;

�ðpÞt� ¼ 1:27
�m2

eV2

Ld=m

E�ðpÞ=MeV

(4.2)

and

�ðpÞ ¼ 1:27
�m2

eV2

MeV

E�ðpÞ 	
�

Losc=m
: (4.3)

The disappearance and appearance probabilities are
given by
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P�!�ðLÞ ¼ 1� 1

2
sin2ð2�Þ

�
1� 1

1þR2

1

1� e�Ld=L�ðkÞ

� ½ðcos½2�ðpÞL� þR sin½2�ðpÞL�Þ
� e�Ld=L�ðkÞðcos½2�ðpÞðL� LdÞ�
þR sin½2�ðpÞðL� LdÞ�Þ�

�
(4.4)

P�!eðLÞ ¼ 1

2
sin2ð2�Þ

�
1� 1

1þR2

1

1� e�Ld=L�ðkÞ

� ½ðcos½2�ðpÞL� þR sin½2�ðpÞL�Þ
� e�Ld=L�ðkÞðcos½2�ðpÞðL� LdÞ�
þR sin½2�ðpÞðL� LdÞ�Þ�

�
(4.5)

where L�ðkÞ ¼ c=��ðkÞ is the decay length2 of the parent
particle (pion).

For neutrinos produced from pion decay the ratio R
(3.22) becomes

R ¼ 2�
L�ðkÞ

LoscðE�Þ ¼ 0:14
�m2

ðeVÞ2
�
E�ðkÞ
E�ðpÞ

�
(4.6)

therefore, R ’ 1 for �m2 ’ ðeVÞ2 which is the range
of masses for sterile neutrinos that could solve the
short-baseline anomalies, and in the case of MiniBooNE
1 & E�=E� & 6.

Remarkably, Eq. (4.4) is exactly the same as Eq. (23) in
Ref. [46] where R is equivalent to the quantity 	 and L�

replaces the ‘‘pipeline’’ ld in this reference. Hence, the
result of Ref. [46] can be interpreted as disentangling
the muon at the distance ld which is identified with the
pipeline.

Both LSND and MiniBooNE are designed with
ðL=mÞ=ðE�=ðMeVÞ ’ 1.

At MiniBooNE a neutrino beam is obtained from pions
that decay in a decay ‘‘pipe’’ ’ 50 m long, and neutrinos
go through ’ 500 m of ‘‘dirt’’ before reaching the detector
determining a baseline L� 550 m with a peak energy in
the neutrino spectrum at about 600–1000 MeV. At
MiniBooNE muons with �GeV energy are stopped at a
distance ’ 4 m in the dirt thus Ld ’ 54 m.3

Figure 3 displays these probabilities for the set of
parameters consistent with (one) sterile neutrino with
�m2 ’ 1 eV2; sin2ð2�Þ ¼ 0:2 and MiniBooNE baseline
and range of neutrino energies.

The figure shows that the appearance probability is sup-
pressed as compared to the quantum mechanical result, the
suppression being more pronounced at smaller energy

where R is larger (see below). Although for R � 0 the
probabilities cannot be fit by the usual quantum mechani-
cal result in the full energy range, a fit of the form

P �!eðLÞ ¼ sin2ð2�effÞsin2
�
�m2

eff

4E�

L

�
(4.7)

in a restricted energy range would lead to

sin 2ð2�effÞ< sin2ð2�Þ; �m2
eff < �m2 (4.8)

as can be seen from the position of the maxima of the
appearance probability: lower in amplitude (smaller mixing
angle) and moving towards smaller energy (smaller �m2).
For the case of MiniBooNE the fit is shown in Fig. 4

FIG. 3 (color online). Appearance P�!e probability vs.
E�ðMeVÞ for MiniBooNE parameters. The solid line(s) corre-
spond to (4.5) for E�ðkÞ ¼ 1; 2 GeV (indistinguishable on the
scale of the figure). The dashed line corresponds to the quantum
mechanical probability P�!e (3.32).

FIG. 4 (color online). Fit of P�!e vs. E�ðMeVÞ for
MiniBooNE parameters and E� ¼ 1 GeV. For sin2ð2�Þ ¼ 0:2,
�m2 ¼ 1 eV2 the fit yields sin2ð2�effÞ ¼ 0:198, �m2

eff ¼
0:975 eV2.

2For E�ðkÞ * 1 GeV the Lorentz factor 
 * 7 and we ap-
proximate �� 1.

3The author is indebted to William C. Louis III for extensive
correspondence clarifying these experimental aspects of the
MiniBooNE experiment.
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Because in this situation Ld ’ L�ðkÞ � L decoherence
from the source lifetime or entanglement does not lead to
experimentally substantial corrections.

Although not relevant for the MiniBooNE experiment,
but as an illustrative example to display the effects of
decoherence on the transition probabilities as a conse-
quence of long distance entanglement, we consider the
case Ld � L�ðkÞ, in which case the probabilities (4.4) and
(4.5) simplify to

P�!�ðLÞ ¼ 1� 1

2
sin2ð2�Þ

�
1� 1

1þR2
½ðcos½2�ðpÞL�

þR sin½2�ðpÞL�Þ�
�

(4.9)

P�!eðLÞ ¼ 1

2
sin2ð2�Þ

�
1� 1

1þR2
½ðcos½2�ðpÞL�

þR sin½2�ðpÞL�Þ
�

(4.10)

These are displayed in Fig. 5 for L ¼ 600 m, �m2 ¼
1 eV2, sin2ð2�Þ ¼ 0:2, E�ðkÞ ¼ 1; 2 GeV.

Figure 6 displays the appearance probability given by
(3.31), for the parameters E� ¼ 2000 MeV; �m2 ¼
1 eV2; L ¼ 600 m; sin2ð2�Þ ¼ 0:2 (solid line) and the
best fit to the quantum mechanical probability (4.7) result-
ing in �m2

eff ¼ 0:71 eV2; sin2ð2�effÞ ¼ 0:185. Several as-
pects are clarified by this example: (i) the suppression by
lifetime and disentanglement effects leads to an under-
estimate of both �m2, sin2ð2�Þ, (ii) the fit is reliable only
within an intermediate energy range, much less reliable in
the low energy region, (iii) the ratio R implies that there
are more parameters than the amplitude sin2ð2�Þ and the
ratio LðmÞ=E�ðMeVÞ.

Therefore, since the experimental data is always fit
with the usual quantum mechanical formula, the values
of sin2ð2�Þ; �m2 from the fit actually correspond to
sin2ð2�effÞ; �m2

eff the above analysis leads to conclude

that decoherence from the decay of the parent particle

and the disentanglement of the charged lepton imply a
larger value of the mixing angle and �m2 from those
extracted from the fit to the usual quantum mechanical
probability.
As shown above for the parameters of MiniBooNE,

decoherence through lifetime and entanglement effects
yield very small corrections, however the principal and
fundamental observation remains, namely, lifetime or dis-
entanglement time scales similar to or larger than the
oscillation time scale lead to decoherence and suppression
of the appearance probabilities. A quantum mechanical fit
yield effective values �eff , �m

2
eff which are smaller than the

actual values.
In our analysis, we have assumed that the entangled

quantum state arises from the two-body decay of a parent
particle (here considered to be the pion), however at LSND
the (anti) neutrino beam is produced by the three-body

FIG. 5 (color online). Disappearance P�!� and appearance P�!e probabilities vs. E�ðMeVÞ for L ¼ 600 m, �m2 ¼ 1 eV2,
sin2ð2�Þ ¼ 0:2. The value E� ¼ 0 refers to R ¼ 0, the usual quantum mechanical result for the probabilities.

FIG. 6 (color online). Disappearance P�!� for MiniBooNE
parameters: the dashed line is the result with E� ¼ 2000 MeV;
�m2 ¼ 1 eV2; sin2ð2�Þ ¼ 0:2, the solid line is a fit with the
quantum mechanical probability (4.7) with �m2

eff ¼ 0:71 eV2;

sin2ð2�effÞ ¼ 0:185. L ¼ 600 m.
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decay of a muon at rest, whereas at reactors the (anti)
neutrinos are produced via the � decay of long-lived
unstable nuclei 235U, 238U, 239Pu, 241Pu [37,38]. Although
the actual calculation presented in the previous section for
the exact entangled state does not directly apply to the
description of the quantum states of neutrinos produced at
LSND and of reactor experiments, in absence of a more
detailed understanding of the entangled quantum state re-
sulting from the three body nuclear� decay, wewill use the
result (2.13) with the caveat of possible corrections arising
from three body phase space effects.

At LSND muon antineutrinos are produced from �þ !
�þ�� followed by �þ ! eþ�e ��� where most of the

muons decay at rest. The resulting ��� beam attains the

maximum energy at the Michel end point 52.8 MeV and
the liquid scintillator detector is located about L ¼ 30 m
from the neutrino source. Since L � c�� ’ 660 m for

LSND it follows that ��t� � 1 (the relevant decay width

now is the muon’s as the parent particle) and this corre-
sponds to case II (nearly stationary case) with Ld the disen-
tanglement length. The same limit applies to reactor
experiments where neutrinos are produced from nuclear �
decay of long-lived radiaoactive nuclei, therefore for LSND
and reactor experiments the disappearance and appearance
probabilities are given by,

P�!�ðLÞ ¼ 1� 1

2
sin2ð2�Þ

�
1� sinð�ðpÞLdÞ

�ðpÞLd

� cos

�
2�ðpÞL

�
1� Ld

2L

���
(4.11)

P�!eðLÞ ¼ 1

2
sin2ð2�Þ

�
1� sinð�ðpÞLdÞ

�ðpÞLd

� cos

�
2�ðpÞL

�
1� Ld

2L

���
: (4.12)

In Ref. [26] it was also recognized that the muon life-
time does not affect the transition probabilities at LSND,

however, the effect of disentanglement has not been previ-
ously recognized.
In LSND, the detector is at L ¼ 30 m from the neutrino

source and is shielded by the equivalent of 9 m of steel[50]
which then should be taken as a figure of merit for Ld &
20 m. At reactor experiments a figure of merit could be the
size of the reactor core, at CHOOZ [51] it is approximately
’ 4 mwith a baseline 100 m & L & 1 km, although, quite
likely these figures of merit for Ld overestimate the disen-
tanglement length scale both in LSND and in reactor
experiments. Unlike the case of MinibooNE where the
suppression factor is mainly determined by the pion decay
length, at LSND and reactor experiments the disentangle-
ment scale Ld is less certain.
Thus we take Ld as a parameter and study the disappear-

ance and appearance probabilities within the range 0 m &
Ld & 15 m to illustrate the consequences of decoherence
from entanglement and to extract the main conclusions.
These are displayed in Fig. 7.
These figures reveal a situation very similar to that

analyzed above for MiniBooNE. Larger disentanglement
lengths Ld lead to a larger suppression of the appearance
probability. Similarly, a fit to the experimental data with
the usual quantum mechanical appearance probability re-
sults in an underestimate of both sin2ð2�Þ and �m2 for the
same reasons analyzed above.

V. COMMENTS ON WAVE-PACKETS:

The study in this article was restricted to plane waves to
exhibit the main results and conclusions in the clearest
possible setting. As has been argued in the literature
[16,17,20,23–25] wave-packet localization is an important
ingredient in the description of neutrino oscillations.
The localization length both of the production and detec-
tion regions define momentum uncertainties that are
important in the conceptual understanding of the interfer-
ence phenomena.

FIG. 7 (color online). Disappearance P�!� and appearance P�!e probabilities vs. E�ðMeVÞ for LSND and reactor parameters. The
value Ld ¼ 0 refers to the usual quantum mechanical result for the probabilities.
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Furthermore, in our calculation the disentanglement t�
and detection tD times are sharp, this is a consequence of
calculating the transition matrix elements in finite time
intervals, however, the wave-packet treatment smears these
times over the time scale during which the wave-packet
overlaps with the detectors which is the appropriate physi-
cal description of the detection events.

The analysis in [16,17,20,23–25,52] (typically with
Gaussian wave-packets) clarifies that neutrino wave-
packets evolve semiclassically, the center moves as the
front of a plane wave with the group velocity and is modu-
lated by a Gaussian envelope which spreads through dis-
persion. Wave-packets associated with the different mass
eigenstates separate as they evolve with slightly different
group velocities and when their separation becomes of the
order of or larger than the width of the wave-packet the
overlap vanishes and oscillations are suppressed, typically
exponentially in the ratio L2=L2

coh where Lcoh ’ E2
�=�m

2

and  is the spatial localization scale of the wave-packet.
As discussed in [53] the wave-packet description also fea-
tures another source of decoherence in the localization
term, which suppresses coherence when > Losc.

However, it should be clear from the discussion and
results presented above, that energy uncertainties from
the width of the parent particle, disentanglement time
scales, finite time intervals between production and detec-
tion and experimental measurements are sufficient to guar-
antee interference and oscillations. Entanglement over
long distances and time scales introduces decoherence in
a quantifiable manner. Introducing wave-packets will mod-
ify the results only quantitatively but by no means funda-
mentally: a wave-packet is a linear superposition of plane
waves and the analysis for each plane wave described
above can be generalized to such superposition. One aspect
that relies on a wave-packet description is the detection:
the total number of events is obtained by the event rates
multiplied by the total time that the wave-packet takes to
pass through the detector. For ultrarelativistic neutrinos
this is of order =c since spreading through dispersion
can be neglected on short baselines, therefore the total
number of events is given by the rates (3.39) and (3.40)
multiplied by =c, obviously this will not change the
distortion of the spectrum determined by the oscillations
in the appearance and disappearance probabilities. Another
correction is the geometric flux factor which again for short
baselines can be neglected. As found in Refs. [18,26,34]
including the lifetime of the source in the wave-packet
evolution introduces another length scale (the decay length
of the parent particle) which competes with the localization
length of the wave-packet. As discussed above, wave-
packet localization will not affect oscillations unless
the wave-packets corresponding to the different mass
eigenstates begin to separate. For �m2 ’ 1 eV2 E� �
MeV nd L� 100 m the criterion for separation over the

baseline would require a localization length  & 1 �A, this

estimate is much larger than the nuclear radius for unstable
nuclei, thus decoherence via the separation of the wave-
packets of mass eigenstates may be another source of
decoherence if the localization length scale of the wave-
packets is of nuclear dimensions.
Thus we conclude that the results obtained with the

plane wave analysis will apply vis a vis to the case of
wave-packets, unless the source of decoherence associated
with the separation of wave-packets of mass eigenstates
introduces enough decoherence as to dwarf the effects
discussed here. On the short-baseline experiments consid-
ered here this would require localization lengths &
10�10 m for reactor experiments and & 10�15 m for ac-
celerator experiments.
Strengthening these arguments requires (and warrants) a

full study of the complete description of disentanglement
and lifetime effects in a wave-packet formulation. Of
particular importance is whether for �m2 � eV2; E� �
few MeV wave-packet localization on nuclear scales can
be a source of decoherence in reactor experiments. The
results of this study will be presented elsewhere [47].
Wave-packets vs. disentanglement:
Decoherence through lifetime and disentanglement is

fundamentally and conceptually different from decoher-
ence in the wave-packet formulation. Neutrino wave-
packets manifestly describe single particle states that are
spatially localized, the spatial localization introduces un-
certainty in the momentum, and in this formulation deco-
herence is a consequence of the separation in space of the
wave-packets associated with the different mass eigen-
states. As explained in Ref. [53] there are two sources of
decoherence: one resulting from the separation of the
wave-packets of different mass eigenstates through their
different group velocity, and another determined by a
localization term (see Eq. (8.114) in Ref. [12]) which
results in decoherence for  � Losc.
Entanglement, on the other hand, refers to the fact that

the quantum state that results from the decay of the parent
particle is a correlated many-particle state, the correlation
between the charged lepton and the neutrino(s) is manifest

in the coefficients Cið ~k; ~q; ~p; tÞ in the quantum state (2.13).
These coefficients are time dependent and describe the
approximate conservation of energy at the production ver-
tex. A single particle neutrino state is obtained by projec-
tion of the charged lepton state, this projection is the
quantum mechanical manifestation of the observation, ab-
sorption or decay of the charge lepton and disentangles the
(two-body) quantum state at a time scale t�. These corre-

lations are precisely the origin of the termsF1;2 which enter

in the interference term (3.10) and are, therefore, the origin
of the difference with the familiar quantum mechanical
result. In this description the lifetime of the source and
t� determine energy uncertainties as explained in the

previous sections. Decoherence ensues when the energy
uncertainty is much smaller than the energy separation
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between the mass eigenstates. This source of decoherence
is obviously independent of the spatial localization
of the quantum state and is present even for plane waves,
unlike wave-packet decoherence. Although decoherence in
the wave-packet and disentanglement formulations are
physically and conceptually different, they are indeed
complementary and both will be present in a complete
wave-packet description of neutrino oscillations. For ex-
ample as discussed in Ref. [53] if a neutrino wave-packet
produced by the decay of a parent particle of width � is
assigned a localization length 1=� then the condition for
decoherence from the localization term  ’ Losc becomes
equivalent to � ’ �ðpÞ which is the condition which re-
sults from the disentanglement analysis in the case when
the lifetime is shorter than the disentanglement time scale.
However, obviously this cannot be the case for reactor
neutrinos since the lifetime of the parent particle is thou-
sands of years and the relevant scale is the disentanglement
length scale as discussed above.

VI. CONCLUSIONS AND FURTHER QUESTIONS:

Accumulating evidence for anomalies in short-baseline
experiments pointing towards a change in the current
paradigm of neutrino oscillations resulting from the mixing
among three active species, will likely motivate further
accelerator and reactor short-baseline experiments. The
firm assessment of new sterile neutrinos as possible ex-
planations of the data warrant a deeper understanding of
quantum coherence that determine the appearance and
disappearance probabilities.

The realization that the neutrino states produced in
charged current interaction vertices are quantum entangled
states of the neutrino and its flavor charged lepton partner
call for a reexamination of the usual quantum mechanical
description of neutrino oscillations as simple two level
systems (for two neutrinos mixing). The measurement, ab-
sorption or decay of the charged lepton leads to the disen-
tanglement of the quantum state, but the resulting neutrino
state features the correlations from the prior entanglement.

The disentanglement of this correlated quantum state is
a necessary condition for coherence between the mass
eigenstates leading to oscillations, entanglement over
long time scales project out energy eigenstates preventing
oscillations. The usual Pontecorvo (quantum mechanical
states) emerge if the disentanglement time scale is much
smaller than the oscillation scale. This is a consequence of
the time-energy uncertainty: for disentanglement time
scales shorter than the oscillation time, the uncertainty in
energy cannot discriminate between the different mass
eigenstates, the longer the entanglement time scale the
smaller the energy uncertainty and the mass eigenstates
become sharply defined in the correlated state leading to a
suppression of the oscillation probability.

In this article we find that both the entanglement with
the charged lepton and the lifetime of the source that

produces the neutrino beam lead to a suppression of the
appearance probabilities. The relevant dimensionless pa-
rameter that quantifies decoherence by both effects is the
ratio �Ls=Losc where Ls is the smaller between the decay
length of the parent particle (source) and the disentangle-
ment length scale.
We obtain the corrections to the disappearance and

appearance probabilities both from entanglement and life-
time effects in a model which captures in a clear and
reliably manner the main features of the production, evo-
lution and detection of mixed states.
For MiniBooNE, the most important source of suppres-

sion is the decay length of the pions that produce the neutrino
beam which is of the same order as the disentanglement
length for the muons, whereas at LSND and reactor experi-
ments, the disentanglement distance is the relevant scale that
determines the suppression, for LSND this is because neu-
trinos are produced by muons decaying at rest while in
reactor experiments neutrinos are produced via � decay of
long-lived radioactive sources, in both cases the disentan-
glement time scale is shorter than the lifetime of the source.
Short-baseline experiments imply small Losc therefore

the impact of disentanglement and source lifetime is larger
in these experiments. The suppressions of the oscillation
probabilities are more pronounced at lower energies and
are more dramatic for �m2 � 1 eV2 which is the mass
range for sterile neutrinos proposed as possible explana-
tions of the short-baseline anomalies.
Our main results are the general disappearance and

appearance probabilities given by Eqs. (4.4) and (4.5).
These simplify to Eqs. (4.11) and (4.12) when the disen-
tanglement time scale is much shorter than the lifetime of
the source, this is the case in reactor experiments (neutri-
nos at reactors are produced by � decay of long-lived
radioactive nuclei) and at LSND. The determination of
the scale Ld is cleaner in accelerator experiments where
the neutrino beam is produced by pion decay (either at rest
or in flight). However, for MiniBooNE the corrections are
relatively small because the disentanglement length scale
is of the order of the pion decay length and both are much
smaller than the baseline. In reactor experiments Ld is
more difficult to establish, a figure of merit is the size of
the reactor core, but this estimate is probably too simplistic
and overestimates the disentanglement length.
While the experimental impact of the corrections in cur-

rent experiments is relatively small, this work suggests that
in the analysis of the data, the issue of disentanglement
length scalemust be addressed for a consistent interpretation
of the results. An important corollary of our results is that
fitting the experimental data with the usual quantum me-
chanical expressions for appearance and disappearance
probabilities underestimates both sin2ð2�Þ and �m2,
furthermore this fit to the data differs substantially at low
neutrino energy from the correct expression for the proba-
bilities that include both the lifetime and disentanglement
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suppression, since the suppression is larger at smaller ener-
gies (shorter Losc).

An aspect that remains to be explored further is the
description of neutrino propagation in terms of wave-
packets: the source and detector are spatially localized, in
particular, the localization of the source entails that the
neutrinos are produced in entangled wave-packets, the
disentanglement of the charged lepton brings in another
localization scale (at which the charged lepton is measured,
absorbed or decays) which also influences the disentangled
neutrino state. Wave-packet localization also introduces
yet another decoherence length scale Lcoh / E2

�=�m
2

where  is the spatial localization scale of the wave-
packet. For �m2 ’ 1 eV2 sterile neutrinos in reactor ex-
periments it is possible that Lcoh & Losc which would result
in yet another source of decoherence and suppression of
oscillations. These aspects are currently being studied and
will be reported in a forthcoming study [47].

Finally, it is worth commenting that quantum entangle-
ment is also ubiquitous in B-meson oscillations, where the
process of ‘‘flavor’’ tagging actually disentangles the en-
tangledB0

q � �B0
q state produced by	ð4sÞ decay [28,54,55],

and quantum entanglement of the C ¼ �1 �BsBs pair pro-
duced in the decay of the 	ð5sÞ has been invoked for a
determination of the width difference [56]. Thus neutrino
mixing is yet another fascinating manifestation of quantum
entanglement in a system that maintains macroscopic
quantum coherence over scales of kilometers. Fascinating
examples of quantum entanglement on macroscopic scales
are also emerging in other unlikely systems: photosynthesis
in light harvesting complexes [57] and perhaps most sur-
prising and provocative, as a possible explanation of the
‘‘avian compass’’ [58].
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APPENDIX A: THE WIGNER-WEISSKOPF
METHOD

For completeness we give a detailed presentation of the
field theoretical version of the Wigner-Weisskopf approxi-
mation as it is not widely available in the literature.

Consider a system whose Hamiltonian H ¼ H0 þHI

where H0 is the free field Hamiltonian and HI the interac-
tion. The time evolution of states in the interaction picture
of H0 is given by

i
d

dt
j�ðtÞiI ¼ HIðtÞj�ðtÞiI; (A1)

where the interaction Hamiltonian in the interaction
picture is

HIðtÞ ¼ eiH0tHIe
�iH0t (A2)

This has the formal solution

j�ðtÞiI ¼ Uðt; t0Þj�ðt0ÞiI (A3)

where the time evolution operator in the interaction picture
Uðt; t0Þ obeys

i
d

dt
Uðt; t0Þ ¼ HIðtÞUðt; t0Þ: (A4)

Now we can expand

j�ðtÞiI ¼
X
n

CnðtÞjni (A5)

where jni form a complete set of orthonormal eigenstates
of H0; in the quantum field theory case these are many-
particle Fock states. From Eq. (A1) one finds the exact
equation of motion for the coefficients CnðtÞ, namely

_C nðtÞ ¼ �i
X
m

CmðtÞhnjHIðtÞjmi: (A6)

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert
space of states spanned by fjnig is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in HI. Thus consider the
situation depicted in Fig. 8 where one state, jAi, couples
to a set of states fj�ig, which couple back to jAi via HI.
Under these circumstances, we have

_CAðtÞ ¼ �i
X
�

hAjHIðtÞj�iC�ðtÞ (A7)

_C �ðtÞ ¼ �iCAðtÞh�jHIðtÞjAi (A8)

where the sum over � is over all the intermediate states
coupled to jAi via HI.
Consider the initial value problem in which at time t ¼ 0

the state of the system j�ðt ¼ 0Þi ¼ CAð0ÞjAi, namely

C�ðt ¼ 0Þ ¼ 0: (A9)

We can solve Eq. (A8) and then use the solution in Eq. (A7)
to find

C�ðtÞ ¼ �i
Z t

0
h�jHIðt0ÞjAiCAðt0Þdt0 (A10)

_CAðtÞ ¼ �
Z t

0

Aðt� t0ÞCAðt0Þdt0 (A11)

FIG. 8. Transitions jAi $ j�i in first order in HI.
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where, using (A2) we find


Aðt� t0Þ ¼ X
�

hAjHIðtÞj�ih�jHIðt0ÞjAi

¼ X
�

jhAjHIð0Þj�ij2eiðEA�E�Þðt�t0Þ (A12)

This integro-differential equation with memory yields a
nonperturbative solution for the time evolution of the
amplitudes and probabilities. Inserting the solution for
CAðtÞ into Eq. (A10) one obtains the time evolution of
amplitudes C�ðtÞ from which we can compute the time-
dependent probability to populate the state j�i, jC�ðtÞj2.
This is the essence of the Weisskopf-Wigner [48] non-
perturbative method ubiquitous in quantum optics [49]
and the decay formalism of K0 � �K0 mixing[59].

The hermiticity of the interaction Hamiltonian HI,
together with the initial conditions in Eqs. (A9) yields
the unitarity conditionX

n

jCnðtÞj2 ¼ 1: (A13)

Equation (A11) can be solved exactly via Laplace trans-
form [60], however, in weak coupling, the time evolution
of CAðtÞ determined by Eq. (A11) is slow in the sense that
the time scale is determined by a weak coupling kernel

 / H2

I . This allows us to use a Markovian approximation
in terms of a consistent expansion in derivatives of CA [60].
Define

W0ðt; t0Þ ¼
Z t0

0

Aðt� t00Þdt00 (A14)

so that


Aðt� t0Þ ¼ d

dt0
W0ðt; t0Þ; W0ðt; 0Þ ¼ 0: (A15)

Integrating by parts in Eq. (A11) we obtainZ t

0

Aðt� t0ÞCAðt0Þdt0 ¼ W0ðt; tÞCAðtÞ

�
Z t

0
W0ðt; t0Þ d

dt0
CAðt0Þdt0: (A16)

The second term on the right hand side is formally of fourth
order in HI and we see how a systematic approximation
scheme can be developed. Setting

W1ðt; t0Þ ¼
Z t0

0
W0ðt; t00Þdt00; W1ðt; 0Þ ¼ 0 (A17)

and integrating by parts again, we findZ t

0
W0ðt; t0Þ d

dt0
CAðt0Þdt0 ¼ W1ðt; tÞ _CAðtÞ þ    (A18)

leading toZ t

0

ðt;t0ÞCAðt0Þdt0 ¼W0ðt;tÞCAðtÞ�W1ðt;tÞ _CAðtÞþ

(A19)

This process can be implemented systematically result-
ing in higher order differential equations. Up to leading

order in this Markovian approximation the equation
Eq. (A11) becomes

_CAðtÞ½1�W1ðt; tÞ� þW0ðt; tÞCAðtÞ ¼ 0 (A20)

with the result

CAðtÞ¼e�i
R

t

0
Eðt0Þdt0 ;

EðtÞ¼ �iW0ðt;tÞ
1�W1ðt;tÞ’�iW0ðt;tÞ½1þW1ðt;tÞþ�

(A21)

To leading order in the interaction (OðH2
I Þ) we keep EðtÞ ¼�iW0ðt; tÞ. Note that in general EðtÞ is complex. In the long

time limit and using the representation (A12) we findZ 1

0

Að�Þd�¼ i

X
�

jhAjHIð0Þj�ij2
ðEA�E�þ i0þÞ	 i�EAþ�A

2
(A22)

where

�EA ¼ P
X
�

jhAjHIð0Þj�ij2
ðEA � E�Þ (A23)

is the energy shift in agreement with second order pertur-
bation theory, and

�A ¼ 2�
X
�

jhAjHIð0Þj�ij2�ðEA � E�Þ (A24)

this result for the width is in agreement with Fermi’s
golden rule. Finally, in the Markovian approximation the
Wigner-Weisskopf method yields

CAðtÞ ¼ CAð0Þe�i�EAte�ð�A=2Þt: (A25)

This solution agrees with the exact solution via Laplace
transform [60].4 Inserting this result into Eq. (A10) we find

C�ðtÞ ¼ �iCAð0Þh�jHIð0ÞjAi
Z t

0
e�iðEr

A
�E��ið�A=2ÞÞt0dt0

¼ �CAð0Þh�jHIð0ÞjAi
�
1� e�iðEr

A
�E��ið�A=2ÞÞt

Er
A � E� � i �A

2

�

(A26)

where Er
A ¼ EA þ�EA is the renormalized energy.

The Schroedinger picture state j�ðtÞiS ¼ e�iH0tj�ðtÞiI is
finally given by

j�ðtÞiS ¼ CAð0Þ
�
e�iEr

A
te�ð�A=2ÞtjAi �X

�

h�jHIð0ÞjAi

�
�
1� e�iðEr

A
�E��ið�A=2ÞÞt

Er
A � E� � i �A

2

�
e�iE�tj�i

�
: (A27)

For t � �A ¼ 1=�A the asymptotic state becomes

j�ðt��AÞiS¼�CAð0Þ
X
�

h�jHIð0ÞjAie�iE�t

½Er
A�E�� i�A

2 �
j�i: (A28)

4Here we neglect wave function renormalization as it is not
relevant for the discussion.
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