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Motivated by the recent argument that in the TeV-scale gravity trans-Planckian domains of spacetime as
effective naked singularities would be generated by high-energy particle (and black hole) collisions, we
investigate the quantum particle creation by naked-singularity formations in general dimensions.
Background spacetime is simply modeled by the self-similar Vaidya solution, describing the spherical
collapse of a null dust fluid. In a generic case, the emission power is found to be proportional to the quadratic
inverse of the remaining time to a Cauchy horizon, as known in four dimensions. On the other hand, the
power is proportional to the quartic inverse for a critical case in which the Cauchy horizon is ““degenerate.”
According to these results, we argue that the backreaction of the particle creation to gravity will be important
in particle collisions, in contrast to the gravitational collapse of massive stellar objects, since the bulk of
energy is carried away by the quantum radiation even if a quantum gravitational effect cutoff the radiation

just before the appearance of a naked singularity.
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L. INTRODUCTION

The higher-dimensional scenarios with large [1] and
warped [2] extra dimensions were proposed to resolve or
reformulate the hierarchy between the gravitational and
electroweak interactions. In these scenarios, the
d-dimensional (d > 4) Planck mass Mp is related to that
in 4-dimension Mp)(~10" GeV) by M}, ~ L4™*M5 ™2,
where L is the size of an extra dimension. Thus, if L is
large enough, the fundamental Planck mass Mp can be as
low as a few TeV. For instance, such a small Planck mass is
realized if L ~0.1 cm when d = 6, L ~ 1077 cm when
d = 7. If the standard model particles except the gravitons
(and possibly other unobserved particles) are confined to
our 3-brane, these scenarios are consistent with all current
observations.

One of the most striking predictions of such scenarios is
the production of a large number of mini black holes in
high-energy particle collisions [3]. A simplified picture of
the black-hole production can be put in the following way.
The size of a black hole is characterized by the
Schwarzschild event-horizon radius ry,, scaling with its
mass as r, ~ M'/@=3)_If colliding particles have a center-
of-mass energy M above a threshold energy of the order of
Mp and an impact parameter less than the Schwarzschild
radius, a black hole of mass M is produced. In other words,
the total cross section of black-hole production is given by
oy = 7r4. The black holes so produced will decay ther-
mally via the Hawking radiation [4] and be detected in
terrestrial collider experiments such as the CERN Large
Hadron Collider and in ultrahigh-energy cosmic rays. Such
possibilities have been extensively studied and known to
give rise to rich phenomenology (e.g., see [5] for a review).
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Recently, one of the present authors and his collabora-
tors pointed out another possibility [6] in TeV-gravity
scenarios. They argued that effective naked singularities
called the visible borders of spacetime would be generated
by high-energy particle collisions. A border of spacetime,
originally proposed in [7], is defined as a domain of space-
time where the curvature becomes trans-Planckian and acts
as an border (or boundary) of classical sub-Planckian
domains. A simplified picture of the generation of a visible
border can be put in the following way. Suppose colliding
particles have a center-of-mass energy above Mp, just like
the black-hole production mentioned above. Then, suppose
that the impact parameter is small enough to make the
energy density of the colliding region become trans-
Planckian but the impact parameter is larger than the
Schwarzschild radius. If such a situation is possible, the
curvature around the colliding region becomes trans-
Planckian through the Einstein equation, but the horizon
will not form. Therefore, the trans-Planckian domain of
spacetime, i.e., the border of spacetime, is visible or naked
to outer observers. Ref. [6] showed by a simple dimen-
sional argument that such phenomena can occur in collider
experiments, which is regarded as an effective violation of
the cosmic censorship hypothesis [8] in higher dimensions.
In such a visible-border production, in contrast to the
black-hole production, the trans-Planckian domain is ex-
posed to observers, and therefore an arena of quantum
gravity could be provided. Furthermore, quite recently
Okawa, Nakao, and Shibata [9] showed by a fully general
relativistic simulation that trans-Planckian domains of
spacetime not covered by horizons are produced in the
course of a black-hole collision in 5 dimensions, strongly
supporting the argument in [6].

It would be fair to say that we do not have any rigorous
quantum theory of gravity to predict phenomena near the
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Planckian regime. Nevertheless, it would be important to
predict possible phenomena with available classical and
semiclassical tools. The study of semiclassical effects dur-
ing naked-singularity formation (in 4 dimensions) has a
relatively long history, which dates back to the seminal
works by Ford and Parker [10] and by Hiscock, Williams,
and Eardley [11]. (An incomplete list of studies in this
direction is in Refs. [12—-16]. See [17] for a review.)
Typically, when a (strong) globally naked singularity
forms, which violates the weak version of the cosmic
censorship hypothesis [8], the power of particle creation
diverges at the Cauchy horizon (if one neglects the back-
reactions to spacetime).

Because of a universality of the particle creation by
naked singularities, one can expect that similar phenomena
occur in higher dimensions, which were addressed by the
present authors for the first time in [18] and are being
analyzed further in this paper. We should note several
points prior to modeling. First, the generation of visible
borders or naked singularities in large extra-dimension
scenarios would be a highly asymmetric phenomenon.
Namely, the gravity propagates in every direction; the
standard model particles are confined to our 3-brane; the
nonzero impact parameters of particle collisions are essen-
tial. It seems not so easy to model the visible-border
formation by known exact solutions or numerical solutions
to the Einstein equation. Therefore, in this paper as well as
in the previous paper [18], we adopt the Vaidya solution as
a first step, describing the spherically symmetric naked-
singularity formation due to the accretion of a null dust
fluid. Second, it is certain that the spectra of particle
creation will provide important information in order to
identity what the products of collisions are in experiments.
However, there is a fundamental problem in estimating the
spectrum of created particles (i.e., the Bogoliubov coeffi-
cients) when the singularity is globally naked: we do not
know how to impose boundary conditions on a quantum
field at the singularity. Thus, in this paper, we focus only on
the power and energy emitted, which can be evaluated
locally at the price of having no information of the
spectrum.

The organization of this paper is as follow. In the next
section, we introduce the self-similar Vaidya solution.
Then, in Sec. III, we obtain the null geodesics in the

'In the previous work [18], in order to avoid such an ambiguity
of boundary conditions and calculate the spectrum, we adopted
the model describing the formation of a marginally naked
singularity, in which the singularity is observable only within
the event horizon (so, it violates only the strong version of the
cosmic censorship hypothesis). In such a spacetime, the Cauchy
horizon and event horizon coincide, and therefore one has to
impose no boundary conditions at the singularity. However, there
is no physical reason a priori that such a particular causal
structure is preferred. Thus, in this paper, we investigate the
particle creation in globally naked singularities, which is more
generic than the marginally naked singularity.
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Vaidya spacetime, which is essential to estimate the parti-
cle creation with the geometric-optics approximation. In
Sec. 1V, we evaluate the power and energy of particle
creation. Section V is devoted to discussions. Some calcu-
lations are relegated to Appendixes. We work in the Planck
units, in which ¢ = G = =1 (G is the d-dimensional
gravitational constant), otherwise noted.

II. SELF-SIMILAR VAIDYA COLLAPSE

We consider the d-dimensional (d = 4) spherically sym-
metric collapse of a dust fluid whose line element is given
by

2
ds? = —(1 - :;E?)dvz + 2dvdr + 202, (2.1)

where dﬂfi_z is the line element of a unit (d — 2)-sphere.
We assume the following form of the mass function

0, v<0 (regionI)
mv) =4 pv? 3, 0=v<vy, (regionIl). (2.2)
wvd™3 v =, (region I1I)

Namely, the dust fluid begins to infall toward the center at
v = 0. Constant u ( > 0) represents an accretion rate. The
above specific form of m(v) in the region II assures that the
spacetime is self-similar or homothetic. Then, the infalling
stops at v = v, and the outer spacetime is described by the
Schwarzschild-Tangherlini solution with the mass parame-
ter M := pwd 3> The Kretschmann invariant is calculated
as

m*(v)

RR 3,5 = 4(d = 1)(d = 22(d = 3) .

(2.3)
Thus, the center (r = 0) is a curvature singularity unless
m(v) vanishes there.

In the region I, the spacetime is flat and a usual retarded
time is introduced by

i:=v-—2r 2.4)
with which the line element is written as
dst = —didv + r*dQ?3_,. (2.5)

In the region III, a retarded time is introduced with the
tortoise coordinate r, by

u=uv—2r.r),

. r dr
rni= [T (2.6)
fryi=1 =21

2A physical mass (ADM mass) defined in the asymptotic
region is given by M.« = (d — 2)Q,_,M /87, where Q,;_, =
27402 T[(d - 1)/;]2]’ is the volume of unit (d — 2)-sphere
[19].
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with which the line element is written as

ds¥ = —f(r)dudv + r*dQ?_,. .7

It is noted that the event horizon is given by r = ry, =
(2u)"/@=3)y in the region III.

Instead of constructing double null coordinates in the
region II (e.g., according to [13]), we obtain the trajectory
of outgoing radial null rays by solving ds?> =0 (with
dQ?_, = 0), which is written as

dr 1—2uxd73
dv 2
What easily seen from this is that the outgoing radial null

rays are trapped (dr/dv = 0) in the following region:

1
X = X = 4(2/117)1/((173).

~ |

(2.8)

’ X

(2.9)

Thus, the curve x = x,, gives an apparent horizon.
Observe that the intersection of the apparent horizon and
the surface of fluid (v = v,) determines a radius v, /x,, =
(2u)"/@=3)y. which is nothing but the radius of the event
horizon rg,. In terms of (x, r)-coordinates, Eq. (2.8) is
written as

dx =x[h(x) —1] 2

E . , h(x)=m (210)

From this equation, one can easily see that x = const,
where the constant is a root of 4(x) — 1 = 0, is an outgoing
null ray. One can easily check that the algebraic equation
h(x) — 1 = 0 is equivalent to

g(x) ==2ux4?—(x—2)=0. 2.11)

By a simple algebra, one can see that there are two positive
roots x+ (x_ = x,) if and only if the accretion parameter
M 1s in the following range:

(d—3)%3
0I<pu=sp, =——"—. 2.12
b= R B (2.12)
In this case, the roots are in the range of
2(d — 2
2<Xx_ =Xx,=xy, X, I=% (2.13)

When u = ., the two roots are degenerate x. = x,.
See Figs. 1(a) and 1(b), which would be helpful to under-
stand the roots of algebraic equations A(x) — 1 = 0 and
q(x) = 0, respectively.

By simple arguments, one can show that the singularity
located at r = 0 and v > 0 is spacelike, whereas the sin-
gularity located at (v, r) = (0, 0) is a globally naked one
for u being in the range (2.12) (see, e.g., [20]). In particu-
lar, the null ray x = x_ is the first outgoing null ray
emanating from the singularity (see, e.g., Appendix A in
[15]). Namely, the x = x_ gives (a part of) the Cauchy
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FIG. 1. (a) A schematic graph of i(x) for the generic case 0 <

M < w. (solid) and the critical case u = u. (dashed). Two roots
of h(x) = 1, denoted by x., determine two null rays x = x..
These roots are degenerate (x. = x.) when u = u.. The ap-
parent horizon is given by x = x,,, at which h(x) diverges
positively. (b) Schematic graphs of two functions 2ux?2 and
x — 2, of which intersections determine the two roots. From this
picture, the range of two roots (2.13) is easily understood.

FIG. 2. (a) A schematic spacetime diagram in the v-r coor-
dinates. The Cauchy horizon (CH, thick-solid) x = x_, the null
curve x = x; (dot-dashed), the apparent horizon (AH, dotted)
X = X,,, and several future-directed light cones are drawn. In the
region II (gray), the null dust fluid infalls toward the center. EH
is a part of the event horizon. The curve with two arrows
represents a typical null ray that passes the center just before
the appearance of singularity. (b) A corresponding conformal
diagram, that manifests the global nakedness of the singularity.
When o = u. (and in the limit 4 — w.), the CH (thick-solid)
and x = x (dot-dashed) coincide, but the key causal structures
do not change. Namely, the singularity is still globally naked,
rather than marginally naked.

horizon. See Figs. 2(a) and 2(b) for a schematic
(v, r)-diagram and a conformal diagram, respectively.’

III. NULL GEODESICS NEAR THE
CAUCHY HORIZON

Integrating Eq. (2.10), we obtain a formal expression of
the outgoing radial null ray

*We stress that the null ray x = x, is an event horizon if the
positive v-region is filled entirely with the null dust. Since we cut
the Vaidya region and connect it to the outer vacuum region, the
null ray x = x; plays no special role in the present analysis.
Accordingly, neither the limit . — w. nor exactly 4 = . case
correspond to a marginally naked singularity.
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o expl:/x H(x)dx],
ro 0
1 2uxi™3 —1

Ah() — 1] 7(x)

Here, r is a constant corresponding to the radius when the
outgoing null ray passes the r-axis (v = 0, r > 0. Namely,
x = 0).

We are interested in the null rays passing near the naked
singularity located at (v, r) = (0, 0), which are responsible
for the particle creation. Since the Cauchy horizon is given
by x = x_, we have to evaluate the integral in Eq. (3.1)
near the pole of the integrand where g(x) = 0. In the
following, we evaluate the integral near the Cauchy hori-
zon for the nondegenerate case (0 < u < u,.) and the
degenerate case (u = u.) separately. We mostly use the
notation and techniques developed in [15].

(3.1)
H(x) :=

A. Generic case (O0< p < pu.)

For 0 < u < u., the algebraic equation 4(x) = 1 has a
simple root at x_. Therefore, we subtract a pole from the
integrand in Eq. (3.1) as

s ]
X exp[’[ox(H(x) — ﬁ)dx]

= (x’xj x)l/y expl:fox H*(x)dx],

R ¥) — 1
H0) = H) = o,

(3.2)

where

3.3)
yim X W) = =5 (d = 3~ x.).

Note that function H..(x) converges to a certain constant in
the limit x — x_ — 0.

We are ready to obtain the map of null rays that gives the
relation v = G(u) between the advance time v at which an
ingoing null ray departs from the past null infinity and the
retarded time u at which this null ray terminates at the
future null infinity after passing through the regular center
(i.e.,r = 0, v <0). Suppose an ingoing null ray v = v;, =
const(<0) propagating in the region I (see Fig. 2). This null
ray turns to an outgoing null ray i# = v;, after passing
through the regular center. This null ray passes through
the I-II boundary (v =0, r>0, i.e., x =0) and is ex-
pressed by (3.2) with the integration constant r, given by

Vin
o 5 (3.4
Then, this null ray reaches the II-III boundary (v = v)
and is expressed by u = u,,, = const. This constant u,, is
given by the right-hand side of Eq. (2.6) with v = v and
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:@:ﬂ-q-%o x_ —x) + O((x_ — x)?).
X x_  xZ

(3.5)

Namely, substituting the above expression of r into
Eq. (2.6), we have at the leading-order

_ 2 _ — )2
uoul - MO x_f(r_) (x— -x) + 0((-x— x) )’ (36)
._ Yo
r— .— —,
X_

where u = ugy = vy — 2r*lr=v0 /x_ gives the Cauchy hori-
zon in the region III.

On the other hand, substituting Eqgs. (3.4) and (3.5) into
(3.2), we obtain

x_x__ = = (2%)7(—111[1)_7, [:= exp[/ox_ H*(x)dx],
3.7)

up to O[(x_ — x)?].

Eliminating (x_ — x) from Egs. (3.6) and (3.7), and
omitting the subscripts “in” and ‘““out,” we obtain the
map of null ray v = G(u) as,*

_fr) e
Gl = = ety o — " (3.10)
1 2
ai=—

y d-3)x —x)

B. Degenerate case (. = u,)

Now, let us consider the critical case in which the
algebraic equation ¢g(x) = 0 has a degenerate root at x =
X+ = x..Inasimilar way to the generic case, we subtract a
pole of the integrand in Eq. (3.1) as

“Let us point out a typo in Ref. [13], in which the four-
dimensional case was analyzed. For d = 4, the explicit expres-
sion of the two roots are x. = (1 = /T — 16u)/4 . With using
this and Egs. (3.3) and (3.10), one obtains

_l_1+«/1—16,ug
v 2T =16
This quantity « should be identical with A_ in [13] [see

Eq. (16)]. However, the expression of A. in [13] seems incor-
rect. A correct expression should be

(3.8)

Il —2ua+
2u(ey —a2)’

where . is x» in our notation. With this corrected expression,
one can show o = A_.

A, =7

(3.9)
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ool [ s
<ol [[(H0 - 552 )]
_ exp[m] exp[— ;CC + L ) I:I*(x)dx:l, G.11)

where

1
Pl = x)*
R 1 d—73
Y = Exch”(xc = T
Note that H.(x) is regular at the Cauchy horizon x = x,
and its integration is finite in the limit x — x, — 0.
A counterpart of Eq. (3.7) in the present case is given by

H.(x) = H(x) —
(3.12)

2
T2t ECTE Rl SN ERE)
where
. 1 Yo A
Foi=—, Ilzexp[—A +[ H*(x)dx:l. (3.14)
c yxC 0

Eliminating (x, — x) from Egs. (3.6) and (3.13), and omit-
ting the subscripts “in”” and ‘‘out,” we obtain the map of
null ray v = G(u) in the case where the Cauchy horizon is
degenerate,

4r,
(d =2)f(r)ug — u)

Gu) = — % exp[— ] (3.15)

IV. POWER AND ENERGY OF PARTICLE
CREATION

Now, we are ready to evaluate the particle creation under
the geometric-optics approximation. We consider a mass-
less scalar field ¢ coupled to the Ricci scalar curvature R
as

O - ¢éRe¢ =0,

where ¢ is an arbitrary (real) constant. In particular, the
cases of £ =0 and é=¢,:=(d—2)/[4(d — 1)] are
called the minimal coupling and conformal coupling, re-
spectively, (see Appendix A).

We assume as usual that the quantum state is in the
vacuum in which positive-energy ingoing particles are
absent at the past null infinity. Then, the collapsing space-
time excites the quantum field, and one can expect that a
positive-energy flux is observed in the asymptotic region.
The power P (the energy emitted per unit time) is given by
the integration of the vacuum expectation value of stress-
energy tensor over the (d — 2)-sphere in the late-time
asymptotic region. The formula obtained with the
geometric-optics approximation and the point-splitting
regularization (see Appendix B) is

.1
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r =[G ) + (-6 e ]
4.2)

where G(u) is the map obtained in the previous section.
The total energy radiated is the integration of this power by
the retarded time,

E(u) = / " P(u)du. (4.3)

As shown in Appendix B, the actual formula is given by
the sum of the power (and energy) given here overall  (i.e.,
angular quantum numbers). Since the power and energy
given here are independent of /, those sum diverge. Such a
divergence is due to the fact that we ignore the back
scattering by potential barriers, which certainly will reduce
the emission by highly rotational modes. Hereafter, we
omit the sum over [/, and it should be simply kept in
mind that the above formulas take into account only the
small-/ modes.

A. Generic case (O0< p < u.)

Substituting the map of null rays for 0 < u < u,,
Eq. (3.10), into formulas (4.2) and (4.3), we obtain

(@ —D(a+1-128)

P = (up — u)™2,

(@ —D(a+1-128) .

E= 13 (g — u)™".
T

Thus, we reproduce and generalize to general dimensions
the result in [13,15] that the power diverges as the qua-
dratic inverse of the remaining time to the Cauchy horizon
(o — u).

The factor in the power and energy in Eq. (4.4), A :=
(@ — D(a + 1 — 12£), depends on «, which is a function
of accretion parameter u, and the coupling constant &.
Although we have no explicit expression of & = a(u) for
general d except for d =4, we can discuss the
(u, &)-dependence of A in general by observing the follow-
ing facts. Using Eq. (3.10), one can easily obtain

. 4.5)
Xo — X_

Taking into account this equation and the range of x_ and
x. given in Eq. (2.13), one can easily show that
lim, a(u) = 1 and lim,,_,,, a(u) = +oo. Furthermore,
one can show that a(w) is an increasing function
(da/du > 0) using the fact that x_ is an increasing func-
tion of w, as obvious from Fig. 1(b). Thus, we have
a(u) > 1 in general (0 < u < w,.) and « diverges posi-
tively in the limit & — u.. In Appendix C, it is shown that
this inequality e > 1 is equivalent to that the redshift of
outgoing null rays diverges at the Cauchy horizon.

From the above observations of a(u), one finds several
properties of the power and energy. The factor A diverges
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in the limit . — . for any finite coupling constant £. For
other generic case of 0 < u < u., the factor A is positive
definite if the coupling is “weak,” & < (a + 1)/12. Note
that this case includes the minimal coupling £ = 0 as a
special case, where A = @* — 1 holds. On the other hand,
the factor A is nonpositive if the coupling is ““strong,” & =
(a + 1)/12. We should stress that the conformal coupling
& = £, plays no special role in general dimensions except
for the four-dimensional case, in which A = (a — 1)2 >0
holds.

B. Degenerate case (u = u.)

Substituting the map of null rays for u = w., Eq. (3.15),
into the formulae (4.2) and (4.3), we obtain the power and
energy at the leading order,

2

r
P = < —u)™4
3m(d — 2)2f2(rc) (“0 ) (4.6)
r2
S (g — u)™>

B ma— 27

Namely, the power (energy) diverges as the quartic (cubic)
inverse of the remaining time to the Cauchy horizon. These
results have not been known even in the four-dimensional
case and are obtained for the first time. It is quite interest-
ing to notice that according to the quartic and cubic be-
haviors, a scale determined by the background r, := v,/x,
enters into Eq. (4.6), in contrast to the generic case dis-
cussed in the previous subsection. This quantity r. scales
with the total mass of collapsing fluid M as r, ~ M'/(4=3),
This means that the behaviors of power and energy cannot
be predicted only on a dimensional basis in spite of the
scale invariance of the central self-similar region. We
should stress also that the cancellation of coupling constant
¢ has happened and the final results (4.6) are independent
of £.

V. DISCUSSIONS

Motivated by the recent argument that the trans-
Planckian domains of spacetime not veiled by horizons,
called the visible border of spacetime, will be generated by
high-energy particle collisions in the context of TeV-scale
gravity, we have investigated the particle creation by the
naked-singularity formation in general dimension, which
possibly plays important roles in collider experiments.
While the actual generation will be highly asymmetric
phenomena, we have assumed just for simplicity that the
background is perfectly spherically symmetric and mod-
eled by the self-similar Vaidya solution (2.1), describing
the collapse of the pressureless lightlike fluid. As the
results, we have obtained the formulae of emission power
and energy, Eq. (4.4) for the generic case (0 < u < w.)

Note that f(r,) appearing in (4.6) is just a number: f(r,) =
(d=3)/(d-2).
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and Eq. (4.6) for the critical case (u = w.), where w is a
dimensionless accretion parameter of the fluid (2.2).

In the latter case (u = w.), the Cauchy horizon is
“degenerate,” and the resultant formula has not been
known even in the four-dimensional case. Although this
case is just a particular point in the parameter space, the
result is somewhat interesting at a theoretical level in the
sense that the power depends on the background dimen-
sionful parameter r, ~ M'/@=3) despite the scale invari-
ance of the central region. Incidentally, the present authors
confess that they have no clear explanation why the be-
haviors of the power and energy are so different between
the limit of w — w. and the case of exactly u = ...

We comment on the validity of approximations adopted
for simplicity in this paper. The actual visible-border pro-
duction is expected to be a highly dynamical process, of
which a typical time scale may be given by the light-
crossing time through the colliding region. Therefore, the
validity of the geometric-optics approximation and/or the
quantum field theory in classical background itself could
be questionable. This point would be worth further consid-
erations. Incidentally, we should mention the difficulty to
verify the geometric-optics approximation in naked-
singularity formation in general,® in contrast to the black-
hole formation. As shown in Appendix C, the redshift of
the outgoing waves diverges at the Cauchy horizon. Thus,
the wavelength of the particles detected in the asymptotic
region becomes (possibly, quite) short (i.e., blueshifted) in
the central region. However, this does not imply the valid-
ity of the geometric-optics approximation necessarily since
the curvature around the singularity is arbitrarily large.
Furthermore, remember that there is the fundamental prob-
lem that the spectrum of created particle cannot be calcu-
lated uniquely due to the ambiguity of boundary conditions
at the singularity. Therefore, one cannot know the typical
energy of particles detected in the asymptotic region, and
therefore cannot know the energy of particles propagated
back to the region around the singularity.

The divergence of the energy emitted seems to suggest
that the backreaction to the geometry should be taken into
account in an actual dynamics. In other words, the diver-
gence suggests the existence of a ‘“‘semiclassical instabil-
ity.” We should mention reference [14] here, however, in
which Harada et al. argued that if a quantum gravitational
effect works as a cutoff of the radiation, the total energy
radiated is only a few amounts of Planck energy, which
means that the backreaction is negligible in the collapse of
stellar-size massive objects. On the other hand, if we repeat
their argument [14] in the present TeV-gravity context,
both the energy of background and the net energy radiated
are of the order of TeV. Namely, if a quantum gravitational
cutoff is switched on, say, when the remaining time is the

®The geometric-optics approximation can be an exact method
in two dimensions [21].
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Planck time uy — u ~ tp, the net energy radiated by this
moment amounts to E ~ Mpc? from Eq. (4.4) for the
generic case and E ~ Mpc2(M/Mp)*'4=3) from Eq. (4.6)
for the degenerate case. Thus, we naturally expect that the
backreaction will modify the dynamics. This difference of
the significance of semiclassical effects between the stellar
collapse in general relativity and the particle collisions in
TeV-gravity is worth being stressed.
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APPENDIX A: CONFORMAL COUPLING

An action of the scalar field ¢ that couples to the Ricci
scalar curvature R may be given by

L) = [ atxy=g(~ 5 (Vo - Jéra?) (Al

where ¢ is a coupling constant. The energy-momentum
tensor derived from this action is

1
T,LLV = v,u,d)vud) - Eg/.LV(V(ﬁ)Z

+ f(G,quﬁz - VMVV¢2 + g,uvqusz)’ (A2)

whereas the equation of motion is given by (4.1).

Let us consider a conformal transformation g,, —
8y = €2“g,,» Where w(x) is an arbitrary scalar function.
It is noted that under this transformation the d’ Alembertian
(operating on a scalar field i) and the Ricci scalar curva-
ture transform as

Oy =e2[0¢y + (d —2)V¢ - Vo,
R=e¢2[R—-2(d—- 1w — (d — 2)(d — 1)(Vw)?].
(A3)

Assuming that the scalar field transforms as ¢ — ¢ =
e“”¢ with a constant a, the equation of motion (4.1)
transforms as

(O—-éR)p=e""2(O¢ — éRp +[a+2(d—1)€]p0w
+lala+d—2)+(d—-2)(d—1)¢é]p(Vw)2
+QR2a+d—-2)V¢-Vo). (A4)

Therefore, if one chooses the coupling constant £ and a as

d—2 d—12
a = - ’

&=¢q :=4(d7—1)’ 2 (AS5)
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the equation of motion (4.1) is invariant under the confor-
mal transformation. Namely,

b= e~ (d-2)w/2 .

d—2
2d = 1)R)¢’

(AO6)

APPENDIX B: QUANTIZATION

Here, we formulate the quantization of a scalar field in
d-dimensions that couples to the scalar curvature in the
manner described above. In particular, we derive the for-
mula of emission power, generalizing the results in [10,16]
to arbitrary dimensions and the generally coupling scalar
field.

In the asymptotic region (r — 0), a mode function of
the scalar field obeying equation of motion (4.1) is given by

(e7i0v + ¢~ 190Gy (Q), >0,

1
pa)l:\/477'a)r(d_2)/2
(BI)

Here, Y;()) is a normalized scalar harmonics on the
(d — 2)-sphere

[Ay > +1l+d-3Y,Q)=0  1=012...,

(B2)

where A,_, is the Laplacian on the sphere. u =~ ¢t — r and
v =t + r are the retarded and advanced time coordinates,
respectively, in the quasi-Minkowski region. We note that
quantum numbers associated to the other angular degrees
of freedom are omitted. The mode function (B1) behaves
as an ingoing wave at the past null infinity, whereas it
behaves as a redshifted outgoing wave at the future null
infinity. When the spacetime is globally flat, G(u) = u
holds. The normalization constant is chosen so that the
mode function is normalized as

(pwl! pw’l/) = 5(6() - wl)éll" (B3)

where (-, -) denotes the Klein-Goldon inner product de-
fined by

(o1, p) i= —i fzualaﬂp; — P39, p)VESdSE. (B4)

Here, 2 is a spacelike hypersurface with the volume ele-

ment ,/gsd>*.
The field operator can be expanded by the above mode
function as

¢ = Z dw(awlpwl + aj;)lpz)l)’ (BS)
l O

with the annihilation operator a,; and creation operator
azl ; satisfying the usual commutation relation,

[agsal, 1= 80— )8 (B6)
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The quantum field is assumed to be in the vacuum |0)
(eternally, since we work in the Heisenberg picture) de-
fined by

a,;|0) =10, forall w,l (B7)

The power is the vacuum expectation value (VEV) of the
following (z, r)-component of the energy-momentum ten-
sor at future null infinity

Ti= = 26,6+ 6,00+ EDD, + B,0), B

where we have symmetrized the products. Substituting the
expansion (B5) into this equation, we obtain

0 1 * ®
010 = 3. [~ do] =S (putis, + Paripi)
I

+ PPy, T pwl,rpz,[),t]' (B9)

Here, according to [10], we prescribe the point-splitting
regularization scheme to this integration. Namely, in order
to regulate the divergence of integral due to the simulta-
neous evaluation at a point, we displace the arguments of
p., in Eq. (B9) as (u, v) — (u + €, v + €) with an infini-
tesimal distance €. Then, such a prescribed VEV reads

Sy l?

OIT0). = =5 [ dalG w6/ + )
47y 0

X a)eiw[G(u%»e)*G(u)] _ weiwe

— lf([G/(M + 6) + 1]eiw[G(u+e)—v]

— [G'(u) + 1]e”@lC—v=€l + [G'(u + €)

_ Gl(u)]eiw[G(que)fG(u)]) t]' (BlO)

Implementing the integrations over w, one obtains

>yl

oI71l0) = [—

GG (u+e 1
ard—2 +

[Gu+e)—GwP &
A Gra-cur), )
I ey NG
4L f)(m)+(f a)m]

+ O(e). (B11)

Note that the singular term € 2 disappears and the leading-
order is O(€) in the final expression. The power is defined
by the integrating of lim._(0|T%|0), over the (d — 2)-
sphere of a large radius r,
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P(u) i= f OIT! 0y 2d0,,.

Fl A )5

(B12)

APPENDIX C: REDSHIFT

The tangent of a null geodesic k* := dx*/d\, where A
is an affine parameter, is obtained by solving k#V , k" = 0.
In the (v, r)-coordinates, the v-component (i.e., the fre-
quency) of such an equation for a radial null geodesic is’

dkv | pld - 3)xd™3

kV)? = 0. Cl
" = (k) (e}
From the null condition k* kﬂ = (), we have
1 d-3
K= =1 —2ux?"7)kv. (C2)

2

Using this relation, the following holds for the derivative of
a function of x,

d gk d
- = —. C3
dA 2r dx €3
With this, Eq. (C1) is rewritten as
v 2u(d —3)x473
% + u k¥ = 0. (C4)
dx q(x)
A formal solution of this equation is
kY X 2uld — 3 d—3
— = exp[/ K(x)dx], K(x) := —u,
kg 0 q(x)
(C5)

where k§ = kV|,— is an integration constant.

First, let us consider the generic case in which the
algebraic equation g(x) = 0 has the nondegenerate roots
at x = x_ and x = x.. Subtracting a pole of the integrand
in Eq. (C5), we have

X exp[ j:([((x) + %ﬂz—%)dx]

- (x_xj x>ﬂ exp[/: K*(x)dx],

where

(Co)

’Only nonvanishing component of the Levi-Civita connection
involved is '}, = u(d — 3)x?3/r.
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2u(d — 3)x%3

q'(x)x—x)

~ 2pld — ) R )
q'(x-)

K.(x) is finite at x = x_ and the last integral in Eq. (C6)
takes a finite value in the limit x — x_ — 0. Note that 8 =
a — 1 (>0) holds, where « is the power of the map in
Eq. (3.10). This relation 8 = a — | implies that the diver-
gence of the power and energy (especially, in the mini-
mally coupling case) stems from the divergence of
the redshift at the Cauchy horizon, which can be seen
from Eq. (C6).

Next, we consider the critical case in which g(x) = 0 has
the degenerate root at x = x.. In a similar way to that of the
generic case, we subtract a pole of the integrand, which is
second order in this case,

K.(x) == K(x) +
(C7

Bi=

Xe — X_

kv

x| -

PHYSICAL REVIEW D 84, 064045 (2011)
2u(d — 3)xd3

Kk ‘”‘p[_ fo (1/2)4" () (x — x. ""]

xexp| [[(co + (1/22/;;5[(;)3(??—_;)2)“]

@)
(d = 3)(x. = x)

[ 2 X A
X —F * \
exp_d —> [0 K (x)dx] (C8)

where K. (x) is a function regular at the Cauchy horizon

X =

Xy

2u(d — 3)xd3

K= KO ) e — 2

(€9)
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