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We study the critical gravity in two-dimensional anti–de Sitter (AdS2) spacetimes, which was obtained

from the cosmological topologically massive gravity (TMG�) in three dimensions by using the Kaluza-

Klein dimensional reduction. We perform the perturbation analysis around AdS2, which may correspond

to the near-horizon geometry of the extremal Banados, Teitelboim, and Zanelli (BTZ) black hole obtained

from the TMG� with identification upon uplifting three dimensions. A massive propagating scalar mode

�F satisfies the second-order differential equation away from the critical point of K ¼ l, whose solution is

given by the Bessel functions. On the other hand, �F satisfies the fourth-order equation at the critical

point. We exactly solve the fourth-order equation, and compare it with the log gravity in two dimensions.

Consequently, the critical gravity in two dimensions could not be described by a massless scalar �Fml and

its logarithmic partner �F4th
log.
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I. INTRODUCTION

The gravitational Chern-Simons (gCS) terms in three-
dimensional (3D) Einstein gravity produce a physically
propagating massive graviton [1]. This topologically mas-
sive gravity with a negative cosmological constant � ¼
�1=l2 (TMG� [2]) gives us the three-dimensional anti–
de Sitter (AdS3) solution [3]. For the positive Newton’s
constant G3, a massive graviton mode carries ghost (nega-
tive energy) on the AdS3. In this sense, the AdS3 is not a
stable vacuum. The opposite case of G3 < 0 may cure the
problem, but it may induce a negative Deser-Tekin mass
for the Banados, Teitelboim, and Zanelli (BTZ) black hole
[4]. It seems that there is one way of avoiding negative
energy by choosing the chiral (critical) point of K ¼ l with
the gCS coupling constant K. At this point, a massive
graviton becomes a massless left-moving graviton, which
carries no energy. It may be considered as gauge-artefact.
However, the critical point has raised many questions on
physical degrees of freedom [5–12].

The gCS terms are not invariant under coordinate trans-
formations though they are conformally invariant [13,14].
It is known that the 3D Einstein gravity is locally trivial
and, thus, does not have any physically propagating modes.
However, all solutions to the Einstein gravity are also
solutions to the TMG�. Therefore, it would be better to
seek another method to find a propagating massive mode in
the TMG� since it is likely a candidate for a nontrivial 3D
gravity, in addition to the new massive gravity [15]. To this
end, one may introduce a conformal transformation and
then the Kaluza-Klein reduction can be used to obtain an
effective two-dimensional action (2DTMG�), which

becomes a gauge and coordinate invariant action. Sahoo
and Sen [16,17] have used the 2DTMG� to derive the
entropy of the extremal BTZ black hole [18] by using the
entropy function formalism (AdS2 attractor equation).
When using the Achucarro-Ortiz type of dimensional re-
duction, it turned out that there is no propagating massive
mode on the AdS2 background [19].
In this work, we will focus on the chiral point of K ¼ l,

where a massive graviton cM
mn turned out to be a left-

moving graviton c L
mn [3,20]. Grumiller and Johansson

have introduced a new field c new
mn ¼ @l=Kc

M
mnjK¼l as a

logarithmic parter of c L
mn [6] based on the logarithmic

conformal field theory with cL ¼ 0 [21–24]. However, it
was reported that c new

mn might not be a physical field at the
chiral point, since it belongs to the nonunitary theory. This
is so because (c L

mn, c
new
mn ) become a pair of dipole ghost

fields [25]. At this stage, we would like to mention that the
linearized higher dimensional critical gravities were re-
cently investigated in the AdS spacetimes [26], but the
nonunitary issue of the log gravity is not still resolved,
indicating that the log gravity suffers from the ghost
problem.
A few years ago, we carried out perturbation analysis of

the 2DTMG� around the AdS2 background [27]. We
showed that the dual scalar �F of the Maxwell field is a
gauge-invariant massive mode propagating in the AdS2
background. Recently, we have studied the critical gravity
arisen from the new massive gravity by investigating
quasinormal modes to check the stability of the BTZ black
hole [28].
Hence it is interesting to study the critical gravity arisen

from the 2DTMG�, which shows a fourth-order differen-
tial equation on the AdS2 background.
The organization of our work is as follows. In Sec. II, we

study the 2DTMG�, which was obtained from the TMG�

by using the Kaluza-Klein dimensional reduction. In
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Sec. III, we briefly review the perturbation analysis around
AdS2, which may correspond to the near-horizon geometry
of the extremal BTZ black hole obtained from the TMG�

with identification upon uplifting three dimensions. We
find an explicit solution of a physically propagating scalar
mode �F satisfying the second-order differential equation
away from the critical point of K ¼ l. At the critical point,
in Sec. IV, the 2DTMG� turns out to be the 2D dilaton
gravity including the Maxwell field obtained from 3D
Einstein gravity, which shows that there are no propagating
modes. We exactly solve the fourth-order equation at the
critical point, and compare it with the log-gravity ansatz in
two dimensions. Discussion is given in Sec. V.

II. 2DTMG�

We start with the action for the TMG� given by [1]

ITMG�
¼ 1

16�G3

Z
d3x

ffiffiffiffiffiffiffi�g
p �

R3 � 2�

� K

2
"lmn�p

lq

�
@m�

q
np þ 2

3
�q

mr�
r
np

��
; (1)

where " is the tensor defined by �=
ffiffiffiffiffiffiffi�g

p
with �012 ¼ 1. We

choose the positive Newton’s constant G3 > 0 and the
negative cosmological constant � ¼ �1=l2. The Latin
indices of l; m; n; � � � denote three-dimensional tensors.
The K term is called the gCS terms. Here we choose the
minus sign in the front of K [17]. Varying this action leads
to the Einstein equation

Gmn � KCmn ¼ 0; (2)

where the Einstein tensor is given by

Gmn ¼ R3mn � R3

2
gmn � 1

l2
gmn; (3)

and the Cotton tensor is defined by

Cmn ¼ "pqm rp

�
R3qn � 1

4
gqnR3

�
: (4)

We note that the Cotton tensor Cmn vanishes for any
solution to the 3D Einstein gravity, so all solutions of the
Einstein gravity are also solutions of the TMG�. Hence,
the BTZ black hole with K ¼ 0 [18] appears as a solution
to the full Eq. (2):

ds2BTZ ¼ �N2ðrÞdt2 þ dr2

N2ðrÞ þ r2½d�þ N�ðrÞdt�2; (5)

where the squared lapse N2ðrÞ and the angular shift N�ðrÞ
take the forms

N2ðrÞ ¼ �8G3mþ r2

l2
þ 16G2

3j
2

r2
; N�ðrÞ ¼ � 4G3j

r2
:

(6)

Here m and j are the mass and angular momentum of the
BTZ black hole, respectively.
We first make a conformal transformation and then

perform Kaluza-Klein dimensional reduction by choosing
the metric [13,14]

ds2KK ¼ �2½g��ðxÞdx�dx� þ ðd�þ A�ðxÞdx�Þ2� (7)

because the gCS terms are invariant under the conformal
transformation. Here � is a coordinate that parametrizes
an S1 with a period 2�l. Hence, its isometry is factorized
as G �Uð1Þ. After the ‘‘�’’ integration, the action (1)
reduces to an effective two-dimensional action called the
2DTMG� as

I2DTMG�
¼ l

8G3

Z
d2x

ffiffiffiffiffiffiffi�g
p �

�Rþ 2

�
g��r��r��þ 2

l2
�3� 1

4
�F��F

��

�
� Kl

32G3

Z
d2xðR���F��þ���F��F

�	F	�Þ;
(8)

which is our main action to study the critical gravity in two
dimensions. Here R is the 2D Ricci scalar with R�� ¼
Rg��=2, and � is a dilaton. Also, the Maxwell field is
defined by F�� ¼ 2@½�A��, and ��� is a tensor density. The
Greek indices of �; �; �; � � � represent two-dimensional
tensors. Hereafter we choose G3 ¼ l=8 for simplicity. It
is again noted that this action was actively used to derive
the entropy of an extremal BTZ black hole by applying the
entropy function approach [16,17,27]. Introducing a dual
scalar F of the Maxwell field defined by [13,14]

F � � 1

2
ffiffiffiffiffiffiffi�g

p ���F��; (9)

equations of motion for � and A� are given, respectively,
by

Rþ 2

�2
ðr�Þ2 � 4

�
r2�þ 6

l2
�2 þ 1

4
F2 ¼ 0; (10)

���@�

�
�Fþ K

2
ðRþ 3F2Þ

�
¼ 0: (11)

The equation of motion for the metric g�� takes the form

g��

�
r2�� 1

l2
�3þ1

4
�F2� 1

�
ðr�Þ2

�
þ 2

�
r��r��

�r�r��þK

2

�
g��

�
r2FþF3þ1

2
RF

�
�r�r�F

�
¼0:

(12)

The trace part of Eq. (12)
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r2�� 2

l2
�3 þ 1

2
�F2 þ K

�
1

2
RFþ F3 þ 1

2
r2F

�
¼ 0

(13)

is relevant to our perturbation study. On the other hand, the
traceless part is given by

g��

�
1

2
r2�� 1

�
ðr�Þ2

�
þ 2

�
r��r��

�r�r��þ K

4
g��r2F� K

2
r�r�F ¼ 0 (14)

which may provide a redundant constraint [19]. Now, we
are in a position to find AdS2 spacetimes as a vacuum
solution to (10), (11), and (13). In case of a constant
dilaton, from (10) and (13), we have the condition of a
vacuum state

ð3KFþ 2�Þ
�
�2

l2
� 1

4
F2

�
¼ 0; (15)

which provides two distinct relations between � and F

�� ¼ � l

2
F: (16)

Assuming the line element preserving G ¼ SLð2; RÞ
isometry

ds2Ads2 ¼ �g��dx
�dx� ¼ v

�
�r2dt2 þ dr2

r2

�
; (17)

we have the AdS2 spacetimes, which satisfy

�R ¼ � 2

v
; �� ¼ u; �F ¼ e

v
ð �F10 ¼ eÞ: (18)

Here �F10 ¼ @1 �A0 � @0 �A1 with �A0 ¼ er and �A1 ¼ 0. This
background may correspond to the near-horizon geometry
of the extremal BTZ black hole (NHEB), factorized as
AdS2 � S1 as

ds2�NHEB ¼ l2

4

�
�r2dt2 þ dr2

r2
þ ðdz� rdtÞ2

�
; (19)

where v ¼ l2=4 and z ¼ l�=jej with the identification of
z� 2�ln l

jej . Here n is an integer. As was pointed out in
Ref. [29], the NHEB is a self-dual orbifold of AdS3. This
geometry has a null circle on its boundary, and thus, the
dual conformal field theory is a discrete light cone quan-
tized of two-dimensional conformal field theory (CFT2).
The kinematics of the discrete light cone quantized show
that in a consistent quantum field theory of gravity in these
backgrounds, there is no dynamics in AdS2, which is
consistent with the Kaluza-Klein reduction of the 3D
Einstein gravity. However, the gCS terms in the TMG�

are odd under parity, and as a result, the theory shows a
single massive propagating degree of freedom of a given
helicity, whereas the other helicity mode remains massless.
The single massive field is realized as a massive scalar’ ¼
z3=2hzz when using the Poincaré coordinates

x� and z covering the AdS3 spacetimes [5,10]. We have
shown that a propagating massive mode is a dual scalar
�F of the Maxwell field on a self-dual orbifold of AdS3
(AdS2 background) [27].

III. PERTURBATION AROUND AdS2

We briefly review the perturbation around the AdS2 and
find the explicit form of a massive propagating mode. Let
us first consider the perturbation modes of the dilaton,
graviton, and dual scalar around the AdS2 background as

� ¼ ��þ ’; (20)

g�� ¼ �g�� þ h��; h�� ¼ �h �g��; (21)

F ¼ �Fð1þ �FÞ; �F ¼
�
h� f

e

�
; (22)

where the bar variables denote the AdS2 background (17)
and (18). The Maxwell field has a scalar perturbation
f around the background: F10 ¼ �F10 þ �F10, where
�F10 ¼ �f. We note that two scalars of �F and ’ are
gauge-invariant quantities in AdS2 spacetimes although f

is not [27]. Then, considering �RðhÞ ¼ �r2h� 2
v h, the

perturbed equations of motion to (10), (11), and (13) are
given, respectively, by

�r 2h� 2

v
h� 4

u
�r2’þ 12

l2
u’þ e2

v2
�F ¼ 0; (23)

���@�

�
e

v
ð’þ u�FÞ þ K

2

�
�r2h� 2

v
hþ 6e2

v2
�F

��
¼ 0;

(24)

�r2’� 6

l2
u2’þ e2

2v2
’þ ue2

v2
�Fþ K

�
e

2v
�r2h� e

v2
h

þ eð3e2 � vÞ
v3

�Fþ e

2v
�r2�F

�
¼ 0: (25)

Solving (24) for �F and inserting it into Eq. (25) leads to�
�r2 � 2

v

��
’þ Ke

2v
�F

�
¼ 0: (26)

Also, solving (24) for ð �r2 � 2
vÞh and then inserting it into

Eq. (23) arrives at�
�r2 � 2

v

�
’�

�
ue

2vK
þ 5

4v

�
ð’þ u�FÞ ¼ 0: (27)

Making use of (26) and (27), �F and ’ satisfy the coupled
equation�

�r2 � 2

v

�
�F� 2v

Ke

�
ue

2vK
þ 5

4v

�
ð’þ u�FÞ ¼ 0: (28)

Acting ð �r2 � 2
vÞ on (28), and then eliminating ’ again by

using (26), one finds the fourth-order equation for �F as
follows:
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�
�r2 � 2

v

��
�r2 �

�
2

v
þm2�

��
�F ¼ 0; (29)

for the two AdS2 solutions of u ¼ �‘e=2v in (16). Here,
the mass squared m2� is given by

m2� ¼ 1

4v

�
� l

K
� 1

��
5� l

K

�
: (30)

Here we stress that our mass squared is defined differently
from Ref. [27]. For 0 	 K 	 l, one requires m2 
 0,
which selectsm2þ � m2 (see Fig. 1). Hereafter we consider
this case only. For m2 � 0, the fourth-order Eq. (29) im-
plies 2 s order equations: one is for a massless field�

�r2 � 2

v

�
�F ¼ 0; (31)

while the other is for a massive scalar�
�r2 �

�
2

v
þm2

��
�F ¼ 0: (32)

In order to solve the massive Eq. (32), we transform the
AdS2 metric as

ds2AdS2 ¼ v

�
�r2dt2 þ dr2

r2

�
(33)

! �
�
x2

v

�
dt2 þ

�
v

x2

�
dx2 (34)

! ds2

v
¼

�
1

x2�

�
½�dt2 þ dx2��: (35)

In the second line, we used x ¼ vr, and in the last line,
x� ¼ v=x ¼ 1=r. We note that, in the last line, (t, x�)
correspond to the Poincaré coordinates (T, y) used in

Ref. [30] to construct the Hadamard Green function for
the Poincaré.
Finally, we wish to find a positive frequency mode for

�F as

�Fðt; x�Þ ¼ e�i!t�fðx�Þ: (36)

Then, the second-order Eq. (32) becomes

d2

dx2�
�fþ

�
!2 � ðm2vþ 2Þ

x2�

�
�f ¼ 0; (37)

whose solution is given by the Bessel functions

�fðx�Þ ¼ c1
ffiffiffiffiffi
x�

p
J�ð!x�Þ þ c2

ffiffiffiffiffi
x�

p
Y�ð!x�Þ; (38)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2vþ 9

4

q
satisfying �2 � 1=4 ¼ m2vþ 2.

Also, we observe that the event horizon is located at r !
0ðx� ! 1Þ, while the infinity is located at r ! 1ðx� ! 0Þ.
In order to have the normalizable solution, we choose
c2 ¼ 0 because Y�ð!x�Þ blows up at x� ¼ 0.

IV. CRITICAL GRAVITY IN TWO DIMENSIONS

At the critical point ofm2 ¼ 0ðK ¼ lÞ, (29) becomes the
fourth-order differential equation�

�r2 � 2

v

�
2
�F4th ¼ 0: (39)

In order to solve this equation, first of all, we observe that
the Bessel function of order � ¼ 3=2 satisfies the second-
order equation for a massless scalar on AdS2 spacetimes as
follows: �

�r2 � 2

v

�
�Fml ¼ 0; (40)

whose normalizable solution is given by

�Fmlðt; x�Þ ¼ e�i!t�fmlðx�Þ; (41)

where

�fmlðx�Þ ’ ffiffiffiffiffi
x�

p
J3=2ð!x�Þ

¼
ffiffiffiffiffiffiffiffi
2

�!

s �
� cosð!x�Þ þ sinð!x�Þ

!x�

�
: (42)

At this stage, we remind the reader that two equations
(39) and (40) with K ¼ l are the same equations�

�r2 � 2

v

�
2
h ¼ 0;

�
�r2 � 2

v

�
’ ¼ 0 (43)

for the graviton and dilaton as found from the 3D Einstein
gravity with K ¼ 0 [27]. Here we observe the important
correspondence as

�Fml $ ’; �F4th $ h: (44)

In the 3D linearized Einstein gravity, one confirms the
connection between dilaton and dual scalar

0 20 40 60 80 100 120 140
10

0
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20

30

40

50

K

m
2

FIG. 1 (color online). Mass m2� for the AdS2 solution for l ¼
100 and v ¼ 1: The dotted curve is for the negative mass
squared m2�, while the dashed curve is for the positive mass
squared m2þ ¼ m2. Since the AdS2 solution with a positive
charge q is valid for K 	 l [17], the permitted region is 0 	
K 	 100.
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’

u
¼ ��F: (45)

This means that there are no propagating massive modes at
the critical point, showing apparently that all modes of h,
’, and �F from the 3D Einstein gravity are gauge artefacts.
However, it was proposed that any critical gravity has a
new field on AdS spacetimes. In order to explore this idea
on the AdS2 spacetimes, we consider a positive frequency
fourth-order field

�F4thðt; x�Þ ¼ e�i!t�f4thðx�Þ: (46)

Then, the fourth-order Eq. (39) takes the form�
d2

dx2�
þ

�
!2 � 2

x2�

��
2
�f4th ¼ 0: (47)

Replacing !x� ¼ !=r by r� and considering

�f4thðr�Þ ¼ gðr�Þ�fmlðr�Þ; (48)

(47) reduces to the second-order equation for gðr�Þ as

½g00ðr�Þ � 1� ¼ � 2�f0mlðr�Þ
�fmlðr�Þ g

0ðr�Þ; (49)

where the prime 0 denotes the differentiation with respect
to its argument. Plugging (42) into (49) leads to the exact
solution for gðr�Þ,

gðr�Þ¼C2þ2C1 cosðr�Þþr�ðr�þ2C1Þsinðr�Þ
2½r�cosðr�Þ�sinðr�Þ� (50)

with two undetermined parameters C1 and C2. Hereafter
we set C1 ¼ �1 and C2 ¼ 1 for simplicity. Now, making
use of the two identities

sinðr�Þ ¼
ffiffiffiffi
�

2

r �
3

2
ffiffiffi
x

p J3=2ðr�Þ þ ffiffiffiffiffi
r�

p
J03=2ðr�Þ

�
;

cosðr�Þ ¼
ffiffiffiffi
�

2

r �ð3� 2r2�Þ
2r3=2�

J3=2ðr�Þ þ 1ffiffiffiffiffi
r�

p J03=2ðr�Þ
�
;

(51)

we have finally obtained a solution to the fourth-order
Eq. (47) as

�f4thðr�Þ ¼ �
�
3þ r2� � 1

2 r
3�

2r5=2�

�
J3=2ðr�Þ

�
�
1þ r2� þ 1

2 r
3�

r3=2�

�
J03=2ðr�Þ; (52)

where J03=2ðr�Þ can be expressed in terms of the lower order

Bessel functions as

J03=2ðr�Þ ¼
�
1� 3

r3�

�
J1=2 þ 2

2r3=2�
J�1=2: (53)

This shows that J03=2ðr�Þ does not contain any singularity at
infinity r ¼ 1ðr� ¼ 0Þ. Figure 2(a) shows its behavior on
r� clearly. To see it more explicitly, gðr�Þ takes a series
form near r� � 0ðr ! 1Þ:

gðr�Þ ’ � 3

r3�
� 9

5r�
� 1

2
þ 36

175
r� þ 1

10
r2�

þ 47

7875
r3� þ 1

350
r4� � � � : (54)

Therefore, �f4thðr�Þ shows a negative infinity as

� 1

r�
as r� ! 0 (55)

by observing the first term of

�f4thðr�Þ¼gðr�Þ�fmlðr�Þ

’
ffiffiffiffi
2

�

s �
� 1

r�
�r�

2
�r2�

6
þr3�

8
þ r4�
20

� r5�
144

� r6�
336

���
�
:

(56)

For C1 ¼ �1 and C2 ¼ 1, we have a positive infinity of
�f4thðr�Þ ! 1

r�
as r� ! 0.

5 10 15 20 25 30
r

15

10

5

5

10

15

f4 th

5 10 15 20 25 30
r

0.4

0.2

0.2

0.4

flog
4 th

a b

FIG. 2 (color online). Graphs of two functions �f4thðr�Þ and the logarithmic partner �f4thlogðr�Þ of a normalizable function
�fmlðr�Þ ¼ ffiffiffiffiffi

r�
p

J3=2ðr�Þ. Although the former is truly a solution to the fourth-order Eq. (47), it shows singular behavior at infinity

of r ! 1ðr� ! 0Þ, which may not be acceptable as a true solution. On the other hand, even though the logarithmic partner �f4thlogðr�Þ
approaches zero at r� ¼ 0, it is unlikely a solution to the fourth-order Eq. (47).
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On the other hand, inspired by the log gravity [6,25], we
suggest that a solution to the fourth-order Eq. (47) may
take the form as a logarithmic partner of �Fml [31]:

�F4th
logðr�Þ ¼ e�i!t�f4thlogðr�Þ; (57)

where

�f4thlogðr�Þ ¼
@

@m2
f ffiffiffiffiffi

r�
p

J�ðr�Þgjm2¼0

¼ v
ffiffiffiffiffi
r�

p
3

�
J3=2ðr�Þ lnðr�=2Þ �

�
r�
2

�
3=2

� X1
k¼0

ð�1Þk c ð5=2þ kÞ
�ð5=2þ kÞ

ð14 r2�Þk
k!

�
: (58)

Here �ðzÞ is the gamma function and c ðzÞ is a diagamma

function defined by c ðzÞ ¼ d ln�ðzÞ
dz . Figure 2(b) describes

�f4thlogðr�Þ. In the case of r� ! 0, one has a series form for

�f4thlogðr�Þ as

�f4thlogðr�Þ’
v

27

ffiffiffiffi
2

�

s �
½�8þ3
þ3lnð2r�Þ�r2�

�½�46þ15
þ15lnð2r�Þ�r4�
50

þ½�352þ105
þ105lnð2r�Þ�r6�
9800

þ���
�

(59)

with 
 the Euler constant. From this form, we find that
�f4thlogðr�Þ approaches zero as r� ! 0 even though the loga-

rithmic terms are present. Applying the l’Hospital’s rule to
rn� lnðr�=2Þ with n 
 1 [equivalently, J3=2ðr�Þ lnðr�=2Þ� as
r� ! 0, one finds immediately that these approach 0. This
shows clearly a different divergent behavior from (55).
Unfortunately, it is unlikely that �f4thlogðr�Þ satisfies the

fourth-order Eq. (47). Hence we exclude it as a solution
at the critical point.

Since the solution to the fourth-order solution (52) is
singular at r� ! 0ðr ! 1Þ, it has a problem to be consid-
ered as the normalizable function at infinity. Hence we
need to take care of the divergence of 1

r�
as r� ! 0 (equiv-

alently, r as r ! 1).
On the other hand, we may choose the second kind of

Bessel function Y3=2 as a solution of the second-order

equation for a massless scalar on the AdS2 spacetimes
even if it belongs to the nonnormalizable function at in-
finity as

�~fmlðx�Þ ’ ffiffiffiffiffi
r�

p
Y3=2ð!x�Þ

¼
ffiffiffiffiffiffiffiffi
2

�!

s �
� sinð!x�Þ � cosð!x�Þ

!x�

�
: (60)

After replacing !x� ¼ !=r by r�, and solving (49), we
have

~gðr�Þ ¼ ~C2 þ
~C1 sinðr�Þ � r�ð2r� þ ~C1Þ cosðr�Þ

4½cosðr�Þ þ r� sinðr�Þ� (61)

instead of (50). Near r� � 0, we have a regular behavior as

~gðr�Þ ’ 1� r2�
2
þ r3�

12
þ r4�

2
� r5�

20
� r6�

3
� � � ; (62)

with ~C1 ¼ ~C2 ¼ 1. Making use of the two identities

sinðr�Þ ¼
ffiffiffiffi
�

2

r �ð3� 2r2�Þ
2r3=2�

Y3=2ðr�Þ þ 1ffiffiffiffiffi
r�

p Y0
3=2ðr�Þ

�
;

cosðr�Þ ¼ �
ffiffiffiffi
�

2

r �
3

2
ffiffiffiffiffi
r�

p Y3=2ðr�Þ þ ffiffiffiffiffi
r�

p
Y0
3=2ðr�Þ

�
;

(63)

we find another solution to the fourth-order Eq. (47) as

�~f4thðr�Þ¼
��3�r2�þ2r3�

8r5=2�

�
Y3=2ðr�Þ�

�
1þr2�þ2r3�

4r3=2�

�
Y0
3=2ðr�Þ:

(64)

However, Fig. 3(a) shows its singular behavior as r� ! 0,
too. Near r� � 0ðr ! 1Þ, one has a divergence of � 1

0 as

�~f4thðr�Þ ¼ ~gðr�Þ�~fmlðr�Þ

’
ffiffiffiffi
2

�

s �
� 1

r�
� r2�

12
� r3�

8
þ r4�

120
þ r5�

72
� r6�

3360
� � �

�
:

(65)

Finally, introducing the log gravity, a suggested solution

as a logarithmic partner of �~fml takes the form [31] of

� ~F4th
logðr�Þ ¼ e�i!t�~f4thlogðr�Þ; (66)

where

�~f4thlogðr�Þ¼
@

@m2
f ffiffiffiffiffi

r�
p

Y�ðr�Þgjm2¼0

¼v
ffiffiffiffiffi
r�

p
3

�
cot½3�=2�

�
J3=2ðr�Þlnðr�=2Þ

�
�
r�
2

�
3=2X1

k¼0

ð�1Þkc ð5=2þkÞ
�ð5=2þkÞ

ð14r2�Þk
k!

��Y3=2ðr�Þ
�

þcsc½3�=2�
�
J�3=2ðr�Þlnðr�=2Þ�

�
r�
2

��3=2

�X1
k¼0

ð�1Þkc ð�1=2þkÞ
�ð�1=2þkÞ

ð14r2�Þk
k!

�
��J3=2ðr�Þ

�

¼v

3

�
3affiffiffiffiffiffiffi
2�

p r���
ffiffiffiffiffi
r�

p
J3=2ðr�Þ�lnðr�=2ÞY3=2ðr�Þ

�
(67)

with a ¼ 0:616 108. Figure 3(b) indicates �~f4thlogðr�Þ is sin-
gular at r� ¼ 0. To show it explicitly, one finds a series

expansion of ~f4thlogðr�Þ as
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~f4thlogðr�Þ ’ v

ffiffiffiffi
2

�

s ��
1

3r�
þ 1

6
r� � 1

24
r3� þ 1

432
r5�
�
lnðr�=2Þ

þ
�
a

2
r� � �

9
r2� þ �

90
r4�
�
þ � � �

�
: (68)

Here we note that the first term in lnðr�=2Þ shows a singular
behavior as r� ! 0, while the remaining terms make a
finite graph as an oscillatory increasing function for
large r�.

V. DISCUSSIONS

We have studied the critical gravity in AdS2 spacetimes,
which was obtained from the topologically massive gravity
in three dimensions by using the Kaluza-Klein dimensional
reduction. We have performed the perturbation analysis
around the AdS2, which corresponds to the near-horizon
geometry of the extremal BTZ black hole obtained from
the topological massive gravity with identification upon
uplifting three dimensions. A physically massive scalar
mode �F satisfies the second-order differential equation
away from the critical point of K ¼ l, while it satisfies the
fourth-order equation at the critical point. At the critical
point, the 2DTMG� turns out to be the 2D dilaton gravity
including the Maxwell field obtained from the 3D Einstein
gravity, which shows implicitly that there are no propagat-
ing modes.

Based on that the critical gravity has a new field in AdS
spacetimes, we have exactly solved the fourth-order equa-
tion, and compared it with the log-gravity ansatz in two
dimensions. The critical gravity is described by �f4th (52)
precisely; however, it becomes divergent linearly (r ! 1)
as the infinity of r� ¼ 0ðr ¼ 1Þ is approached. This means

that the solution to the fourth-order equation is not a
precisely normalizable function and, thus, it requires in-
troducing an appropriate boundary condition which ac-
commodates a linear divergence.
More importantly, it has turned out that the critical

gravity could not be described by the massless scalar
�fml and its logarithmic partner �f4thlog (58), which ap-

proaches zero as r� ! 0. This is so because �f4thlog unlikely

satisfies the fourth-order equation.
Finally, we would like to comment that the linearized

higher dimensional critical gravities were widely investi-
gated in the AdS spacetimes [26] but the nonunitarity issue
of the log gravity is still not resolved, indicating that any
log gravity suffers from the ghost problem. Furthermore,
the critical gravity on the Schwarzschild-AdS black hole
has suffered from the ghost problem when the cross term
Ecross is nonvanishing [32].
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FIG. 3 (color online). Graphs of two functions �~f4thðr�Þ and the logarithmic partner �~f4thlogðr�Þ of a nonnormalizable function
�~fmlðr�Þ ¼ ffiffiffiffiffi

r�
p

Y3=2ðr�Þ. Although the former is a solution to the fourth-order Eq. (47), it shows singular behavior at infinity of

r ! 1ðr� ! 0Þ, which may not be acceptable as a true solution. On the other hand, the logarithmic partner �~f4thlogðr�Þ shows a singular
behavior at r� ¼ 0 and it is unlikely a solution to the fourth-order Eq. (47).
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