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We determine the most general scalar field theories which have an action that depends on derivatives of

order two or less, and have equations of motion that stay second order and lower on flat space-time. We

show that those theories can all be obtained from linear combinations of Lagrangians made by multiplying

a particular form of the Galileon Lagrangian by an arbitrary scalar function of the scalar field and its first

derivatives. We also obtain curved space-time extensions of those theories which have second-order field

equations for both the metric and the scalar field. This provides the most general extension, under the

condition that field equations stay second order, of k-essence, Galileons, k-Mouflage as well as of the

kinetically braided scalars. It also gives the most general action for a possible scalar classicalizer with

second-order field equations. We discuss the relation between our construction and the Euler hierarchies

of Fairlie et al. showing, in particular, that Euler hierarchies allow one to obtain the most general theory

when the latter is shift symmetric. As a simple application of our formalism, we give the covariantized

version of the conformal Galileon.
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I. INTRODUCTION

Scalar field models with derivative self-interactions have
attracted attention in various contexts. For instance, models
of k-essence [1] provide an interesting framework in which
to investigate important early- [2] as well as late-time [3]
issues of modern cosmology, while models similar to
k-essence have been proposed in the context of relativistic
modified Newtonian dynamics [4]. All these models have
the characteristic feature that their action depends solely
on a scalar field � and its first derivative—clearly then,
whatever the Lagrangian, the field equations stay second
order.

More recently, scalar models with actions depending on
second derivatives of the fields have been considered,
mainly inspired by the decoupling limit of the Dvali-
Gabadadze-Porrati (DGP) model and its cosmology [5,6]
as well as the resulting modification of the gravitational
interaction via the so-called Vainshtein mechanism
[7,8]. Such models range from the ‘‘Galileon’’ [9], to
‘‘k-Mouflage’’ [10] or ‘‘kinetic gravity braided scalars’’
[11,12] and have different defining properties. A feature
shared by the former and latter class of models, as well as
some k-Mouflage models, is that they have an action which
depends on second-order derivatives of the fields. Hence,
it is not a priori obvious how the field equations can
stay second order, a property necessary in order to avoid

propagating ghosts or extra degrees of freedom. This,
however, can be achieved. The Galileon [9], for example,
can be defined as the most general scalar theory which, in
flat space-time, has field equations which are uniquely
second-order in derivatives. We note that in fact,
Galileons were introduced rather earlier than [9], by
Fairlie et al. [13], as well as Horndeski [14], though in a
different context. As we will also outline in Sec. VB, there
the relevant Lagrangians were constructed through the
successive application (called ‘‘Euler hierarchies’’) of the
Euler-Lagrange operator to an arbitrary initial Lagrangian
depending solely on the first derivatives of a scalar field
(with also the possibility of introducing arbitrary functions
of the field first derivatives at intermediate steps).
The curved space-timegeneralizations of thosemodels are

also interesting. As shown inRef. [15] the simplest covarian-
tization of the original, four-dimensional, Galileons led to
field equations for the scalar and its stress tensor that con-
tained third derivatives. However, [15] also showed how to
eliminate these higher derivatives by introducing suitable
nonminimal, curvature, couplings. Single scalar Galileons
and their nonminimal covariantization were further general-
ized to the multifield (and p-forms) case, as well as to
arbitrary dimensions, in Refs. [16–19]. More recently,
[20,21] showed how to obtain the Galileons and covariant
Galileons from models with extra dimensions. Finally,
Ref. [11] pointed out that a family of models which have
Lagrangians depending linearly on second derivatives of the
fields, but also have second-order field equations, have inter-
esting properties when considered on curved space-time, due
to an essential mixing between the scalar and the metric
dubbed in [11], kinetic gravity braiding.
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The DGP model also generated new interest in massive
gravity and its Vainshtein mechanism. This mechanism was
first discussed [7] in a simple nonlinear extension of the free
theory for a massive graviton, the so-called Pauli-Fierz
theory, as a way of getting rid of the bothering effects of
the scalar polarization of the massive graviton, present for
any nonvanishing graviton mass—what is known as the van
Dam-Veltman-Zakharov discontinuity [22]. The Vainshtein
mechanism, which was recently shown to work even in the
simplest theories of massive gravity [23], can be attributed
to the self-interactions of the scalar polarization of the
graviton [8,24–26]. The latter interactions, which can be
studied by taking an appropriate ‘‘decoupling limit’’
[24,27], take the form of derivative scalar self-couplings
and the same is in fact true in the DGP model. For the
Vainshtein mechanism to operate, however, there is no need
to have field equations that are purely second order. This
was shown explicitly in Ref. [10] in particular, which
introduced a large family of scalar-tensor models called
k-Mouflage, and which used the Vainshtein mechanism to
screen the effect of a scalar field at small distances. Note
also that the Vainshtein mechanism also serves as one of the
bases of the recently introduced ‘‘classicalization [28].’’
Finally, we stress that a recent attempt to obtain a massive
gravity devoided of the unwanted Boulware Deser ghost
[29] has a decoupling limit sharing crucial properties with
some of the above mentioned scalar field models [30].

Hence, it is clear that scalar models which have deriva-
tive self-interactions, possibly depending on second-order
derivatives, have numerous interesting properties. However,
to our knowledge, these theories have so far not been
extensively classified nor even constructed. It is the purpose
of this work to do so. Namely, here, we will construct all
theories of a scalar field� inD dimension and on flat space-
time, which have actions depending on first and twice-
differentiated �’s as well as on undifferentiated �’s (hence
without assuming necessarily a shift symmetry) but have
field equations which stay of order two and lower. This will
be carried out in Sec. III where our main result is first stated
and summarized (Sec. III A) before being proven. We then
show how to nonminimally complete those theories in
curved space-time, maintaining second-order field equa-
tions for the scalar as well as for the metric (Sec. IV).
Some examples are then discussed in relation with the
Euler hierarchies construction, and we also illustrate our
results giving the covariantization of the conformal
Galileons (Sec. V). Finally, we comment on the relationship
between our covariantized action and Horndeski’s theory
[14] in D ¼ 4. An introductory Sec. II gathers some useful
results.

II. GALILEON, KINETIC GRAVITY BRAIDING
AND SOME USEFUL RESULTS AND NOTATIONS

In this section we work in flat space only, and introduce
the models studied in the remainder of this paper as well as

some useful notation and results. We also revisit the
Galileon model studied in [9]. Throughout we work in D
space-time dimensions, with signature (�;þ;þ; . . . ).

A. Introduction and two useful lemma

All models we consider depend on a single scalar field�
whose partial derivatives will be denoted by1

���@��; ����@�@��; �����@�@�@�� etc: (1)

Since derivatives commute on flat space-time, these tensors
are symmetric under interchange of any indices. The
Lagrangians considered take the form

L ¼ T �1...�n�1...�n

ð2nÞ ��1�1 . . .��n�n
; (2)

where T ð2nÞ is a 2n-contravariant tensor function of � and

�� only

T ð2nÞ ¼ T ð2nÞð�;��Þ: (3)

Note that the integer n also denotes the number of twice-
differentiated �’s appearing in the Lagrangian (2). Thus
L ¼ Lð�;��; ���Þ and the corresponding field equations
are E ¼ 0, where

E ¼
�
@

@�
� @�

�
@

@��

�
þ @�@�

�
@

@���

��
L (4)

� ÊL: (5)

For future use, we begin by giving the sufficient conditions
such that these equations are of order 2 or lower (in
derivatives) on flat space-time. To do so, first note the
following lemma:
Lemma. The field equation derived from the Lagrangian

L ¼ T ��
ð2Þ��� does not contain any derivative of order

higher than 2.
This is straightforward to verify. The second term in (4)

yields one contribution in third derivatives of �, namely
����@T ��=@��. An identical contribution arises from

the last term in (4). However, given the relative sign in (4),
these terms in third derivatives cancel. This simple result is
in fact at the basis of the model of kinetically braided scalar
of Ref. [11], where T ��

ð2Þ ¼ fð�;��Þg�� and g�� is the

metric. In fact the above lemma generalizes to curved
space-time as shown in Appendix B and used in Sec. IV.
Now consider any n > 1. The second term in (4) again

yields contributions to the equation of motion which are
third order in derivatives. Those are cancelled by terms
coming from the final term in Eq. (4) by virtue of the above
lemma. However, the final term in Eq. (4) also yields
‘‘dangerous terms’’ (by which we mean terms of order

1Note that, when considered on curved space-time, �� will
denote the covariant derivative acting on �, r��, and so on for
��� . . . , i.e., partial derivatives are just to be replaced by
covariant derivatives in the notation (1).
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three or more in derivatives) which are of the form ��k�l�l
,

��k�l�l
or ��k�k�l�l

where all the indices are contracted

with those of T ð2nÞ. Since derivatives commute on flat

space-times, we immediately have the following result:
Main lemma. A sufficient condition for the field equa-

tions derived from the Lagrangian (2) to stay of order
less or equal to 2 is that the tensor T �1�2...�n�1�2...�n

ð2nÞ is

totally antisymmetric in its first n indices �i as well as
(separately) in its last n indices �i.

The main purpose of this paper is to study the converse
of this simple result. Before doing so, and for future use,
we first revisit the Galileon theory. As we will see, this
provides a simple and fundamental example of the type of
theory we will discuss.

B. The flat space-time Galileon revisited

The starting point of Galileon models [9,15] are
Lagrangians LGal of the form (2) with the tensor T ð2nÞ
satisfying (3) as well as the properties of the main lemma
above. Furthermore, in flat space-time, they have equations
of motion of order strictly equal to 2 (that is, they do not
contain undifferentiated or once differentiated �, but only
twice-differentiated �).

As we now outline, there exist several possible ways of
writing the Galileon action: each differs from the other by a
different choice of tensor T ð2nÞ and a total derivative.

However they lead to the same equations of motion and
are hence equivalent.

To begin with, define the 2m-contravariant tensorAð2mÞ
by

A�1�2...�m�1�2...�m

ð2mÞ � 1

ðD�mÞ!"
�1�2...�m�1�2...�D�m

� "�1�2...�m
�1�2...�D�m

(6)

where the totally antisymmetric Levi-Civita tensor is given
by

"�1�2...�D ¼ � 1ffiffiffiffiffiffiffi�g
p �½�1

1 ��2

2 . . .��D�
D (7)

with square brackets denoting unnormalized permutations.
[The definitions (6) and (7) are also valid in arbitrary
curved space-times with metric g�� and D � m.] Thus

Að2mÞ is antisymmetric in its first m indices as well as,

separately, in its last m indices. Other useful properties of
Að2mÞ are given in Appendix A.

A first possible Lagrangian for the Galileon is given by
[16]

LGal;1
N ¼ ðA�1...�nþ1�1...�nþ1

ð2nþ2Þ ��nþ1
��nþ1

Þ��1�1
. . .��n�n

� T �1...�n�1...�n

ð2nÞ;Gal;1 ��1�1
. . .��n�n

; (8)

with

T �1...�n�1...�n

ð2nÞ;Gal;1 � A�1...�nþ1�1...�nþ1

ð2nþ2Þ ��nþ1
��nþ1

: (9)

Here and henceforthN indicates the number of�’s appear-
ing in the Lagrangian of a given Galileon model so that

N ¼ nþ 2:

As discussed in [16], the Lagrangian LGal;1
N also reads:

LGal;1
N ¼� X

�2Snþ1

�ð�Þ½���ð1Þ��1
�

�½���ð2Þ
�2
���ð3Þ

�3
. . .���ðnþ1Þ

�nþ1
�;

¼� X
�2Snþ1

�ð�Þg��ð1Þ�1g��ð2Þ�2 . . .g��ðnþ1Þ�nþ1ð��1
��1

Þ

�ð��2�2
��3�3

. . .��nþ1�nþ1
Þ; (10)

where � denotes a permutation of signature �ð�Þ of the
permutation group Snþ1, and in order for the Lagrangian to
be nonvanishing,

nþ 1 � D , N � Dþ 1: (11)

This is the original form presented in [9], and the equality
of (8) and (10) can be seen [16] using the identityX
�2SD

�ð�Þg��ð1Þ�1g��ð2Þ�2 ...g��ðDÞ�D ¼�"�1�2...�D"�1�2...�D:

(12)

Using (4), the field equations derived from the Lagrangian

LGal;1
N read

E ¼ �N � EN ¼ 0; (13)

where

EN ¼ � X
�2Snþ1

�ð�ÞYnþ1

i¼1

���ðiÞ
�i
;

¼ A�1...�nþ1�1...�nþ1

ð2nþ2Þ ��1�1
��2�2

. . .��nþ1�nþ1
: (14)

These are only second order, as advertised. Notice that the
index N on EN indicates that it is the equation of motion

coming from LGal;1
N (which contains N factors of �): thus

EN contains N � 1 factors of �. The Galileon model with
the largest number of fields inD dimensions hasN¼Dþ1.
In this case, EDþ1 is simply proportional to the determinant
of the Hessian, the matrix of second derivatives ���. As

such, the equation EDþ1 ¼ 0 is known as the Monge-
Ampère equation, and it has various interesting properties,
in particular, in relation to integrability (see, e.g., [31]). At
the same time

LGal;1
Dþ1 / det

��� ��

�� 0

 !
;

which is the left-hand side of the Bateman equation [31,32].
Finally, in D dimensions, the total Galileon Lagrangian

is given by a linear combination of LagrangiansLGal;1
N with

N ¼ 2; � � � ,Dþ 1. InD ¼ 4 dimensions, these are simply
the 4 terms given in [9].
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A second possible Lagrangian for the Galileon with,
again, N ¼ nþ 2 fields is given by

LGal;2
N ¼ ðA�1...�n�1...�n

ð2nÞ ��1
�	�

	
�1
Þ��2�2

. . .��n�n
; (15)

� T �1...�n�1...�n

ð2nÞ;Gal;2 ��1�1
. . .��n�n

; (16)

where (see also Sec. VA)

T �1...�n�1...�n

ð2nÞ;Gal;2 ¼ 1

n
A�1...�n�1...�n

ð2nÞ ½ð��1��1
Þ��2

�2
. . .��n

�n

þ ��1
�1
ð��2��2

Þ��3
�3
. . .��n

�n
þ . . .

þ ��1
�1
. . .��n�1

�n�1
ð��n��n

Þ�: (17)

Finally, the third form of interest is given by

LGal;3
N ¼ ðA�1...�n�1...�n

ð2nÞ �	�
	Þ��1�1

. . .��n�n
(18)

so that

T �1...�n�1...�n

ð2nÞ;Gal;3 ¼ XA�1...�n�1...�n

ð2nÞ (19)

where2

X � ���
�: (20)

The three Lagrangians (8), (15), and (18) are in fact all
equal up to a total derivative. Indeed, on defining J�N by

J
�
N ¼ XA��2����n�1�2����n

ð2nÞ ��1
��2�2

� � ���n�n
; (21)

it follows directly that

LGal;2
N ¼ � 1

2
LGal;3

N þ 1

2
@�J

�
N : (22)

Furthermore on using the properties of Að2nÞ given in

Appendix A, it follows that

ðN � 2ÞLGal;2
N ¼ LGal;3

N �LGal;1
N : (23)

Thus we also have

LGal;1
N ¼ N

2
LGal;3

N � N � 2

2
@�J

�
N ; (24)

LGal;1
N ¼ �NLGal;2

N þ @�J
�
N : (25)

From (22), (24), and (25) it therefore follows that the
equations of motion of all three Galileon Lagrangians are
identical, given by (14), and strictly of second order.

Finally, observe from (14) and (18) that LGal;3
N can be

rewritten as

LGal;3
N ¼ XEN�1 (26)

where EN�1 are the equations of motion coming from
LGal

N�1 (where we drop the index 1, 2, 3). In this form, it

is manifest that Galileon models containing a given
number N of � fields can be obtained from the field
equations of the same models with one less field.
This property, though implicit in [9], is very well explained
by the hierarchical construction of [13] which preceeded
by far Ref. [9] and discussed first, as far as we know, what
are called here and elsewhere Galileons (see [33]). This
hierarchical construction will be discussed in Sec. V.

C. Galileon Lagrangians in terms of cycles

The three equivalent Galileon Lagrangians presented
above all satisfy the sufficient conditions of the main
lemma of Sec. II A. In order to study the necessary con-
ditions it will be useful to introduce a new notation
consisting of the cycles ½i� and hii.
We define ½i� by

½i� � ��1
�2
��2

�3
��3

�4
� � ���i

�1
; (27)

so that for example

½1� ¼ h�; ½2� ¼ ��
��

�
�: (28)

Similarly,

hii � ��1
��1

�2
��2

�3
��3

�4
� � ���i

�iþ1
��iþ1 ; (29)

so that

h1i ¼ ���
�
��

� (30)

Note that ½i� contains i factors of � as well as i twice-
differentiated �’s, whereas hii contains iþ 2 factors of �,
but again i twice-differentiated �’s.
Using this notation, and in the case of N ¼ 4 fields, the

three Galileon Lagrangians can be written as

LGal;1
N¼4 ¼�ðh�Þ2ð���

�Þþ2ðh�Þð���
����Þ

þð����
��Þð�
�


Þ�2ð���
����
�


Þ
¼Xð½2��½1�2Þþ2ð½1�h1i�h2iÞ;

LGal;2
N¼4 ¼�ðh�Þ���

����þ���
����
�


¼h2i�½1�h1i;
LGal;3

N¼4 ¼ð�	�
	Þð����

���ðh�Þ2Þ¼Xð½2��½1�2Þ:
Furthermore it will be useful to define

p1 p2 � � � pr

1 2 � � � r

" #
¼ ½1�p1½2�p2 � � � ½r�pr ; (31)

as well as�
q1 q2 � � � qs

1 2 � � � s

�
¼ h1iq1h2iq2 � � � hsiqs ; (32)

where the pi and qi are positive (or vanishing) integers.3

2Note that in the context of k-inflation and other models, X is
often defined to be ����

�=2. In order to simplify our equa-
tions, the factor of �1=2 is not included here.

3Note that the right-hand sides of Eqs. (31) and (32) are
uniquely specified, respectively, by the ordered sets
ðp1; p2; � � � ; prÞ as well as ðq1; q2; � � � ; qsÞ. Hence our notation
on the left-hand side of Eqs. (31) and (32) is a bit redundant, but
we feel this will ease the reading of some of the equations below.
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Using this notation it follows from (17) that LGal;2
N can be

expressed as a sum of terms

p1 p2 � � � pr

1 2 � � � r

" #�
q1 � � � qs

1 � � � s

�
with

P
s
j¼1 qj ¼ 1. (See above in case N ¼ 4.)

Thus, for example, the equations of motion coming
LN¼4 are

0¼EN¼4¼�ðh�Þ3�2ð��
���


�

�Þþ3ðh�Þð����

��Þ
¼�½1�3�2½3�þ3½1�½2�

¼� 3

1

" #
�2

1

3

" #
þ3

1 1

1 2

" #
: (33)

More generally, for anyN, EN can be expressed as a specific
linear combination of monomials of the form (31)

EN ¼X
CNp1;���;pr

p1 p2 � � � pr

1 2 � � � r

" #
; (34)

where the sum runs over the r� uplets ðp1; � � � ; prÞ verify-
ing the constraint

N ¼ 1þXi¼r

i¼1

i� pi; (35)

and CNp1;���;pr
are real coefficients which do not depend on the

dimension of space-time, but only depend on the number of
fields N, explicitly

CNp1;p2;���pr
¼ð�1ÞNþp1þp2þ���þpr

ðN�1Þ!
ðp1!p2!���pr!Þ1p12p2 ���rpr

:

III. UNIQUENESS THEOREM IN
FLAT SPACE-TIME

A. The result

We are now in the position to study the converse of the
main lemma of Sec. II A. However, before presenting the
proof in Sec. III B, we first state our result. Namely, in flat
space-time, the most general theory satisfying the three
conditions

(i) its Lagrangian contains derivatives of order 2 or less
of the scalar field �;

(ii) its Lagrangian is polynomial in the second deriva-
tives of �;

(iii) the corresponding field equations are of order 2 or
lower in derivatives

has a Lagrangian which is given by an arbitrary linear
combination of the Lagrangians Lnffg (each containing
n of twice-differentiated �) of the form

Lnffg¼fð�;XÞ�LGal;3
N¼nþ2;

¼fð�;XÞ�ðXA�1...�n�1...�n

ð2nÞ ��1�1
. . .��n�nÞ: (36)

Here fð�;XÞ is an arbitrary scalar function of � and X,
generally different for each n, and the braces in Lnffg
denote that Ln is a functional of f. The equations of
motion corresponding to each Lnffg are4

0 ¼ 2ðfþ XfXÞEN þ 4ð2fX þ XfXXÞLGal;2
Nþ1

þ X½2XfX� � ðn� 1Þf��EN�1

� nð4XfX� þ 4f�ÞLGal;2
N � nXf��L

Gal;1
N�1 : (37)

where N ¼ nþ 2. Notice the dependence of these equa-
tions on ��� as well as �� (when f is nonconstant).

B. Proof of uniqueness

In flat space-time, the only scalar quantities which
are polynomial in second derivatives of � must be con-
structed from ½i� and hii, defined, respectively, in Eqs. (27)
and (29). Recall that these both contain i times a twice-
differentiated �. Hence, the most general scalar theory
obeying conditions (i) and (ii) has a Lagrangian which is
a linear combination of monomials, each of the form
Lp1;p2;���;pr

q1;q2;���;qs defined by

Lp1;p2;���;pr
q1;q2;���;qs ¼fð�;XÞ� p1 p2 ��� pr

1 2 ��� r

" #�
q1 q2 ��� qs
1 2 ��� s

�
;

(38)

where f is an arbitrary scalar function of� and X (different
for each monomial Lp1;p2;���;pr

q1;q2;���;qs ), and the other quantities
have been defined in (31) and (32). Formally then

L ¼ X
fpigfqjg

CfpigfqjgL
p1;p2;���;pr
q1;q2;���;qs ; (39)

where the sum is over the set of fpig ¼ ðp1; � � � ; prÞ and
fqjg ¼ ðq1; � � � ; qsÞ, and (the ratio of) the constant coef-

ficients Cfpigfqig will be determined below. Note also that

the number N of fields, and the number n of twice-
differentiated � which appear in a given product

p1 p2 � � � pr

1 2 � � � r

" #�
q1 q2 � � � qs

1 2 � � � s

�

are given, respectively, by

N ¼
�Xi¼r

i¼1

pi � i

�
þ
�Xj¼s

j¼1

qj � ðjþ 2Þ
�
; (40)

n ¼ N � 2
Xj¼s

j¼1

qj: (41)

We now look for the most general theory which obeys
condition (iii) as well as (i) and (ii).

4We use the notation fX � f;X , f� � f;� and so on.
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1. Fourth-order derivatives containing h��
�

Inspired by the proof given in [9], start from a particular
monomial of the form Lp1;p2;���;pr

q1;q2;���;qs , given in (38), with
specific values of the pi (for 1 � i � r) and of the qj
(for 1 � j � s). If the theory considered obeys condition
(iii), all third- and fourth-order derivatives must disappear
from the field equations. There are many fourth-order
derivative terms, but we first focus on those containing
h��

� (others will be discussed later). When varying

Lp1;p2;���;pr
q1;q2;���;qs , such terms can appear through

��½i�pi � 2ipi

i� 1
½hði� 1Þ�½i�pi�1�� ði > 1Þ (42)

��hiiqi � 2qihhði� 1Þihiiqi�1�� ði > 1Þ (43)

where

½hðjÞ� � Xj
k¼1

��1
�2
��2

�3
� � ���k�1

�k
ðh��k

�kþ1
Þ � � �

��j�1
�j
��j

�1
(44)

¼ j� ��1
�2
��2

�3
� � ���j�1

�j
ðh��j

�1
Þ; (45)

hhðjÞi � Xj
k¼1

��1
��1

�2
� � ���k�1

�k
ðh��k

�kþ1
Þ � � �

��j
�jþ1

��jþ1 : (46)

Now consider the contribution from (42). On varying
Lp1;p2;���;pr

q1;q2;���;qs this yields the term

2ipi

i� 1
fð�;XÞ � ½1�p1½2�p2 � � � ½i� 1�pi�1½hði� 1Þ�

� ½i�pi�1 � � � ½r�pr

�
q1 q2 � � � qs

1 2 � � � s

�
(47)

in the equations of motion, and it can only be cancelled if
one adds to the Lagrangian a term proportional to

f� p1þ1 p2 ��� pi�2 pi�1þ1 pi�1 piþ1 ��� pr

1 2 ��� i�2 i�1 i iþ1 ��� r

" #

�
�
q1 q2 ��� qs
1 2 ��� s

�
: (48)

Indeed, variation of the first term ½1�p1þ1 � ðh�Þp1þ1

gives, after integrating by parts and shifting theh operator
onto one of the cycles ½i� 1�, a term proportional to (47).
The same term is obtained from varying one of the twice-
differentiated � inside a cycle ½i� 1� and, on integrating
by parts, acting with the derivatives on one h�. Thus a
necessary condition for the theory considered to obey
conditions (i), (ii) and (iii) is that it must contain in its
action the specific linear combination

f

�
q1 q2 ��� qs
1 2 ��� s

�
�
8<
: p1 p2 ��� pr

1 2 ��� r

" #

þ�½�
p1þ1 p2 ��� pi�2 pi�1þ1 pi�1 piþ1 ��� pr

1 2 ��� i�2 i�1 i iþ1 ��� r

" #9=
;;

(49)

where �½�, which is nothing other than the ratio of two of

the C coefficients defined in (39), is given by

�½� ¼ � ipi

ðp1 þ 1Þðpi�1 þ 1Þði� 1Þ :

Notice that �½� is independent of fð�;XÞ. It is straightfor-
ward to check that the two terms in factor of f in (49) each
have the same number N of fields, and number n of twice-
differentiated �, as given in (40) and (41).
A similar reasoning can be applied to the ‘‘hi’’piece

in (38). Indeed, using (43) it follows that any theory obey-
ing conditions (i), (ii) and (iii), and which has a term in its
action given by Lp1;p2;���;pr

q1;q2;���;qs , must also contain a term

�hi�f� p1þ1 p2 ��� pr

1 2 ��� r

" #

�
�
q1 ��� qj�1þ1 qj�1 qjþ1 ��� qs

1 ��� j�1 j jþ1 ��� s

�
; (50)

where

�hi ¼ � qj
ðp1 þ 1Þðqj�1 þ 1Þ :

Once again observe that the above terms (38) and (50) have
the same number N of fields, and same number n of twice-
differentiated �’s.
We can thus define mappings F and G on the set of

monomials (38) which appear in the Lagrangian of any
theory obeying conditions (i), (ii) and (iii), such that F
maps any term Lp1;p2;���;pr

q1;q2;���;qs , i.e., (38), to the monomial (47)
and similarly G maps the term (38) to (50). Then, any two
terms related by those mappings (or their inverse F�1

and G�1) must have coefficients which are equal (up to
combinatorial factors) in order to eliminate fourth-order
derivatives containing h��

�. These mappings can easily

be pictured by a graph whose nodes are labeled by the set
fp1; p2; � � � ; pr; q1; q2; � � � ; qsg and represent the mono-
mial, and such that two nodes are connected if and only
if they are image of each other by the mappings F or G
or their inverse (or successive applications of F, G, F�1

or G�1).
Now observe that in going from (38) to (48), the power

of the cycle ½i� is lowered by 1, whereas the power of the
cycles ½i� 1� and ½1� is increased by 1. Similarly, in going
from the term (38) to (50) the power of the cycle hji is
lowered by 1 whereas that of the cycles hj� 1i and ½1�
increases by 1. Hence, by acting recursively with the
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mappings F and G, starting from the cycles ½r� and hsi
which have the largest length r and s respectively, one ends
up with the conclusion that any term Lp1;p2;���;pr

q1;q2;���;qs is con-
nected (after several applications of the maps F and G) to
a term which has all but p1 and q1 vanishing. That is, a
term of the form

L p
q ¼ f� ½1�ph1iq ¼ f� ðh�Þpð������

�Þq; (51)

where

q ¼ Xs
j¼1

qj; (52)

p ¼ Xr
i¼1

ðipiÞ þ
Xs
j¼1

qjðj� 1Þ: (53)

Alternatively, on using (40) and (41), p and q are deter-
mined by the number of fields and twice-differentiated� in
the part of the monomial containing second derivatives,
through

p ¼ 1

2
ð3n� NÞ; (54)

q ¼ 1

2
ðN � nÞ: (55)

Since the term (51) is the same for allLp1;p2;���;pr
q1;q2;���;qs which has

fixed values of N and n, one can conclude that the graph
introduced above, and representing monomials with fixed
values of N and n, is connected. In other words, it means
that any term Lp1;p2;���;pr

q1;q2;���;qs with fixed N and n must appear
in the action, with a common function f and fixed
coefficients.

Hence, to conclude the first part of our reasoning, we get
a family of (possibly trivial but each uniquely determined)
theories indexed by the values of N and n. More specifi-
cally, for given values of N and n the theory is uniquely
specified by the coefficient in front of (51) (as well as the
function f). The coefficients of all the other monomials
with the same number of N and n will be proportional to
the coefficient of (51) and the proportionality factor will be
independent of the specific function f (since this factor is
uniquely determined by requiring the vanishing of terms
with four derivatives h��

�, and this procedure is blind to

the chosen form for f).

2. Other fourth-order derivative terms

Now consider other fourth-order derivative terms which
may appear in the equations of motion. In particular,
if q � 2, the field equation derived from (51) will contain
a fourth derivative term proportional to

f� ðh�Þpð�	�
�����	
��Þð������
�Þq�2 (56)

(obtained by varying one of the twice-differentiated �
appearing in one cycle h1i and integrating by parts on the

other cycle h1i). However, it is impossible to cancel this
term by the variation of any of the other terms in the
Lagrangian (connected to Lp

q through F and G). Thus we
conclude that there are two possibilities—the power q
appearing in (51) must take the value 0 or 1, so that on
using (55),

q ¼ 0 , N ¼ n (57)

q ¼ 1 , N ¼ nþ 2: (58)

3. Second-order equations of motion

We first focus on q ¼ 0, namely, one particular theory
which obeys (i), (ii), (iii), has a fixed value of n, and
N ¼ n. From (52), it follows that all the qj must vanish

so that the Lagrangian is a sum of monomials made of

p1 p2 � � � pr

1 2 � � � r

" #

only. As we have just seen, these have relative coefficients
which are fixed and independent of the choice of the
function f. One can conclude that those coefficients must
be the ones, CNþ1

p1;���;pr
, appearing in the expansion of ENþ1

(see Eq. (34)). Indeed, we know that if we consider ENþ1 as
an action, this action has a vanishing equation of motion
since ENþ1 is a total derivative. Hence it obeys the hypoth-
eses (i), (ii) and (iii) and it has also the correct power,
n ¼ N, of twice-differentiated � appearing in the expan-
sion in terms of monomials

p1 p2 � � � pr

1 2 � � � r

" #
:

Hence, one is led to the conclusion that any theory obeying
(i), (ii) and (iii), with a fixed value of n and N ¼ n must
have a Lagrangian of the form g� ENþ1, where g is some
function of � and X. Thus, on using (26), it can be
rewritten as (defining f � gX�1)

L ð3Þ
n ffg � fð�;XÞ �LGal;3

nþ2 ¼ fð�;XÞ �LGal;3
N : (59)

A similar argument applies to the other family of mod-
els. Here q ¼ 1 ¼ P

s
j¼1 qj, and N ¼ nþ 2 for a given

value of n: these models must have a Lagrangian of the
form

L ð2Þ
n ffg � fð�;XÞ �LGal;2

nþ2 ;¼ fð�;XÞ �LGal;2
N : (60)

Indeed LGal;2
N obeys hypotheses (i), (ii) and (iii), and, as

recalled after Eq. (32), has an expansion in terms of
monomials

p1 p2 � � � pr

1 2 � � � r

" #�
q1 � � � qs

1 � � � s

�

with
Pj¼s

j¼1 qj ¼ 1.
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Finally, it is straightforward to show that the field equa-
tions derived from Lagrangians (59) and (60) are indeed
second order (so that third-order derivative terms also
vanish). This is in fact a direct consequence of the ‘‘main
lemma’’ of the previous section, since using the expres-
sions (15) and (18) one can see that Lagrangians (59) and

(60) are of the form (2). In the case of Lð3Þ
n , the explicit

equations of motion are given in (37).

4. Unique family of models satisfying the ‘‘main lemma’’

Finally, we are in a position to show that (59) and (60)
are in fact equivalent up to total derivatives, so that the
unique theory satisfying (i), (ii) and (iii) is indeed given by

an arbitrary linear combination of the Lagrangians Lð3Þ
n ffg

as advertised in Sec. III A.

Define Lð1Þ
n ffg � fð�;XÞLGal;1

nþ2 . Then the identity (23)

amongst the three Galileon models is now generalized to

nLð2Þ
n ffg ¼ Lð3Þ

n ffg �Lð1Þ
n ffg; (61)

and similarly (22) becomes

2Lð2Þ
n ffþXfXg¼�Lð1Þ

n�1fXf�g�Lð3Þ
n ffgþ@�ðfð�;XÞJ�ðnÞÞ:

(62)

J
�
ðnÞ � J

�
N is given in Eq. (21). Elimination ofLð1Þ

n between

these two equations yields a recurrence relation between

Lð2Þ
n and Lð3Þ

n , namely,

Lð2Þ
n ffg ¼ �ðn� 1ÞLð2Þ

n�1

�
@g1
@�

	
þLð3Þ

n

�
g1
X

	
þLð3Þ

n�1

�
@g1
@�

	
þ tot:div:; (63)

with

g1ffg ¼ � 1

2

Z X

0
dYfð�; YÞ:

On using (63) repeatedly, it follows that (up to a total

derivative) Lð2Þ
n ffg can be expressed as a linear combina-

tion of Lð3Þ
i ffg. Specifically

Lð2Þ
n ffg ¼ Lð3Þ

0

�
@gn;1
@�

	
þ Xn�1

i¼1

Lð3Þ
i

�
gn;i
X

þ @gn;iþ1

@�

	

þLð3Þ
n

�
gn;n
X

	
þ tot:div:; (64)

where Lð3Þ
0 ffg ¼ Xf for consistency, and

gn;iffg�ðn�1Þ!
ði�1Þ!gn�iþ1ffg;

giffg�� 1

2i

�
@

@�

�
i�1Z X

X0

dX1

Z X1

X0

dX2���
Z Xi�1

X0

dXifð�;XiÞ:

Thus Eq. (64) shows the equivalence of the q ¼ 0 and
q ¼ 1 Lagrangians given in (59) and (60) respectively.

Finally, observe that Lð3Þ
D ffg is in fact a linear combina-

tion ofLð3Þ
k with k ¼ 0; . . . ; D� 1. This follows from (64)

together with the fact that for n ¼ D Eq. (61) reduces to

DLð2Þ
D ffg ¼ Lð3Þ

D ffg. Thus to conclude, the most general
Lagrangian in D dimensions obeying conditions (i), (ii)
and (iii) is given by

L ¼ XD�1

n¼0

Lnffng; (65)

where fn are arbitrary functions of � and X and

Lnffg � Lð3Þ
n ffg.

IV. COVARIANTIZATION

We now turn our discussion from flat space-time to
curved space-time. Let us start from the general
Lagrangian Lnffg in our family (36), writing it in the
form of Eq. (2) with T ð2nÞ defined by

T ð2nÞ ¼ T ð2nÞð�;XÞ ¼ fð�;XÞ � XAð2nÞ; (66)

and where n is the number of second derivatives of the field
in the Lagrangian. On replacing all partial derivatives ap-
pearing in this Lagrangian by covariant derivatives, we
obtain a minimally covariantized theory. As we will now
see, following [16], the field equations of this covariantized
model contain derivatives of order higher than two (varying
the action with respect to � or with respect to the metric):
however, we will also see that there exists a nonminimal
covariantization removing all such higher-order derivatives.
Let us then consider variation with respect to the scalar

� of the minimally covariantized version of (36). It reads

�Lnffg¼�T �1����n�1����n

ð2nÞ ��1�1
�����n�n

þnT �1����n�1����n

ð2nÞ ���1�1��2�2
�����n�n

: (67)

Above, the only ‘‘dangerous terms’’ (recall that these are
terms leading to expressions in the field equations depend-
ing on derivatives of order higher than two) come only
from the second term on the right-hand side. Indeed by
virtue of a straightforward generalization to curved space-
time of the first lemma in Sec. II A (see the proof in
Appendix B), dangerous terms coming from the first piece
on the right-hand side of (67) are exactly compensated by
terms coming from the second piece. After these compen-
sations, first derivatives of the Riemann tensor (i.e., third
derivatives of the metric) remain, and are therefore trouble-
some. Indeed we have

�Lnffg 	 �nðn� 1Þ
4

T �1����n�1����n
ð2nÞ �	

� R�1�2�1�2;	��3�3
� � ���n�n

��; (68)

where here and below we use the same notation as in [16]
so that the symbol	 means that we write only the danger-
ous terms, up to total derivatives.
In order for the equations of motion to be second

order, it is enough to add a finite number of terms whose
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variations exactly cancel the third derivatives of the metric.
Starting with the above dangerous term, we can add
a term proportional to ðRX

X0
T �1����n�1����n

ð2nÞ ð�;X1ÞdX1Þ�
R�1�2�1�2

��3�3
�����n�n

to our Lagrangian. Then we need

to add another term in order to compensate for the danger-
ous terms arising from our correction, and so on. The
general term in this series of Lagrangians is

L n;pffg ¼ P�1�2����n�1�2����n
ðpÞ RðpÞSðq�n�2pÞ (69)

where we again follow the notation of [16] and

RðpÞ �
Yp
i¼1

R�2i�1�2i�2i�1�2i
;

Sðq�n�2pÞ �
Yq�1

i¼0

��n�i�n�i
;

and P ðpÞ is the (p times) repeated integral of T ð2nÞ with
respect to X defined by5

P�1�2����n�1�2����n

ðpÞ

�
Z X

X0

dX1

Z X1

X0

dX2���
Z Xp�1

X0

dXpT
�1�2����n�1�2����n

ð2nÞ ð�;X1Þ:

Notice that we use the conventions Ln;0ffg ¼ Lnffg,
S1 ¼ ��n�n and Sq�0 ¼ 1. It follows from the lemma

of Appendix B that Ln;pffg does not yield any more

dangerous terms for p � bn=2c (where bn=2c denotes
the integer part of n=2). Thus, as we will confirm,
only a finite number of terms Ln;pffg is necessary. In

order to make sure that adding these terms to the
initial Lagrangian exactly cancels all higher derivatives
in the equations of motion, and to determine the coeffi-
cients that make this possible, we now compute their
variation �Ln;p with respect to the field �, only paying

attention to dangerous terms. We get (after suitable inte-
grations by parts)

�Ln;p ¼ �P�1����n�1����n

ðpÞ RðpÞSðqÞ þ ðn� 2pÞP�1����n�1����n

ðpÞ RðpÞSðq�1Þ���2pþ1�2pþ1

¼ 2P�1����n�1����n

ðp�1Þ �	��	RðpÞSðqÞ þ ðn� 2pÞP�1����n�1����n

ðpÞ RðpÞSðq�1Þ���2pþ1�2pþ1

	�2pP�1����n�1����n

ðp�1Þ Rðp�1ÞSðqÞ�	R�2p�1�2p�2p�1�2p;	��

� ðn� 2pÞðn� 2p� 1Þ
4

P�1����n�1����n

ðpÞ RðpÞSðq�2Þ�	R�2pþ1�2pþ2�2pþ1�2pþ2;	��:

Notice that, once again, the third derivatives of � coming
from the variation of P ðpÞ are exactly canceled by those
coming from the variation of SðqÞ. The second Bianchi
identity ensures that no other derivatives of the Riemann
tensor appear. To summarize, in order that the equations of
motion contain no more than second-order derivatives, the
Lagrangian must be given by the linear combination

L cov
n ffg ¼ Xbn2c

p¼0

Cn;pLn;pffg; (70)

where the coefficients obey the specific recurrence

relation Cn;pþ1 ¼ � ðn�2pÞðn�2p�1Þ
8ðpþ1Þ Cn;p for p � 0 and

Cn;0 ¼ 1. This gives

C n;p ¼
�
� 1

8

�
p n!

ðn� 2pÞ!p! : (71)

Note that similar expressions have been obtained in [16].
However, there, the covariantization was derived for the

LagrangiansLGal;1
N . It was also observed that the covarian-

tized action could be written in different forms using
various total derivatives. The same is true here and hence,

taking also into account (24), it is not straightforward to
compare the covariantized form (70) and (71) to the one
given in [16].
Remarkably the Lagrangian Lcov

n ffg also yields second-
order equations for the metric. Indeed by computing the
variation of each term appearing in the above linear
combination, but this time with respect to the metric
g�� (denoting the metric variation by �g��), we obtain

(given that the tensor P ðpÞ does not depend on derivatives

of the metric)

�Ln;p 	 pP�1����n�1����n

ðpÞ Rðp�1Þ�R�2p�1�2p�2p�1�2p
SðqÞ

þ ðn� 2pÞP�1����n�1����n

ðpÞ RðpÞSðq�1Þ���2pþ1�2pþ1

with (see equations (31) and (32) in Ref. [16])

���2pþ1�2pþ1

¼�1

2
�	ð�g	�2pþ1;�2pþ1

þ�g	�2pþ1;�2pþ1
��g�2pþ1�2pþ1;	Þ;

P�1����n�1����n

ðpÞ �R�2p�1�2p�2p�1�2p

¼2P�1����n�1����n

ðpÞ �g�2p�1�2p;�2p�2p�1

þP�1����n�1����n

ðpÞ �g��2p�1
R��2p�2p�1�2p

:

This yields

5X0 being an arbitrary constant whose presence is related to the
possibility of adding terms—all of which vanish in flat space—
that avoid higher derivatives. See, e.g., (91) and (92).
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�Ln;p	2pP�1����n�1����n

ðpÞ Rðp�1ÞSðqÞ�g�2p�1�2p;�2p�2p�1
þðn�2pÞ

2
P�1����n�1����n

ðpÞ RðpÞSðq�1Þ�	�g�2pþ1�2pþ1;	:

After two integrations by parts, we are led to

�Ln;p 	 4pP�1����n�1����n

ðp�1Þ Rðp�1ÞSðqÞ�	��2p�1�2p	�g�2p�1�2p

� pðn� 2pÞ
2

P�1����n�1����n

ðpÞ Rðp�1ÞSðq�1Þ�	R�2p�2pþ1�2p�1�2pþ1;	�g�2p�1�2p

� pðn� 2pÞ
2

P�1����n�1����n

ðpÞ Rðp�1ÞSðq�1Þ�	R�2p�1�2p�2p�1�2p;	�g�2pþ1�2pþ1

� ðn� 2pÞðn� 2p� 1Þ
2

P�1����n�1����n

ðpÞ RðpÞSðq�2Þ�	�	�2pþ2�2pþ2
�g�2pþ1�2pþ1

:

On relabeling �2p�1 $ �2pþ1 and �2p $ �2pþ1 in the
second term, the second and third terms are seen to cancel.
Also, by changing �2p $ �2p�1 in the first term, it is clear
that all the other dangerous terms vanish if the coefficients
Cn;p are given by Eq. (71).

Our covariantized Lagrangian (70) depends on D func-
tions of � and X as well as

P
D�1
n¼0 bn=2c functions of �

(the integration constants). However, this is due to our
parametrization: these ‘‘constants’’ can be reabsorbed in
a redefinition of the functional coefficients fn. That is, we
can parametrize our theories by starting from the term with
the highest number of Riemann tensors, leaving a total of
D arbitrary functions only.

To conclude, we have started from the most general
theory in flat space-time (36) and obtained an extended
family of Lagrangians (70) which yield second-order equa-
tions of motion in curved space-time. As wewill see below,
whenD ¼ 4, this can be shown to be the most general such
theory in curved space-time.

V. EXAMPLES

Although in Sec. III we have completely classified
all models of the form (2) (and more generally all
models obeying conditions (i), (ii) and (iii) of Sec. III),
it is of interest to discuss some specific models in
which the tensor T ð2nÞ of Eqs. (2) and (3) takes a simple

form. We will in turn give a straightforward method with
which to construct a suitable tensor T ð2nÞ—namely satis-

fying the properties given in the main lemma of Sec. II A.
We then discuss the hierarchical constructions of [13]
(see also [33] for a recent summary) in our notation.
Finally, we give the covariantization of the conformal
Galileon in four dimensions (Sec. VC), and explain
the link between our work and that of Horndeski [14]
(Sec. VD).

A. Construction with antisymmetric tensors

One way to obtain a tensor T ð2nÞ is to consider a set of

twice contravariant tensors F��
i , i ¼ 1 . . . n, (and n � D)

depending on � and �	 (where � and � label space-time

indices, whereas i labels the tensors) and then to define the
D-contravariant tensor EfFig by

E fFig
�1...�n�1...�D�n � "�1...�n

�1...�D�nF
�1�1
ð1 F

�2�2

2 . . .F
�n�n

nÞ ;

(72)

where the brackets denote symmetrization over the tensors
F��
i . The tensor EfFig is easily seen to be completely

antisymmetric over its first n indices as well as (separately)
over its last D� n indices.
The special choice

F
��
i ¼ g��; for all i (73)

gives a tensor E equal to the Levi-Civita " tensor. Another
interesting case arises by choosing, for example, F

��
1 ¼

����, and all the other F
��
i given by the metric as in (73).

In that case the tensor E will be denoted by ~"ðnÞ and is

given by

~"ðnÞ
�1...�n�1...�D�n ¼ 1

n
"�1...�n

�1...�D�nð��1��1g�2�2 . . .g�n�n

þ g�1�1��2��2g�3�3 . . .g�n�n þ . . .

þ g�1�1 . . . g�n�1�n�1��n��nÞ: (74)

This tensor enters, in particular, in the form (15)–(17) of
the action for the Galileon, as we will see below. We can
also construct a tensor E given by a linear combination of "
and ~"ðnÞ by choosing

F
��
i ¼ @2Fi

@��@��

; (75)

where Fi is some scalar function of X and �: such F��
i

arise in the hierarchical construction of [13] (see Sec. VA).
In this case

@2Fi

@��@��

¼ 4
@2Fi

@X2
���� þ 2

@Fi

@X
g��: (76)

Note that if there is more than one tensor F
��
i proportional

to �� (or ��) in Eq. (72), then the contraction with the
Levi-Civita tensor on the right-hand side of this equation
implies a vanishing E.
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Having at hand the tensors E, it is easy to build tensors
T with the required properties: namely, simply replace
the Levi-Civita " tensor on the right-hand side of Eq. (6) by
the E tensor, and define, in analogy with (9) a tensor T
given by

T �1�2...�n�1�2...�n

ð2nÞ � f� EfFig
�1�2...�n�1�2...�D�n

� EfGig
�1�2...�n

�1�2...�D�n
: (77)

Here the tensors E are built with (possibly different) given
sets of functions Fi and Gi, and the function f is an
arbitrary scalar function of �� and �. For example, if we

choose f ¼ 1, one of the E tensors to be the tensor ~"ðnÞ, and
the other to be the Levi-Civita tensor ", then T is simply
the tensor T ð2nÞ;Gal;2 of Eq. (17), namely

T �1�2...�n�1�2...�n

ð2nÞ � ~"ðnÞ
�1�2...�n�1�2...�D�n"�1�2...�n

�1�2...�D�n
:

(78)

B. Euler hierarchies

Another way to generate tensors of the form (72) is
provided by the Euler hierarchies of [13], which we now
revisit using the notations and results of the present paper.
We start from a set of arbitrary scalar functions F‘ ¼
F‘ð��Þ which depend only on first derivatives of the scalar
field �, and work in flat D-dimensional space-time. Then,
denoting W0 ¼ 1, we define the recursion relation

W‘þ1 ¼ �ÊF‘þ1W‘; (79)

where Ê is the Euler-Lagrange operator defined in
Eq. (5). Hence W‘ is the field equation of a Lagrangian
L‘ defined by

L ‘ ¼ F‘W‘�1; (80)

and we build that way an ‘‘Euler hierarchy’’ of equations of
motion and Lagrangians for each ‘. An interesting aspect
of this hierarchy is that one can show that W‘ is given by

W‘¼A�1�2����‘

�1�2����‘
@2F1

@��1
@�
1

@2F2

@��2
@�
2

��� @2F‘

@��‘
@�
‘

��
1�1
�
2�2

����
‘�‘
; (81)

and

L‘ ¼ A�1����‘�1

�1����‘�1
@2F1

@��1
@�
1

� � � @2F‘�1

@��‘�1
@�
‘�1

� F‘�
1�1
� � ��
‘�1�‘�1

: (82)

The proof proceeds by induction [13], and is also given in
Appendix C. Notice that L‘ can be obtained from (77) by
setting f � 1

ð‘�1Þ!F‘ and contracting the tensor

Ef@2Fk=@��@��g with ". The above generic hierarchy stops

after at most D steps (it may stop earlier depending on the
properties of the functions Fk) and one finds a vanishing

WDþ1. As discussed in [13], and as we will see in a simple
example below, the last nontrivial equation of motion WD

is simply given (whatever the choice made for the func-
tions Fk) by the equation of motion of the maximal
Galileon in D dimensions, namely, the one for which
N ¼ Dþ 1, see (11).
The maximal and nonmaximal Galileons can also be

obtained by choosing Fk ¼ ���
�=2 for all k ¼ 0; . . . ; ‘.

In this case, one has

W‘ ¼ A�1����‘�1����‘

ð2‘Þ ��1�1
� � ���‘�‘

¼ E‘þ1 (83)

L ‘ ¼ 1

2
XW‘�1 ¼ 1

2
LGal;3

‘þ1 : (84)

More generally, when the Fk are (possibly different) func-
tions of X, that is Fk ¼ fkð�	�	Þ, one can show that

W‘ ¼ �‘E‘þ1 � �‘L
Gal;1
‘þ2 ; (85)

L ‘ ¼ f‘ðXÞð�‘�1E‘ � �‘�1L
Gal;1
‘þ1 Þ; (86)

where � and � are given by

�‘ð�	�	Þ ¼ 2‘�1

‘

X‘
k¼1

�
ð2f0k þ 4ð�	�	Þf00k Þ

Y
j�k

f0j
�

�‘ð�	�	Þ ¼ 2‘þ1

‘

X‘
k¼1

�
f00k
Y
j�k

f0j
�
:

To conclude, since bothLGal;1
‘þ1 and E‘ are directly related to

LGal;3
‘þ1 (see Eqs. (24) and (26) respectively), the Lagrangian

(86) which we have constructed using the Euler hierarchies
belongs to our family of general Lagrangians given in (36).

C. Conformal covariant Galileons in four dimensions

The conformal Galileons [9] provide another simple
example of theories of the kind obtained in this work (other
nontrivial examples in flat and curved space-times have
been obtained in [21]). The Lagrangians for the conformal
Galileons in four dimensions and flat space-time have been
given explicitly in [20]. They read, in our notation,

LC:Gal
4 ¼ 1

20
e2�X½10ððh�Þ2�����

��Þ
þ4ðXh���������Þþ3X2�;

LC:Gal
5 ¼e4�X

�
1

3
ððh�Þ3þ2�

�2
�1�

�3
�2�

�1
�3 �3h�����

��Þ
þXððh�Þ2�����

��Þ
þ10

7
XðXh���������Þ� 1

28
X3

�
:

These can be rewritten in terms of LGal;i
N and LðiÞ

n ffg, as
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LC:Gal
4 ¼ � 1

2
e2�LGal;3

4 � 1

5
e2�XLGal;1

3 þ 3

20
e2�X3;

¼ � 1

2
Lð3Þ

2 fe2�g � 1

5
Lð1Þ

1 fe2�Xg þ 3

20
e2�X3; (87)

LC:Gal
5 ¼ � 1

3
e4�LGal;3

5 � e4�XLGal;3
4 � 10

7
e4�X2LGal;1

3

� 1

28
e4�X4;

¼ � 1

3
Lð3Þ

3 fe4�g �Lð3Þ
2 fe4�Xg � 10

7
Lð3Þ

1 fe4�X2g

� 1

28
e4�X4: (88)

As expected, one sees that those Lagrangians are indeed in
the family obtained by our proof of uniqueness. The co-
variantization of theories (87) and (88) is straightforward.
Only the first term in (87) and the first two terms in (88)
need compensating factors. The relevant covariantization
formulas are

Lcov
2 ffg ¼ Lð3Þ

2 ffg þ 1

2
R
Z X

X0

dYfð�; YÞY; (89)

Lcov
3 ffg ¼ Lð3Þ

3 ffg � 3G���
��
Z X

X0

dYfð�; YÞY: (90)

To summarize, (87) must be completed with

LC:Gal;c
4 ¼ � 1

8
e2�RðX2 � X2

0Þ; (91)

and (88) must be completed with

LC:Gal;c
5 ¼1

2
e4�

�
G���

��ðX2�X2
0Þ�

1

3
RðX3�X3

0Þ
�
; (92)

where X0 is an arbitrary integration constant that can be
taken to vanish. Note that the coefficients of the terms
proportional to (X2 � X2

0) in (91) and (92) can be directly

read from the expressions given in [15,16]. However, one
should take into account that one has to integrate once
e4�XT ð4Þ;Gal;3 to obtain the term proportional to (X3 � X3

0)

in (92).

D. Relation with Horndeski theories

In [14], Horndeski obtained the most general scalar-
tensor theory in four dimensions which has field equations
of second (and lower) order both for the scalar field and the
metric. Using the notation of the present paper, the family
of theories he obtained are written as

L H ¼ �A�1�2�3�1�2�3

ð3Þ

�
�1R�1�2�1�2��3�3

� 4

3
�1;X��1�1

��2�2
��3�3

�
(93)

�A�1�2�3�1�2�3

ð3Þ ð�3R�1�2�1�2
��3

��3

� 4�3;X��1�1
��2�2

��3
��3

Þ (94)

�A�1�2�1�2

ð2Þ ðFR�1�2�1�2
� 4F;X��1�1

��2�2
Þ (95)

� 2�8A
�1�2�1�2

ð2Þ ��1
��1

��2�2
(96)

� 3ð2F;� þ X�8ÞX þ �9; (97)

where �1, �3, �8, �9 and F are functions of � and X which
are related by the constraint

F;X ¼ �1;� � �3 � 2X�3;X: (98)

We now comment on the relation between the above
theories and the one discussed in this paper.
First it is clear that the flat space restriction of Horndeski

theories must be a subset of the most general flat space
theories obtained in this work in Sec. III (and presented in
III A) on setting D ¼ 4.6 Second, the set of theories pre-
sented in Sec. IV and obtained by covariantizing the most
general 4D flat space theory with second-order field equa-
tions must be included in the set of theories discussed by
Horndeski. In fact one can also show that the converse is
true: the set of theories discussed by Horndeski and the set
of theories presented in Sec. IVare identical for D ¼ 4. To
see this, it is enough to show that Horndeski theories are
included in the set of theories discussed in Sec. IV. That
this is the case7 can be seen from the following rewriting
of (93)–(97):

L H ¼ X3
n¼0

Lcov
n ffng (99)

with

Xf0ð�;XÞ¼��9ð�;XÞ�X

2

Z
dXð2�8�4�3;�Þ;�;

Xf1ð�;XÞ¼Xð4�3;�þ�8Þ�1

2

Z
dXð2�8�4�3;�Þþ6F;�;

Xf2ð�;XÞ¼4ðFþX�3Þ;X; Xf3ð�;XÞ¼4

3
�1;X:

Hence it is quite interesting to note that starting from
different hypotheses—namely in our case the (possibly
nonunique) covariantization of a scalar theory in flat
space-time with second-order field equations (and action
polynomial in second derivatives), and in Horndeski’s

6Note that the flat space restriction of Horndeski theories is not
obviously the most general second-order theory for a scalar field
in flat space. The reason is that Horndeski construction relies on
a condition on the metric field equations which is inapplicable in
flat space, and which could reduce the set of theories obtained.

7This equivalence has also been obtained in the last version of
the preprint [34].
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case, a curved space-time scalar-tensor theory with
second-order field equations both for the scalar and the
metric—one ends up with identical sets of theories.

Notice that the parametrization given by Horndeski can
be misleading because one might conclude that, e.g., the
terms (93), (95), and (97) are not independent, since they all
depend on the function �1 (the same can be said for (94),
(95), and (97) which depend on �3). This is however not the
case, and one can see easily from the calculations done in
Sec. IV as well as in [16] that each of the terms (93)–(97)
lead separately to field equations of second order both for
the scalar and themetric. This is transparent in our rewriting
(99). Moreover, Horndeski’s parametrization does
not elucidate the relation between the two families of

Lagrangians Lð1Þ and Lð3Þ which appear, respectively, in
Eqs. (94) and (96) and Eqs. (93), (95), and (97). Besides, in
contrast to Horndeski’s our theorem is valid for an arbitrary
number of dimensions.

VI. CONCLUSIONS

In this work, we have obtained the most general scalar
theory which has an action depending on derivatives of
order up to second and has second-order (and lower) field
equations. Those theories were shown to have Lagrangians
made by taking the product of an arbitrary function of the
scalar field and its first derivatives with a special form of
the Galileon Lagrangian, or any linear combinations of
those Lagrangians. We have also shown how to covarian-
tize those models, while maintaining the key property that
field equations are second order. Finally, we have also
discussed the relation between our construction and the
Euler hierarchies of Fairlie et al. We have shown, in
particular, that the latter construction allows one to obtain
all theories which are shift symmetric.

Several questions are left for future work. On the formal
side, it would be interesting to see how the above proof can
be generalized to the case of p forms and/or multifields.
One could also investigate the possibility of having actions
which depend on derivatives of order higher than two, and
yet give rise to field equations of second order. On the
phenomenological side, work is needed to see which sub-
sets of the theories introduced here retain the several
interesting aspects recalled in the introduction. Finally, it
would be interesting to study the cosmology of, as well as
cosmological perturbation theory in, phenomenologically
interesting models.
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APPENDIX A: USEFUL IDENTITIES

The definition of Að2nÞ given in (6) is

A�1�2...�n�1�2...�n

ð2nÞ

� 1

ðD�nÞ!"
�1�2...�n�1�2...�D�n"�1�2...�n

�1�2...�D�n
; (A1)

where [see (7)]

"�1�2...�D ¼� 1ffiffiffiffiffiffiffi�g
p �

½�1

1 �
�2

2 . . .�
�D�
D �� 1ffiffiffiffiffiffiffi�g

p �
�1�2����D

12���D ;

"�1�2����D
¼ ffiffiffiffiffiffiffi�g
p

�1
½�1

�2
�2
. . .�D

�D� �
ffiffiffiffiffiffiffi�g

p
�12���D
�1�2����D

;

so that (A1) can be rewritten as

Að2nÞ
�1�2����n

�1�2����n
¼ � 1

ðD� nÞ!�
�1�2...�n�1�2...�D�n
�1�2...�n�1�2...�D�n

¼ ��
�1����n
�1����n

: (A2)

The identity between the three Galileon Lagrangians (8),
(15), and (18) given in (23) then follows by using

��1�2����nþ1
�1�2����nþ1

¼ Xnþ1

i¼1

ð�1Þi�1��1
�i
��2�3����nþ1
�1�2����i�1�iþ1...�nþ1

¼ �
�1
�1
�
�2����nþ1
�2���...�nþ1

þ Xnþ1

i¼2

ð�1Þi�1��1
�i
��2�3����i�1�i�iþ1����nþ1
�1�2����i�1�iþ1...�nþ1

:

(A3)

APPENDIX B: A FORMAL PROOF OF THE FIRST
LEMMA A OF SEC. IIA

Here we provide a formal proof of the lemma of
Sec. II A. Since we also use this lemma in Sec. IV we
discuss the proof in curved space-time with the under-
standing that we replace everywhere partial derivatives @
by covariant derivatives r (i.e., �� � r��, ��� �
r�r�� and so on). We consider T ð2Þ, a twice contra-

variant tensor depending on � and its first derivatives ��.

Varying the Lagrangian L ¼ T ��
ð2Þ���, and writing

only the potentially dangerous terms (i.e., those terms
which can lead to third and higher derivatives, which,
following the notations of [16], we denote by using the
symbol 	) in the variations we find (using suitable inte-
grations by part)
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�L ¼ @T ��
ð2Þ

@�


��
��� þT ��
ð2Þ����

	�@T ��
ð2Þ

@�


�
����þ ðr�r�T
��
ð2Þ Þ��

	�@T ��
ð2Þ

@�


�
����þ ð@�@�T ��
ð2Þ Þ��

	�@T ��
ð2Þ

@�


�
����þ @�

�@T ��
ð2Þ

@�


@��


�
��

	�@T ��
ð2Þ

@�


�
����þ @T ��
ð2Þ

@�


@�@��
��

	�@T ��
ð2Þ

@�


ð�
�� � ���
Þ��

Since the commutation of the covariant derivatives only
involves a contraction of the Riemann tensor with a first
derivative of the field, the dangerous terms exactly cancel
each other and this concludes the proof.

APPENDIX C: EULER HIERARCHY

In this appendix, following [13], we show how to obtain
(81). The proof proceeds by induction. First notice that

W1 ¼ �ÊF1W0 ¼ @�
@F1

@��

¼ @2F1

@��@��

���;

so the proposition is true for n ¼ 1. Suppose now that it is
true for arbitrary fixed n. In order to show that it is still
valid for nþ 1 we will need the following identity

ÊFð��ÞWð��;���Þ¼ ðÊWÞF�2

�
@W

@��

�1

2
@�

�
@W

@���

þ @W

@���

��
��


@F

@�


�
�
W

@2F

@��@��

���� @W

@���

@2F

@�
@��

��
���

�
:

We can now use this withW ¼ Wn (which depends only on first and second derivatives of �) and F ¼ Fnþ1. But sinceWn

is a divergence (it is the equation of motion of some lagrangian which does not depend explicitly on the field itself), its
equation of motion vanishes ÊWn ¼ 0 (alternatively we could say that the operator Ê is nilpotent). Also because of the
antisymmetry of the Levi-Civita tensor, we can show that

@Wn

@��
� 1

2
@�

�
@Wn

@���

þ @Wn

@���

�
¼ @Wn

@��

� 1

2

�
@2Wn

@���@�


þ @2Wn

@���@�


�
��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼2ð@Wn=@��Þ

þ 1

2

�
@2Wn

@���@�
�

þ @2Wn

@���@�
�

�
��
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

:

So in the end this term vanishes too and we have

�ÊFnþ1Wn ¼ Wn

@2Fnþ1

@��@��

��� � @Wn

@���

@2Fnþ1

@�
@��

��
���

¼ A�1����n

�1����n
@2F1

@��1
@�
1

� � � @2Fn

@��n
@�
n

@2Fnþ1

@��@��

�
1�1 � � ��
n�n
���

� Xn
p¼1

A�1����n

�1����p�1��p����n
@2F1

@��1
@�
1

� � � @2Fp

@��p
@��

� � � @2Fn

@��n
@�
n

� @2Fnþ1

@�
@��

�
1�1
� � ��
p�1�p�1

��
����
pþ1�pþ1
� � ��
n�n

¼
�
A�1����n

�1����n��nþ1

�nþ1 � Xn
p¼1

A�1����n

�1����p�1�nþ1�pþ1����n��nþ1

�p

�

� @2F1

@��1
@�
1

� � � @2Fnþ1

@��nþ1
@�
nþ1

�
1�1
� � ��
nþ1�nþ1

:

But we also have (with (A3))

A�1����n

�1����n��nþ1

�nþ1 � Xn
p¼1

A�1����n

�1����p�1�nþ1�pþ1����n��nþ1

�p ¼ A�1����nþ1

�1����nþ1 ;

which proves our result for nþ 1. Notice that in this proof, we often used the fact that partial derivatives commute over flat
space-time.
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