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We investigate strong coupling effects in a covariant massive gravity model, which is a candidate for a

ghost-free nonlinear completion of Fierz-Pauli. We analyze the conditions to recover general relativity via

the Vainshtein mechanism in the weak field limit, and find three main cases depending on the choice of

parameters. In the first case, the potential is such that all nonlinearities disappear and the vDVZ

discontinuity cannot be avoided. In the second case, the Vainshtein mechanism allows to recover general

relativity within a macroscopic radius from a source. In the last case, the strong coupling of the scalar

graviton completely shields the massless graviton, and weakens gravity when approaching the source. In

the second part of the paper, we explore new exact vacuum solutions, that asymptote to de Sitter or anti

de Sitter space depending on the choice of parameters. The curvature of the space is proportional to the

mass of the graviton, thus providing a cosmological background which may explain the present-day

acceleration in terms of the graviton mass. Moreover, by expressing the potential for nonlinear massive

gravity in a convenient form, we also suggest possible connections with a higher-dimensional framework.
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I. INTRODUCTION

Attempts to build a theory of massive gravity date back
to the work by Fierz and Pauli (FP) in 1939 [1]. They
considered a mass term for linear gravitational perturba-
tions, which is uniquely determined by requiring the ab-
sence of ghost degrees of freedom. The mass term breaks
the gauge invariance of general relativity (GR), leading to a
graviton with 5 degrees of freedom instead of the 2 found
in GR. There have been intensive studies in to what hap-
pens beyond the linearized theory of FP. In 1972, Boulware
and Deser found a scalar ghost mode at the nonlinear level,
the so-called sixth degree of freedom in the FP theory [2].
This issue has been reexamined using an effective field
theory approach [3], where gauge invariance is restored
by introducing Stückelberg fields. In this language, the
Stückelberg fields acquire nonlinear interactions contain-
ing more than two time derivatives, signalling the existence
of a ghost. In order to construct a consistent theory, non-
linear terms should be added to the FP model, which are
tuned so that they remove the ghost order by order in
perturbation theory.

Interestingly, this approach sheds light on another fa-
mous problem with FP massive gravity; due to contribu-
tions of the scalar degree of freedom, solutions in the
FP model do not continuously connect to solutions in
GR, even in the limit of zero graviton mass. This is known
as the van Dam, Veltman, and Zakharov (vDVZ) disconti-
nuity [4,5]. Observations such as light bending in the solar
system would exclude the FP theory, no matter how small
the graviton mass is. In 1972, Vainshtein [6] proposed a
mechanism to avoid this conclusion; in the small mass
limit, the scalar degree of freedom becomes strongly
coupled and the linearized FP theory is no longer reliable.

In this regime, higher-order interactions, which are intro-
duced to remove the ghost degree of freedom, should shield
the scalar interaction and recover GR on sufficiently small
scales.
Until recently, it was thought to be impossible to con-

struct a ghost-free theory for massive gravity that is com-
patible with current observations [7,8]. A breakthrough
came with a 5D braneworld model known as Dvali-
Gabadadze-Porrati (DGP) model [9]. In this model there
appears a continuous tower of massive gravitons from a
four-dimensional perspective, and GR can be recovered for
a given range of scales, due to strong coupling interactions
[10,11]. In this paper, we explore the consequences of a
promising new development along these lines that seems
able to provide a consistent theory of massive gravity
directly in four dimensions. In order to avoid the presence
of a ghost, interactions have to be chosen in such a way that
the equations of motion for the scalar degrees of freedom
contain no more than two time derivatives. Recently, it was
shown that there is a finite number of derivative interac-
tions that gives rise to second-order differential equations.
These are dubbed Galileon terms because of a symmetry
under a constant shift of the scalar field derivative [12].
Therefore, one expects that any consistent nonlinear com-
pletion of FP contains these Galileon terms in the limit in
which the scalar mode decouples from the tensor modes,
the so-called decoupling limit. This turns out to be a
powerful criterion for building higher-order interactions
with the desired properties. Indeed, following this route,
de Rham and Gabadadze constructed a family of ghost-free
extensions to the FP theory, which reduce to the Galileon
terms in the decoupling limit [13].
In this work, we investigate the consequences of strong

coupling effects in this theory. We first reexpress the
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potential for the most general version of nonlinear massive
gravity, as developed by de Rham, Gabadadze and collab-
orators, in a particularly compact, easy-to-handle form.
Among other things, this way of writing the potential
suggests intriguing relations with a higher-dimensional
setup, which might offer new perspectives for analyzing
this theory. Moreover, we show that, for certain para-
meter choices, the potential for massive gravity coincides
with the action describing nonperturbative brane objects,
independently supporting connections with a higher-
dimensional framework.

Armed with these tools, we then focus on the Vainshtein
mechanism for this potential. We show that this theory is
able to reproduce the behavior of linearized solutions
in general relativity below the Vainshtein radius, but only
in a specific region of parameter space. This result pro-
vides stringent constraints on nonlinear massive gravity.
Moreover, we are able to physically reinterpret these
findings in the decoupling limit in terms of an effective
theory with Galileon interactions. We show that the con-
dition to successfully implement the Vainshtein mecha-
nism is associated with the sign of a direct coupling
between the massless graviton and the scalar degrees of
freedom.

We also present new exact solutions in the vacuum that
asymptote de Sitter or anti–de Sitter space depending on
the choice of the parameters. Asymptotically de Sitter
configurations can be expressed in an explicit time-
dependent form. These solutions may provide an interest-
ing background for the observed Universe where the rate of
the accelerated expansion of the Universe is set by the
graviton mass. A small graviton mass, as required by the
solar system constraints on deviations from standard gen-
eral relativity, is then in agreement with the observed value
of the cosmological constant. On the other hand, asymp-
totically anti–de Sitter configurations may have interesting
applications to the AdS/CFT correspondence.

The paper is organized as follows: in Sec. II, we dis-
cuss how to construct a nonlinear potential for massive
gravity and point out new connections with a higher-
dimensional setup. In Sec. III, we show how linearized
Einstein’s gravity is recovered within a certain macro-
scopic radius from a mass source, via the Vainshtein
mechanism. Only a subset of parameter space presents a
successful Vainshtein effect in the weak field limit. For a
better understanding of the theory and, in particular, of the
ghost mode, it is important to find analytic nonlinear
solutions; we present new exact solutions in Sec. IV.
Finally, we conclude in Sec. V, leaving technical details
of the calculations developed in the main text to the
Appendixes.

II. COVARIANT NONLINEAR MASSIVE GRAVITY

We start by introducing the covariant Fierz-Pauli mass
term in four-dimensional space-time

L FP¼m2 ffiffiffiffiffiffiffi�g
p

Uð2Þ; Uð2Þ ¼ ðH��H
���H2Þ; (2.1)

where the tensor H�� is a covariantization of the metric

perturbations, namely

g�� ¼ ��� þ h�� � H�� þ @��
�@��

����: (2.2)

The Stückelberg fields �� ¼ ðx� � ��Þ are introduced to
restore reparametrization invariance, hence transforming
as scalars [3]. The internal metric ��� corresponds to a

nondynamical reference metric, usually assumed to be
Minkowski space-time. Therefore, around flat space, we
can rewrite H�� as

H�� ¼ h�� þ ���@��
� þ ���@��

� � ���@��
�@��

�;

� h�� �Q��: (2.3)

From now on, indices are raised/lowered with the dynami-
cal metric g��, unless otherwise stated. For example,

H�
� ¼ g��H��. Moreover, the Lagrangian (2.1) is invari-

ant under coordinate transformations x� ! x� þ 	�, pro-
vided �� transforms as

�� ! �� þ 	�: (2.4)

The scalar component � of the Stückelberg field can
be extracted from the relation �� ¼ ���@��=�3, with
�3

3 ¼ m2Mpl (the meaning of the scale �3 will be ex-

plained in the following). The dynamics of � are the origin
of the two problems discussed in the introduction: the DB
ghost excitation and the vDVZ discontinuity. With respect
to the first problem, as noticed by Fierz and Pauli, one can
remove the ghost excitation, to linear order in perturba-
tions, by choosing the quadratic structure h��h

�� � h2.

When expressed in the Stückelberg field language, by
means of the scalar-graviton �, higher derivative terms in
the action are arranged in a such way to form a total
derivative, leading to second-order equations of motion.
However, when going beyond linear order, the equation of
� acquires higher time derivatives, signaling the presence
of a ghost mode [3]. Remarkably, de Rham and Gabadadze
were able to construct a potential, tuned at each order in
perturbations, to give a total derivative for the dangerous
terms, leading to equations of motion that are at most
second order in time derivatives [13].
We now review their construction, introducing alterna-

tive ways to express the potential, which provide a new
connection with a five-dimensional point of view. In terms
of the helicity-zero mode, corresponding to the field �, we
can write the tensor H�� of Eq. (2.3) as

H�� ¼ h�� þ 2

Mplm
2
��� � 1

M2
plm

4
�2

��; (2.5)

where ��� ¼ @�@�� and �2
�� ¼ ����

�
� . At a given

order n in perturbations, the idea is to add terms of the form
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m2 ffiffiffiffiffiffiffi�g
p

UðnÞ ¼ m2 ffiffiffiffiffiffiffi�g
p Xn

i¼0

cni ðHn�i
�� ÞðHiÞ; (2.6)

to the FP action (2.1), and to choose the coefficients cni in
order to get a total derivative for the leading contributions
of the scalar mode, namely ð���Þn. The key finding of [13]
is that these total derivatives are unique at each order, and
that the series stops at quintic order in perturbations. Let us
describe in more detail the structure and origin of these
terms. Following the notation of [13], the total derivatives
are given by

L ðnÞ
der ¼ � Xn

m¼1

ð�1Þm ðn� 1Þ!
ðn�mÞ! ðtr�

m
��ÞLðn�mÞ

der ; (2.7)

with Lð0Þ
der ¼ 1 and

L ð1Þ
der ¼ tr���; Lð2Þ

der ¼ ðtr���Þ2 � tr�2
��;

Lð3Þ
der ¼ ðtr���Þ3 � 3ðtr���Þðtr�2

��Þ þ 2tr�3
��;

Lð4Þ
der ¼ ðtr���Þ4 � 6ðtr���Þ2ðtr�2

��Þ þ 8ðtr���Þðtr�3
��Þ

þ 3ðtr�2
��Þ2 � 6tr�4

��:

and LðnÞ
der vanishes for n > 4. These expressions are related

to a matrix determinant (see also Note Added at the end of
this paper). To see this, consider a generic squared real
matrix A, and a complex number z. Then, the following
formula holds

detðIþ zAÞ ¼ 1þ X1
n¼1

zidet
n
ðAÞ (2.8)

where detnðAÞ can be written in terms of traces as

det
1
ðAÞ ¼ trA;

det
2
ðAÞ ¼ 1

2
ððtrAÞ2 � trA2Þ;

det
3
ðAÞ ¼ 1

6
ððtrAÞ3 � 3ðtrAÞðtrA2Þ þ 2trA3Þ;

det
4
ðAÞ ¼ 1

24
ððtrAÞ4 � 6ðtrAÞ2ðtrA2Þ

þ 8ðtrAÞðtrA3Þ þ 3ðtrA2Þ2 � 6trA4Þ:

(2.9)

Moreover, all terms detnðAÞ with n > 4 vanish for a 4� 4
matrix. Therefore, for the choice A�

� ¼ ��
� we get the

simple relation LðnÞ
der ¼ n!detnð�Þ, and the series indeed

stops at n ¼ 4. If one chooses a sum of determinants of the
form

X4
i¼1

detðIþ zi�Þ � 4; (2.10)

one can generate each detnð�Þ term with a separate coef-
ficient �n, provided a solution to

P
4
i¼1 z

n
i ¼ �n exists,

which is guaranteed by the Newton identities. Then, the
Lagrangian for the helicity-zero mode (that is, neglecting

for the moment the contributions of tensor modes, and of
the vector components of the Stückelberg field) is

L � ¼ X4
n¼1

�ndet
n
ð�Þ: (2.11)

We now briefly turn away from the present discussion,
and show an interesting way to construct the Lagrangian
(2.11) from a higher-dimensional point of view. Consider a
five dimensional Minkowski space-time, and embed on
it a test 3-brane (i.e. we do not include back-reaction
from brane dynamics). Under this assumption, the five-
dimensional Riemann tensor vanishes; using the Gauss
equation, the intrinsic curvature on the brane is related to
the extrinsic curvature as (R�

�
� is constructed in terms of

brane induced metric)

R�
�
� ¼ K�


K�� � K�
�K�
;

R�� ¼ KK�� � K�
�K��;

R ¼ K2 � K��K
��:

(2.12)

We then consider a four-dimensional Lagrangian given by

L brane ¼ ffiffiffiffiffiffiffi�g
p ½�1K þ �2Rþ �3KGB þ �4RGB�;

(2.13)

where R is the Ricci scalar, RGB is the Gauss-Bonnet term,
RGB ¼ R2 � 4R2

�� þ R2
����, K is trace of the extrinsic

curvature, and the KGB is the boundary term associated
with the five-dimensional Gauss-Bonnet term: KGB ¼
K3 � 3KK2

�� þ 2K3
��. Using the expression for the intrin-

sic curvature in terms of the extrinsic curvature, Eq. (2.12),
the Lagrangian (2.13) can be written as

L brane ¼ � X4
n¼1

�ndet
n
ðKÞ; (2.14)

where �n ¼ �n!�n, thus it has exactly the same structure
as Eq. (2.11). We then denote the position modulus of the
probe 3-brane as �. The induced metric on the brane is
determined by � as

g�� ¼ ��� þ @��@��; (2.15)

and the extrinsic curvature is given by

K�� ¼ 
@�@��; 
 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2p : (2.16)

If we take a limit @� � 1, i.e. 
 ! 1, we find that the
extrinsic curvature is simply K�� ¼ ���. Then the

Lagrangian (2.14) reduces to (2.11). This suggests that
there may be a higher-dimensional interpretation behind
the Lagrangian (2.11). Although we find these arguments
very compelling, so far we have not been able to pursue
these connections further, and for this reason we will
not develop them in this work. But we should note that
what we discussed follows the same construction as in the
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so-called DBI Galileon [14]. If we do not take the limit

 ! 1, the Lagrangian (2.14) becomes nontrivial, and it
reproduces the Galileon terms. Since the four-dimensional
Gauss-Bonnet piece is a total derivative, there is no con-
tribution from this term even away from the 
 ! 1 limit.

After this digression to five dimensions, we would like
to return to Lagrangian (2.11), and discuss how to render it
fully covariant. To do so, we need to understand how to go
back from the field� to the original Stückelberg fields��,
in order to restore the dependence of the vector mode
and the full metric. Here we follow the approach discussed
in Ref [15]. If only the scalar mode � is considered, then
we can solve for��� in terms of��, using (2.2) and (2.5).

The result is a second-order algebraic equation for ���,

with solution��
�¼�3½��

��ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið@�Þ�ð@�ÞTp Þ���, where
½ð@�Þ�ð@�ÞT��� � @��

�@������, and just to remind

the reader�3
3 ¼ m2Mpl. The previous expression is written

in terms of the square root of a matrix, formally understood

as
ffiffiffiffiffi
M

p
�
�

ffiffiffiffiffi
M

p
�
� ¼ M�

�.

We now go beyond the pure scalar sector case, and
define

K �
� � ��

� �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð@�Þ�ð@�ÞT
q �

�

�

¼ ��
� �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� g�1H

q �
�

�

¼ ��
� �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1½�þQ�

q �
�

�
: (2.17)

Notice that the previous quantity contains also contribu-
tions from vector and tensor degrees of freedom. On the
other hand, by construction K�

� becomes �
�
� =�3 when

only the scalar mode is considered. The full nonlinear
Lagrangian for massive gravity is then constructed by
substituting � by K in (2.11). Namely

LK ¼ �½�1det
1
ðKÞ þ 2�2det

2
ðKÞ þ 6�3det

3
ðKÞ

þ 24�4det
4
ðKÞ� (2.18)

where �n ¼ �n!�n, and the determinants detnðKÞ are
defined in Eqs. (2.9) with A ¼ K. The second term, for
positive �2, reduces to the Fierz-Pauli term (2.1) when
expanding the Lagrangian in terms of H�� around the

Minkowski metric. Therefore, since we would like to
have the Fierz-Pauli as the first correction to Einstein’s
gravity at leading order, we are not be interested on the
contributions from the first term, det1K. Then, from now
on we set �1 ¼ 0. As a result, a family of nonlinear
massive gravity Lagrangians can be written as

L ¼ M2
Pl

2

ffiffiffiffiffiffiffi�g
p ðR� 2��m2UÞ; (2.19)

where U ¼ LK with �1 ¼ 0 and �2 ¼ 1. These
Lagrangians are parametrized by m, �3 and �4; moreover
we added a bare cosmological constant �.

In this family of Lagrangians, there is a special choice
of parameters: �3 ¼ �1=3 and �4 ¼ 1=12. It corresponds
to the choice z ¼ �1 in the expansion (2.8) with A ¼ K.
The Lagrangian is

L NG ¼ 2m2 ffiffiffiffiffiffiffi�g
p ðdetðI�KÞ � trKÞ

¼ 2m2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð@���@��

����Þ
q

� trKÞ; (2.20)

where the first term is the Nambu-Goto type of action for a
bosonic 3-brane [16]. However, we will discuss in what
follows that this particular choice, even though has a
striking physical interpretation, does not allow to recover
the GR solutions via the Vainshtein mechanism.
The �2 term in the potential (2.18) was first suggested in

[15] as nonlinear completion of FP theory. It was shown
that this term reduces to a particular choice of Galileon
terms in the decoupling limit, without any coupling be-
tween the scalar mode and the massless graviton. Formally,
the decoupling limit corresponds to a limit in which the
scale �3 ¼ m2Mpl is kept fixed, while sending Mpl ! 1
and m ! 0. Once �3 and �4 are included, the picture
changes in an interesting way, and couplings between �
and the massless graviton appear, even in the decoupling
limit. These couplings have important theoretical and ob-
servational consequences; as wewill discuss in detail in the
next section. Interestingly, these mixing terms are finite in
number, and do not spoil the fundamental property that the
equations of motion for � are second order [13]. It is still
an open question whether this remains true away from the
decoupling limit, ensuring the absence of ghost degrees of
freedom. A full Hamiltonian analysis should be carried out
to set a final word on the subject. However, there are hints
that the theory is ghost-free perturbatively, and for the
particular choice of �3 ¼ �4 ¼ 0 this has been shown up
to and including quartic order in perturbations [15].
We have now the necessary ingredients to discuss the

second problem addressed in the Introduction, namely, the
vDVZ discontinuity.

III. VAINSHTEIN MECHANISM AT WORK

In [17], we showed that Vainshtein mechanism applies
for Lagrangians as (2.19), setting to zero the coefficients
�3 and �4, and the bare cosmological constant. (See
Ref. [18] for spherical symmetric solutions in the FP
theory). Here we extend the analysis to arbitrary coeffi-
cients. We determine stringent constraints on the parameter
space of these theories, in order to ensure that the
Vainshtein mechanism works. As we are going to discuss,
our results find a natural interpretation in terms of the
dynamics of helicity-zero mode, in the decoupling limit.
In order to discuss solutions associated with Lagrangian

(2.19), it is convenient to expressK, given in Eq. (2.17), in
terms of matrices as

K ¼ I�
ffiffiffiffiffiffiffi
M

p
; (3.1)
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where I denotes the identity matrix andM¼g�1½�þQ�.
The task is to calculate the trace ofMn. Given thatM is a
square matrix, it is diagonalizable, and can be expressed
asM ¼ UDU�1, for some invertible matrixU, whereD
is a diagonal matrix containing the eigenvalues of M. We
shall call the eigenvalues �1; . . . ; �4. Then, since Mn ¼
UDnU�1, the traces in the formulas above can be ex-
pressed in terms of eigenvalues

trMn ¼ X
i

�n
i ; (3.2)

and the traces of Kn result

trK ¼ 4� tr
ffiffiffiffiffiffiffi
M

p
;

trK2 ¼ 4� 2tr
ffiffiffiffiffiffiffi
M

p
þ trM;

trK3 ¼ 4� 3tr
ffiffiffiffiffiffiffi
M

p
þ 3trM� trM3=2;

trK4 ¼ 4� 4tr
ffiffiffiffiffiffiffi
M

p
þ 6trM� 4trM3=2 þ trM2:

(3.3)

Using the formulas for expressing the determinants in
terms of traces (2.9), we can easily construct the potential.

We now discuss the conditions to recover GR results in
the small graviton mass limit, within a certain radius from a
mass source. In particular, we are interested to determine
under which circumstances the Vainshtein mechanism ap-
plies. In order to do so, we study spherically symmetric
perturbations around flat space, expressed in spherical
coordinates as ds2 ¼ �dt2 þ dr2 þ r2d�2, with d�2 ¼
d
2 þ sin2
d�2. We start our discussion using the unitary
gauge, �� ¼ x� ��� ¼ 0. Consider the following
Ansatz for the metric

ds2 ¼ �NðrÞ2dt2 þ FðrÞ�1dr2 þ r2HðrÞ�2d�2; (3.4)

that reduces the potential in (2.19) to

ffiffiffiffiffiffiffi�g
p

U¼�r2 sinð
Þffiffiffiffi
F

p
H2

f2½ ffiffiffiffi
F

p ðð2H�3ÞNþ1Þ

þH2NþHð2�6NÞþ6N�3��6�3ðH�1Þ
�½ ffiffiffiffi

F
p ððH�3ÞNþ2Þ�2HNþHþ4N�3�

�24�4ð1�
ffiffiffiffi
F

p Þð1�HÞ2ð1�NÞg: (3.5)

Notice that in GR one can set HðrÞ ¼ 1 by a coordinate
transformation, but this is not possible here, since we have
already chosen a gauge. The field equations are obtained
by varying the action (2.19) with respect to N, H and F.
The N-equation is the Hamiltonian constraint, so it only
depends on F and H. Since the equation for H is quite
complicated, we instead consider a combination of the
three equations which gives r�G�� ¼ 0, where G�� is

the Einstein tensor; it corresponds to the Bianchi identity.
Therefore, we work with the Hamiltonian constraint,
the Bianchi identity and the equation for F. The corre-
sponding expressions are lengthy, so we relegate them to
Appendix A.

First, let us study solutions in the weak field limit, by
expanding N, F and H as

N ¼ 1þ n; F ¼ 1þ f; H ¼ 1þ h; (3.6)

and truncating the field equations to first order in these
perturbations. As we will see in what follows, this lineari-
zation procedure is not completely consistent for all values
of the radial coordinate r, and wewill need to improve it. In
order to analyze the system, it is convenient to introduce a
new radial coordinate

� ¼ r

HðrÞ ; (3.7)

so that the linearized metric is expressed as

ds2 ¼ �ð1þ 2nÞdt2 þ ð1� ~fÞd�2 þ �2d�2; (3.8)

where ~f ¼ f� 2h� 2�h0 and a prime denotes a deriva-
tive with respect to �. As discussed above, one should be
careful with this change of coordinates, since, after fixing a
gauge, a change of frame in the metric modifies the
Stückelberg field �� as well. However, for the moment,
let us focus on the change of the metric part; later we
will discuss what happens to ��. At linear order, the equa-

tions for the functions nð�Þ, ~fð�Þ and hð�Þ in the new
variable � are

0 ¼ ðm2�2 þ 2Þ~fþ 2�ð~f0 þm2�2h0 þ 3m2�hÞ; (3.9)

0 ¼ m2�2ðn� 2hÞ � 2�n0 � ~f; (3.10)

0 ¼ ~fþ �n0: (3.11)

In this linear expansion, the solutions for n and ~f are

2n¼�8GM

3�
e�m�; ~f¼�4GM

3�
ð1þm�Þe�m�; (3.12)

where we fix the integration constant so that M is the
mass of a point particle at the origin, and 8�G ¼ M�2

pl .

These solutions exhibit the vDVZ discontinuity, since the
post-Newtonian parameter 
¼f=2n is 
¼1=2ð1þm�Þ,
which in themassless limit reduces to
 ¼ 1=2, in disagree-
ment with GR, and with Solar System observations (
 ¼ 1
in GR, while observations provide 1� 
 ’ 10�5 [19]).
However, in order to understand what really happens

in this limit, we must also analyze the behavior of h as
m ! 0. For doing this, we consider scales below the
Compton wavelength m� � 1, and at the same time
ignore higher-order terms in GM. Under these approxima-
tions, the equations of motion can still be truncated to

linear order in ~f and n, but since h is not necessarily small,
we have to keep all nonlinear terms in h. The resulting
equations are then (see Appendix A for their derivation)
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0 ¼ 2~fþ 2�~f0 þm2�2ð½1� 2ð3�3 þ 1Þh
þ 3ð�3 þ 4�4Þh2�½ð2þ ~fÞ�h0 þ ð1þ hÞ~f�
þ 6h½1� ð3�3 þ 1Þhþ ð�3 þ 4�4Þh2�Þ; (3.13)

0 ¼ �~f� 2�n0 þm2�2ðn� 2½1þ nþ ð3�3 þ 1Þn�h
þ ½ð3�3 þ 1Þðnþ 1Þ þ 3ð�3 þ 4�4Þn�h2Þ; (3.14)

0 ¼ �n0½�1þ 2ð3�3 þ 1Þh� 3ð�3 þ 4�4Þh2�
� ~f½1� ð3�3 þ 1Þh�: (3.15)

We start with the N-Eq. (3.13). Since it only depends on
~f and h, one can solve for ~f in terms of h, including all
nonlinear terms in h. The solution, dropping higher-order
terms proportional to m4, ðGMÞ2 and m2GM, is

~f¼�2
GM

�
�ðm�Þ2½h�ð1þ3�3Þh2þð�3þ4�4Þh3�:

(3.16)

Then we take the second Eq. (3.14), obtained by varying
the action with respect to F, and use the solution (3.16)

for ~f. We find an expression for n as a nonlinear function
of h. It turns out to be simpler to work with n0, given by

2�n0 ¼ 2GM

�
� ðm�Þ2½h� ð�3 þ 4�4Þh3�; (3.17)

where again we have dropped terms with m4, ðGMÞ2 and
m2GM. Finally, the constraint Eq. (3.15) gives an equation

for h, after substituting the solutions for n and ~f given,
respectively, by (3.17) and (3.16). We should stress that this
equation for h is exact, so there are no higher-order cor-
rections. It is given by

GM

�
½1� 3ð�3 þ 4�4Þh2�

¼ �ðm�Þ2
�
3

2
h� 3ð1þ 3�3Þh2 þ ½ð1þ 3�3Þ2

þ 2ð�3 þ 4�4Þ�h3 � 3

2
ð�3 þ 4�4Þ2h5

�
: (3.18)

If we linearize the Eqs. (3.16), (3.17), and (3.18) with
respect to h, we recover the solution (3.12); on the other
hand, below the so-called Vainshtein radius

�V ¼
�
GM

m2

�
1=3

; (3.19)

h becomes larger than 1. Therefore, in this regime, we
have to include higher-order contributions due to h to
Eqs. (3.16) and (3.17). There are three qualitatively differ-
ent cases, depending on the values of the parameters �3

and �4:
(i) Case with �3 ¼ �1=3, �4 ¼ 1=12. This is a special

situation, since all higher- order contributions in h
vanish from Eqs. (3.16) and (3.17). Therefore, there

is no Vainshtein effect and the solutions to the equa-
tions are those given in (3.12) for � < 1=m. This
model, corresponding to the bosonic 3-brane
Lagrangian (2.20), is ruled out by Solar System
observations.

(ii) Case with �3 ¼ �4�4 � �1=3. For � � �V we
can solve for h from the last equation (3.18) keeping
only the highest order terms in h. Then, the solution
for h is

h ¼ � 1

ð1� 12�4Þ2=3
�V

�
; (3.20)

which implies jhj � 1 for � � �V , as expected.
We can then use this solution and Eqs. (3.16) and

(3.17) to give the expressions for n and ~f within the
Vainshtein radius, namely

2n ¼ � 2GM

�

�
1� 1

2ð1� 12�4Þ2=3
�
�

�V

�
2
�
;

~f ¼ � 2GM

�

�
1� 1

2ð1� 12�4Þ1=3
�
�

�V

��
: (3.21)

Therefore, the corrections to GR solutions are
indeed small for � smaller than the Vainshtein
radius �V .

(iii) Case with �3 � �4�4. This case can be divided in
two:�3 þ 4�4 > 0 and�3 þ 4�4 < 0. The latter is
the most intriguing case, and we focus on it. In the
limit � � �V , the solution for h is given by

h ¼ �
�

2

�3 þ 4�4

�
1=3 �V

�

� ½2ð1þ 3�3Þ2 þ 3ð�3 þ 4�4Þ�
9½2ð�3 þ 4�4Þ5�1=3

�

�V

; (3.22)

so that jhj � 1. Notice that, in solving Eq. (3.18),
we include also the next-to-leading order, that re-
sults to be linear in �. It turns out that this expres-
sion for h provides a correction of the same order as

GM=� in the n and ~f equations. Indeed, plugging

this expression in the equations for n and ~f, one
gets

2n¼O
��

�

�V

�
2
�
GM

�
; ~f¼O

�
�

�V

�
GM

�
: (3.23)

Surprisingly, the contribution from the scalar mode h
exactly cancels the usual 1=� potential at leading order. So,
gravity becomes weaker approaching the source, for dis-
tances smaller than Vainshtein radius, and larger than
Schwarzschild radius. This implies that the strong coupling
of the scalar graviton not only shields interactions of the
scalar mode h, but also those of the massless graviton. As
we will see later while analyzing the decoupling limit, this
is related to a coupling between the scalar mode and
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graviton that cannot be removed by a local field trans-
formation if �3 � �4�4 [13]. In this case, local tests
of gravity would completely rule out the predictions of
the theory at leading order in h��. However, when

�3 þ 4�4 > 0, apart from the previous solution, a second

solution exists in the limit � � �V [20], where h ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�3 þ 4�4Þ

p þOð�3Þ. In this case, the metric fields
n and f present small corrections to the GR solution within
the Vainshtein radius, and the solution cannot be ruled out
by Solar System tests.

In order to fully understand the system with �3��4�4,
it is imperative to study how the two possible solutions
extend beyond the Vainstein radius, both in vacuum and
in the presence of matter. This is beyond the scope of
the present analysis and will be studied in a future pub-
lication [21].

To summarize, only the choices �3 þ 4�4 > 0 and
�3 ¼ �4�4 � �1=3 allow to recover standard GR in the
weak field limit, below the Vainshtein radius �V . This fact
imposes a stringent constraint in parameter space for the
theory described by Lagrangian (2.19).

Now, we would like to go back to the issue of the
coordinate transformation introduced in Eq. (3.7), and
discuss another way to interpret the previous results. As
mentioned earlier, a coordinate transformation introduces a
change in � of the form (2.4). When changing r=H ¼ �,
we excite the radial component of the Stückelberg field, as
�� ¼ ��h. Thus the strong coupling nature of h is en-
coded in �� ¼ ���@��=�

3
3, when working with the coor-

dinate �. As a result, the nonlinear analysis previously
done is more transparent in the decoupling limit, as devel-
oped in [13]. As previously mentioned, this limit is
achieved by taking m ! 0 and Mpl ! 1, while keeping

�3 ¼ ðm2MplÞ1=3 fixed. This implies that, when substitut-

ing H�� back into the full Lagrangian (2.19), we do not

consider the vector mode, and expand the potential at linear
order in h��. The resulting expression describes the theory

in the decoupling limit, and contains the quadratic Hilbert-
Einstein piece, total derivatives in � given by (2.11),
and finally mixing terms between h�� and �. The mixing

terms are

h��
X
i

XðiÞ
��; with

X
i

XðiÞ
�� ¼ @LK

@h��

��������h��¼0
; (3.24)

and each XðiÞ is of order Oð�iÞ. There are only three
mixing contributions, which can be absorbed (except for

Xð3Þ) in the remaining terms by the nonlinear field redefi-
nition

h�� ¼ ĥ�� þ �

Mpl

��� � 1þ 3�3

�3
3Mpl

@��@��: (3.25)

After this field redefinition, the resulting Lagrangian is
(½�n� � tr�n) [13]

L ¼ LGRðĥ��Þ þ 3

2
�h�� 3ð1þ 3�3Þ

2�3
3

� ð@�Þ2h�þ ð@�Þ2
2�6

3

½ð1þ 3�3Þ2 þ 2ð�3 þ 4�4Þ�

� ð½�2� � ½��2Þ � 5

4�9
3

ð1þ 3�3Þð�3 þ 4�4Þ

� ð@�Þ2ð½��3 � 3½��½�2� þ 2½�3�Þ þMpl

�6
3

ĥ��Xð3Þ
��;

(3.26)

whereLGR is the quadratic Einstein-Hilbert action for ĥ��,

and

Xð3Þ
�� ¼ � 1

2
ð�3 þ 4�4Þf6�3

�� � 6ðtr�Þ�2
��

þ 3½ðtr�Þ2 � ðtr�2Þ���� � ½ðtr�Þ3 � 3ðtr�2Þ
� ðtr�Þ þ 2ðtr�3Þ����g: (3.27)

Interestingly, the Lagrangian obtained so far in the decou-
pling limit allows us to reinterpret the constraints on �3

and �4 obtained earlier in this section. One can observe
that the remaining direct coupling between the scalar �

and graviton ĥ�� either vanishes or is negative for the

two cases which successfully implement Vainshtein
mechanism.
Observe also that the kinetic terms for � in (3.26) are

precisely the Galileon terms, which give rise to second-
order differential equations for � [12]. The nonlinear
structure of these terms involving � is essential to recover
GR in some range of scales distances; for the choice �3 ¼
�4�4 ¼ �1=3, we obtain an Einstein frame Lagrangian
for Brans-Dicke gravity with a vanishing Brans-Dicke
parameter and no potential. However, this particular choice
is not compatible with observations, as we have already
mentioned during our general analysis, in the first part of
this section.
We would like now to further analyze the equations

of motion for this system in the decoupling limit. The
Lagrangian (3.26) is exact in the decoupling limit, as there
are no higher-order terms besides those shown, so the

linearized Einstein equation for ĥ�� is

�G��ðĥÞ � 1

Mpl�
6
3

Xð3Þ
�� ¼ 0: (3.28)

If we assume spherical symmetry, then it can shown that

Xð3Þ
�� is simply

Xð3Þ
tt ¼ ��3 þ 4�4

�2
ð�03Þ0; Xð3Þ

�� ¼ 0: (3.29)

Therefore, the solutions for the linearized metric,

ĥtt¼�2n̂ and ĥ�� ¼ �f̂, reduce to
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f̂ ¼ � 2GM

�
þ �2

�6
3Mpl

ð�3 þ 4�4Þ
�
�0

�

�
3
;

2�n̂0 ¼ �f̂: (3.30)

On the other hand, the equation of motion for � derived
from the action (3.26), is given by (see [12])

3

�
�0

�

�
þ 6

�3
3

ð1þ3�3Þ
�
�0

�

�
2þ 2

�6
3

½ð1þ3�3Þ2þ2ð�3þ4�4Þ�

�
�
�0

�

�
3þ6Mplð�3þ4�4Þ

�2�6
3

ð�n̂0Þ
�
�0

�

�
2¼ M

4��3Mpl

;

(3.31)

where the integration constant is again chosen so that M
is a mass of a particle at the origin. Using the relation
between � and h, h ¼ ��0=ðm2Mpl�Þ, it is simple to

check that the solutions for ~f, n and h given by
Eqs. (3.16), (3.17), and (3.18) agree with the expressions
in Eqs. (3.25), (3.30), and (3.31). This confirms that the
results obtained earlier in this section are in perfect agree-
ment with what is found in terms of the dynamics of the
scalar field �, in the decoupling limit.

In summary, the Vainshtein mechanism applies for �3 þ
4�4 > 0 and �3 ¼ �4�4 � �1=3. Only for these choices
the weak field GR results are fully recovered at distances
smaller than the Vainshtein radius. If these solutions match
the asymptotic configurations (3.12) beyond the Vainshtein
radius, then there would be three phases: on the largest
scales beyond Compton wavelength, m�1 � �, the gravi-
tational interactions decay exponentially due to the gravi-
ton mass, see Eq. (3.12). In the intermediate region
�V < �<m�1, we obtain the 1=r gravitational potential
but Newton’s constant is rescaled, G ! 4G=3. Moreover,
the post-Newtonian parameter reduces to 
 ¼ 1=2 in the
m ! 0 limit, instead of 
 ¼ 1 of GR, showing the vDVZ
discontinuity. Finally, below the Vainshtein radius � < �V ,
the GR solution is recovered due to the strong coupling
of the � mode (see, for example, Eq. (3.21) for the case
�3 ¼ �4�4 � �1=3); in this regime the theory can then
be rendered compatible with observations.

The solution discussed here provides a testing arena for
studying the Boulware-Deser ghost. Instead of expanding
the action in H�� around Minkowski space-time up to

higher orders in perturbations, we have the possibility to
study linear perturbations around this nonperturbative so-
lution, using the complete potential in Eq. (2.18). In order
to obtain the full nonlinear solution, matching the three
phases we have described, a numerical approach is neces-
sary. In the next section, we consider a different family of
vacuum solutions for this theory, which can be obtained
analytically, and can lead to interesting candidates for
realistic backgrounds.

IV. EXACT SOLUTIONS

As we learned in the previous section, an essential
property of this theory of massive gravity is the strong
coupling phenomenon occurring in the proximity of a
source. This allows, for certain regions of parameter space,
to recover linearized general relativity at sufficiently small
distances by means of the Vainshtein mechanism. This
behavior, accompanied by the fact that Birkhoff theorem
does not apply in this context, suggests that exact solutions
for this theory, even imposing spherical symmetry, might
be very different from the GR ones.
In this section, we will exhibit new spherically symmet-

ric exact solutions in the vacuum for massive gravity, that
generalize the ones of [17,22]. In an appropriate gauge, the
solutions are asymptotically de Sitter or anti-de Sitter,
depending on the choice of parameters.
While in [17] we focused on the case �3 ¼ �4 ¼ 0,

we now generalize the analysis to arbitrary couplings in
the Lagrangian (2.18). We adopt the unitary gauge and
allow for arbitrary couplings �i, i ¼ 2; . . . ; 4 (as explained
earlier, we set to zero the coefficient �1). We start with the
following form for the metric (for convenience, we imple-
ment slightly different conventions with respect to the
previous section)

ds2 ¼ �CðrÞdt2 þ 2DðrÞdtdrþ AðrÞdr2 þ BðrÞd�2

(4.1)

so that, even though the space-time is spherically symmet-
ric, the metric contains a cross term dtdr. We choose the
following Ansatz for the metric functions [17,22],

BðrÞ ¼ b0r
2;

CðrÞ ¼ c0 þ c1
r
þ c2r

2;

AðrÞ þ CðrÞ ¼ Q0;

D2ðrÞ þ AðrÞCðrÞ ¼ �0;

(4.2)

and use the equations of motion to fix the constant parame-
ters b0, c0, c1, c2, Q0, �0. Einstein equations read

G�� ¼ 8�GT�� (4.3)

with energy momentum tensor T�� ¼ � 1ffiffiffiffiffi�g
p �LK

�g�� , andLK

given in Eq. (2.18).
In general relativity, diffeomorphism invariance allows

one to choose the function BðrÞ to be BðrÞ ¼ r2, so that
b0 ¼ 1. In this theory of massive gravity, after having fixed
the gauge, this choice is no longer possible and the equa-
tions of motion determine b0. In order to do this, one
observes that the metric Ansatz (4.1) leads to the following
identity between components of the Einstein tensor:
CðrÞGrr þ AðrÞGtt ¼ 0. This combination on the energy
momentum tensor provides the following value for b0,
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b0 ¼
0
B@1þ 6�3 þ 12�4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�3 þ 9�2

3 � 12�4

q
3ð1þ 3�3 þ 4�4Þ

1
CA

2

:

(4.4)

The upper branch generalizes the result of [17], while the
lower branch is specifically associated with theories in
which �3 and/or �4 are nonvanishing. After plugging the
metric components (4.2) in the remaining Einstein equa-
tions, one can find the values for the other parameters.
The corresponding general expressions are quite lengthy,
and for this reason we relegate them to Appendix B.
As a concrete, simple example, in the main text we work
out the special case we focussed on the previous section,
�3 ¼ �4�4. In this case, a solution is given by the follow-
ing values for the parameters

b0 ¼ 4

9

�
1� 12�4

1� 8�4

�
2
;

c0 ¼ �0

b0
;

c2 ¼ m�0

4ð12�4 � 1Þ ;

Q0 ¼ 16ð1� 12�4Þ4 þ 81ð1� 8�4Þ4�0

36½1þ 4�4ð�5þ 24�4Þ�2
:

(4.5)

The previous solution is valid for �4 in the ranges �4 <
1=12 and �4 > 1=8. Notice that the case �4 ¼ 1=12 cor-
responds exactly to the Lagrangian (2.20), discussed in
Sec. II. We find that c1 and �0 are arbitrary; this vacuum
solution is then characterized by two integration constants.
The resulting metric coefficients can be rewritten in the
following, easier-to-handle form:

AðrÞ ¼ 9

4
�0

�
1� 8�4

1� 12�4

�
2½pðrÞ þ 
þ 1�;

BðrÞ ¼ 4

9

�
1� 12�4

1� 8�4

�
2
r2

CðrÞ ¼ 9

4
�0

�
1� 8�4

1� 12�4

�
2½1� pðrÞ�;

DðrÞ ¼ 9�0

4

�
1� 8�4

1� 12�4

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðrÞðpðrÞ þ 
Þ
q

(4.6)

with (� ¼ �c1=c0)

pðrÞ � �

r
þ ð1� 12�4Þm2r2

9ð1� 8�4Þ2
;


 � 16

81�0

�
1� 12�4

1� 8�4

�
4 � 1:

(4.7)

In order to have a consistent solution, we must demand
that the argument of the square root appearing in the
expression for DðrÞ, Eq. (4.6), is positive. A sufficient
condition to ensure this is that � � 0, and

0<
ffiffiffiffiffiffi
�0

p
<

4

9

�
1� 12�4

1� 8�4

�
2
: (4.8)

The metric then could be rewritten in a more transparent
diagonal form, by means of a coordinate transformation.
However, a coordinate transformation of the time coordi-
nate is not permitted, since until this point we have adopted
the unitary gauge. Therefore, we now renounce to this
gauge choice, and allow for a nonzero vector �� of the
form �� ¼ ð�0ðrÞ; 0; 0; 0Þ. One finds that then the metric
can be rewritten in a diagonal form, as

ds2 ¼ �CðrÞdt2 þ ~AðrÞdr2 þ BðrÞd�2; (4.9)

while the equations of motion for the fields involved are
solved by

~AðrÞ ¼ 4

9

�
1� 12�4

1� 8�4

�
2 1

1� pðrÞ ;

�0
0ðrÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðrÞðpðrÞ þ 
Þp
1� pðrÞ ;

(4.10)

with CðrÞ and BðrÞ being the same as in Eq. (4.6). If one
makes a time rescaling

t ! 4ð1� 12�4Þ2
9�1=2

0 ð1� 8�4Þ2
t;

the resulting metric has then a manifestly de Sitter-
Schwarzschild, or anti-de Sitter-Schwarzschild form.
This depends on whether �4 is smaller or larger than
1=12, as can be seen inspecting the function pðrÞ in
Eq. (4.7). On the other hand, we should point out that
this time-rescaling cannot be performed, without further
introducing a time-dependent contribution to �0. As ex-
pected, the metric in Eq. (4.9) can also be obtained by
making the following transformation of the time coordi-
nate d~t ¼ dtþ �0

0dr to the original metric (4.1). This

produces a nonzero time component for ��, that does
not vanish even in the limit m ! 0.
To summarize so far, we found vacuum solutions in this

theory that are asymptotically de Sitter or anti-de Sitter,
depending on the choice of the parameters. (Another fam-
ily of solutions with similar behavior, but obtained for
different choices of parameters, has been recently dis-
cussed in [23]). Let us point out that it is also possible to
include a bare cosmological constant term

ffiffiffiffiffiffiffi�g
p

� to the

Lagrangian (2.19). Our solutions to the Einstein equations,
with our metric Ansatz, remain formally identical. The
only difference is that the function pðrÞ in Eq. (4.7) be-
comes

pðrÞ ¼ �

r
þ ð1� 12�4Þ

9ð1� 8�4Þ2
�
m2 þ 4

3
ð1� 12�4Þ�

�
r2:

(4.11)

Notice that the additional integration constant �0 cannot
be used to ‘‘compensate’’ the contribution of the bare

STRONG INTERACTIONS AND EXACT SOLUTIONS IN . . . PHYSICAL REVIEW D 84, 064033 (2011)

064033-9



cosmological constant � via a self-tuning mechanism,
since�0 does not explicitly appear in the previous formula.
For asymptotically de Sitter solutions, �4 < 1=12, choos-
ing � ¼ 0, the metric can also be written in a time-
dependent form, at the price of switching on additional
components of ��, as mentioned earlier. After dubbing

~m 2 � 1

ð1� 12�4Þ
�
m2 þ 4

3
ð1� 12�4Þ�

�
;

we can make the following coordinate transformation
t ¼ Ftð�; �Þ and r ¼ Ftð�; �Þ with

Ftð�; �Þ ¼ 4

3�1=2
0 ~m

�
1� 12�4

1� 8�4

�

� arctanh

�
sinhð ~m�

2 Þ þ ~m2�2

8 e ~m�=2

coshð ~m�
2 Þ � ~m2�2

8 e ~m�=2

�
; (4.12)

Frð�; �Þ ¼ 3

2

�
1� 8�4

1� 12�4

�
�e ~m�=2: (4.13)

The metric becomes that of flat slicing of de Sitter

ds2 ¼ �d�2 þ e ~m�ðd�2 þ �2d�2Þ; (4.14)

where the Hubble parameter is given by

H ¼ ~m

2
¼ 1

2ð1� 12�4Þ1=2
½m2 þ 4

3
ð1� 12�4Þ��1=2:

(4.15)

The Stückelberg fields �� are now given by �� ¼
ð��ð�; �Þ; ��ð�; �Þ; 0; 0Þ, with �� ¼ �0 þ Ft � �, �� ¼
Fr � �. Interestingly, the value of the Hubble parameter
is ruled by the mass of the graviton; in the case of vanishing
bare cosmological constant, we have a self-accelerating
solution, in which the smallness of the observed cosmo-
logical constant can be associated with the smallness of the
graviton mass.

This self-accelerating solution, which reduces to that
found perturbatively in Ref. [24], appears as an ideal
background to explain present-day acceleration. Notice
that this configuration is remarkably similar to that in the
DGP braneworld model [25], though there are important
differences. In order to study the viability of our nonper-
turbative solution, it is necessary to study the behavior of
fluctuations, to confirm that there is no ghost. On the other
hand, in the DGP model, the self-accelerating solution
suffers from a ghost instability [10,11,26], which is related
to the ghost in the FP theory on a de Sitter background.

V. DISCUSSION

In this work, we investigated the consequences of strong
coupling effects for a theory of nonlinear massive gravity,
developed by de Rham, Gabadadze and collaborators. We
first reexpressed the complete potential for this theory in a
particularly compact and easy-to-handle form. Among

other things, this way of writing the potential suggested
intriguing relations with a higher-dimensional setup, that
might offer new perspectives. Moreover, we showed that,
for certain parameter choices, the potential for massive
gravity coincides with the action describing nonperturba-
tive brane objects, independently supporting connections
with a higher-dimensional framework.
We then studied the conditions to implement the

Vainshtein mechanism in this context. The theory is able
to reproduce the behavior of linearized general relativity
below a certain scale, but only in a specific region of
parameter space. This result provides stringent constraints
on this nonlinear massive gravity models. Moreover, we
were able to physically reinterpret our findings in the
decoupling limit, in terms of an effective theory with
Galileon interactions for the scalar-graviton. We showed
that the condition to successfully implement Vainshtein
mechanism is associated with the sign of a direct coup-
ling between the massless graviton and scalar degree of
freedom which cannot be removed by a local field
transformation.
We also presented new exact solutions in the vacuum

for this theory that asymptote either de Sitter or anti–de
Sitter space, depending on the choice of the parameters.
Asymptotically de Sitter configurations can be expressed
in an explicit time-dependent form, providing an interest-
ing background for the observed Universe, where the rate
of the accelerated expansion of the Universe is set by the
graviton mass. A small graviton mass, as required by the
solar system constraints on deviations from standard gen-
eral relativity, is then in agreement with the observed value
of the cosmological constant. On the other hand, asymp-
totically anti–de Sitter configurations may have interesting
AdS/CFT applications.
Our results naturally lead to various important questions

to be examined in the future. It would be interesting to put
in a firmer basis the connection between this theory of
nonlinear massive gravity and the higher-dimensional
setup described in Sec. II. Exploiting this relation might
also shed light on the absence of ghost excitations at all
orders in perturbations about Minkowski. In Sec. III, we
found the intriguing result that, in some region of parame-
ter space, the coupling between the scalar degrees of free-
dom and graviton shields the interactions of linearized
graviton so that gravity appears to become weaker as the
source is approached. To understand in full detail the
system in this case, it is however necessary to analyze
the dynamics of higher-order metric fluctuations and their
couplings with the scalar sector. Although it seems un-
likely that strong coupling dynamics of gravitational
modes behave such to mimic general relativity in relevant
regimes (by producing a sort of Vainshtein effect at higher-
order in perturbations), we cannot exclude this possibility
for all ranges of parameters. This paper provides all the
necessary equations to study this deep issue, away from the
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decoupling limit. It would also be interesting to study in
more detail the exact vacuum configurations discussed in
Sec. IV, in particular, to understand whether de Sitter
solution controlled by the graviton mass can be rendered
stable under perturbations. If so, it can be considered as a
serious candidate for the observed universe where the
present-day acceleration of the Universe is only due to
gravitational degrees of freedom.
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Note Added—While this work was in the last stages of
preparation, two papers [23,27] appeared, with some over-
lap with our Sec. II with respect to the formulation of the
potential for nonlinear massive gravity in terms of
determinants.

APPENDIX A: EQUATIONS OF MOTION
FOR SPHERICALLY SYMMETRIC AND

ASYMPTOTICALLY FLAT BACKGROUNDS

Here we give details of the equations used in Sec. II to
describe spherically symmetric solutions with the theory
defined by (2.19). Using the Ansatz

ds2 ¼ �NðrÞ2dt2 þ FðrÞ�1dr2 þ r2HðrÞ�2d�2 (A1)

in the action (2.19), we obtain the potential

ffiffiffiffiffiffiffi�g
p

U ¼ � r2 sinð
Þffiffiffiffi
F

p
H2

f2½ ffiffiffiffi
F

p ðð2H� 3ÞN þ 1Þ þH2N

þHð2� 6NÞ þ 6N � 3� � 6�3ðH � 1Þ
� ½ ffiffiffiffi

F
p ððH � 3ÞN þ 2Þ � 2HN þH þ 4N � 3�

� 24�4ð1�
ffiffiffiffi
F

p Þð1�HÞ2ð1� NÞg: (A2)

Varying it with respect to N gives the equation of motion

0 ¼ 3�3m
2r2ð1�HÞH2½ ffiffiffiffi

F
p ðH � 3Þ � 2H þ 4�

� 12�4m
2r2ð ffiffiffiffi

F
p � 1Þð1�HÞ2H2

�H2½rð _F� 6m2rÞ þ 3m2r2
ffiffiffiffi
F

p þ F�
þ rHðr _F _Hþ2Fðr €H þ 3 _HÞÞ � 5r2Fð _HÞ2
þ 2m2r2ð ffiffiffiffi

F
p � 3ÞH3 þH4ðm2r2 þ 1Þ; (A3)

where ‘‘dot’’ denotes derivatives with respect to r. Varying
with respect to F gives

0 ¼ �3�3m
2r2ð1�HÞH2½Hð2N � 1Þ � 4N þ 3�

� 12�4m
2r2ð1�HÞ2H2ð1� NÞ

þ 2rFH _Hðr _N þ NÞ � r2FNð _HÞ2
þH2½Nð6m2r2 � FÞ � rð2F _N þ 3m2rÞ�
þH4Nðm2r2 þ 1Þ þ 2m2r2H3ð1� 3NÞ; (A4)

and finally by varying with respect to H, one gets

0 ¼ 6�3m
2rH2½ ffiffiffiffi

F
p ðHð2N � 1Þ � 3N þ 2Þ þHð2� 3NÞ

þ 4N � 3� �H2½r _F _NþN _Fþ 2Fðr €N þ _NÞ
þ 2m2r

ffiffiffiffi
F

p ð3N � 1Þ � 12m2rN þ 6m2r�
þHðrN _F _Hþ2FðrN €H þ r _H _Nþ2N _HÞÞ
� 4rFNð _HÞ2 þ 2m2rH3½ð ffiffiffiffi

F
p � 3ÞN þ 1�

þ 24�4m
2rð ffiffiffiffi

F
p � 1ÞðH � 1ÞH2ðN � 1Þ: (A5)

Instead of using the last equation, it is simpler to use a
constraint based on the (second) Bianchi identity. This can
be achieved by taking a combination of the previous field
equations which leads to r�G�� ¼ 0 for the Einstein

piece, where G�� is the Einstein tensor. The constraint

constructed in this way is

0¼ 1

rHN
f�3�3½

ffiffiffiffi
F

p ½HðNð4r _Hþ6Þ�2r _Hþ3r _N�4Þ
þ2rð2�3NÞ _HþrH3 _NþH2ð�4r _N�4Nþ2Þ�
þ2H2ðHð2N�1Þ�3Nþ2Þ�þ12�4ð1�HÞ
�½ ffiffiffiffi

F
p ½2rðN�1Þ _HþrH2 _N�Hðr _Nþ2N�2Þ�

þ2H2ðN�1Þ�þ ffiffiffiffi
F

p ½�H½2Nðr _Hþ3Þþ3r _N�2�
þ2ð3N�1Þr _Hþ2H2ðr _NþNÞ��2H2½ðH�3ÞNþ1�g:

(A6)

We would like to study perturbations about flat space,
hence

N ¼ 1þ n; F ¼ 1þ f; H ¼ 1þ h; (A7)

and study linear perturbations. However, n and f are small,
like in GR, but h could be large since this is where the
scalar graviton has an influence. Therefore, we will keep
higher orders in h and truncate the equations to first order
in n and f. It is more convenient to introduce a new radial
coordinate � ¼ r=H, so that the linearized metric is ex-
pressed as

ds2 ¼ �ð1þ 2~nÞdt2 þ ð1� ~fÞd�2 þ �2d�2: (A8)

The change of coordinates fixes ~f in terms of f, as ~fð�Þ ¼
fðrð�ÞÞf@�½�Hð�Þ�g2, while we have the freedom to choose
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~n and ~h in terms of n and h. For simplicity, we pick ~nð�Þ ¼
nðrð�ÞÞ and ~hð�Þ ¼ hðrð�ÞÞ. Therefore, we can drop the

tildes of n and h from now on, and ~f simplifies to

1� ~fð�Þ ¼ ½1� fðrð�ÞÞ�½1þ hð�Þ þ �h0�2; (A9)

where a prime denotes a derivative with respect to �. Then,

Eq. (A3), in the new variable � and to leading order in ~fð�Þ
but keeping all orders in hð�Þ, reads

0 ¼ 2~fþ 2�~f0 þm2�2ð½1� 2ð3�3 þ 1Þh
þ 3ð�3 þ 4�4Þh2�½ð2þ ~fÞ�h0 þ ð1þ hÞ~f�
þ 6h½1� ð3�3 þ 1Þhþ ð�3 þ 4�4Þh2�Þ: (A10)

Equivalently for Eq. (A4), one gets

0 ¼ �~f� 2�n0 þm2�2ðn� 2½1þ nþ ð3�3 þ 1Þn�h
þ ½ð3�3 þ 1Þðnþ 1Þ þ 3ð�3 þ 4�4Þn�h2Þ: (A11)

Finally, for the constraint equation (A6), the expression to

first order in ~f and n, but to all orders in h is

0 ¼ �n0½�1þ 2ð3�3 þ 1Þh� 3ð�3 þ 4�4Þh2�
� ~f½1� ð3�3 þ 1Þh�: (A12)

These last three equations are the ones used in Sec. II to
derived the Vainshtein mechanism.

APPENDIX B: GENERAL EXACT SOLUTION

In order to construct exact solutions to the Lagrangian
(2.19), we use the following Ansatz

ds2 ¼ �CðrÞdt2 þ 2DðrÞdtdrþ AðrÞdr2 þ BðrÞd�2;

(B1)

with

BðrÞ ¼ b0r
2;

CðrÞ ¼ c0 þ c1
r
þ c2r

2;

AðrÞ þ CðrÞ ¼ Q0;

D2ðrÞ þ AðrÞCðrÞ ¼ �0:

(B2)

The constant parameters b0, c0, c1, c2, Q0, �0, can then be
fixed using Einstein equations

G�� ¼ 8�GT�� (B3)

with T�� ¼ � 1ffiffiffiffiffi�g
p �LK

�g�� , and LK given in Eq. (2.18). The

combinationCðrÞGrr þ AðrÞGtt ¼ 0 fixes uniquelyb0 to be

b0 ¼
�
1þ 6�3 þ 12�4 þ ��
3ð1þ 3�3 þ 4�4Þ

�
2
; (B4)

where

�� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�3 þ 9�2

3 � 12�4

q
: (B5)

By requiring that the 1=r3 term in theGtt equation vanishes,
we obtain the condition

c0 ¼ �0

b0
; (B6)

and using the rest of Einstein’s equations leads to a solution
for the remaining coefficients. These are

c2 ¼ �0m
2

9b0ð1þ 3�3 þ 4�4Þ2
½1� 2�� þ 4�4ð2�� � 7Þ þ 2�3ð1� 18�4 � 2��Þ þ �2

3ð15� 6��Þ þ 18�3
3�

Q0 ¼ 1

81b0ð1þ 3�3 þ 4�4Þ4
½8þ 8�� þ 81�012þ �3½10þ 81�0 þ 2633�3

4ð2þ 3�0Þ þ 9��

þ 216�2
4ð1þ 18�0 þ 4��Þ þ 6�4ð17þ 162�0 þ 22��Þ��� þ 27�2

3½27þ 162�0 þ 288�2
4ð5þ 9�0Þ

þ 20�� þ 8�4ð29þ 162�0 þ 26��Þ� þ 2733�3
4ð�1þ 6�0 þ 2��Þ þ 2834�4

4ð1þ �0Þ þ 81�4
3ð41þ 81�0Þ

þ 54�3
3ð41þ 162�0 þ 24�4ð14þ 27�0Þ þ 20��Þ�� þ 144�2

4ð1þ 54�0 þ 8��Þ�� þ 48�4ð2þ 27�0 þ 3��Þ�:
(B7)

Notice that there are two branches, depending on the sign choice in b0 (see Eqs. (B4) and (B5)). For �3 ¼ �4�4, the upper
(lower) branch solution must be taken for �4 < 1=12 ð�4 > 1=12Þ. The solution for Q0 exists only if Q0 satisfies the
condition 4

ffiffiffiffiffiffi
�0

p þ 2Q0 > 0. Because of this condition, for �3 ¼ �4�4, the solution is valid only for �4 in the ranges
�4 < 1=12 and �4 > 1=8.
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