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It is shown that in the static, spherically symmetric spacetime, the problem of metric fðRÞ gravity
coupled with nonlinear Yang-Mills (YM) field constructed from the Wu-Yang ansatz as source can be

solved in all dimensions. By nonlinearity it is meant that the YM Lagrangian depends arbitrarily on its

invariant. A particular form is considered to be in the power-law form with limit of the standard YM

theory. The formalism admits black hole solutions with single or double horizons in which fðRÞ can be

obtained, in general numerically. In 6-dimensional case we obtain an exact solution given by fðRÞ ¼ ffiffiffiffi
R

p
gravity that couples with the YM field in a consistent manner.
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I. INTRODUCTION

With the hopes to explain a number of cosmological
problems covering dark energy, accelerated expansion,
quantum gravity and many related matters, extensions/
modifications of general relativity theory gained momen-
tum anew during the recent decade. Each extension adds
new degrees of freedomand accommodates newparameters
apt for the sake of better physics. Lovelock gravity [1], for
instance, constitutes one such extensionwhich abides by the
ghost free combinations of higher order invariants resulting
in second order equations alone. Next higher order to the
Einstein-Hilbert extension in this hierarchy came to be
known as the Gauss-Bonnet extension [2] which makes
use of the quadratic invariants. Apart from this hierarchy,
arbitrary dependence on the Ricci scalar R which has been
popular in recent times is known as the fðRÞ gravity (see e.g.
[3] and references therein and for a review paper see [4]).
Compared to other theories which employ tensorial invar-
iants this sounds simpler and the fact that the ghosts
are eliminated makes it attractive [5]. The simplest form,
namely fðRÞ ¼ R, is the well-known Einstein-Hilbert
Lagrangian, which constitutes the simplest theory of grav-
ity. Given the simplest theory in hand, why to investigate
complex versions of it? The idea is to add new degrees of
freedom through nonlinearities, creating curvature sources
that may be counterbalanced by the energy-momentum of
some physical sources. Once fðRÞ ¼ R, passes all the clas-
sical experimental tests any function fðRÞ may be inter-
preted as a self-similar version of fðRÞ ¼ R, creating no
serious difficulties at the classical level. Introducing an
effective Newtonian constant, as a matter of fact, plays a
crucial role in this matter. At the quantum level, however,
problems such as unitarity, renormalizability of the linear-
ized theory are of vital importance to be tackled with.

As an example, we refer to the particular form
fðRÞ ¼ RN (N ¼ rational number) [6]. This admits,

among others, an exact solution which simulates the ge-
ometry of a charged object i.e. the Reissner-Nordström
geometry [6]. That is, fðRÞ ¼ RN behaves geometrically
as if we have fðRÞ ¼ Rþ (electrostatic field). Remarkably,
the power N plays the role of ‘‘charge’’ so that the geome-
try fðRÞ ¼ RN becomes locally isometric to the geometry
of Reissner-Nordström. In a similar manner various com-
binations of polynomial forms plus lnð1þ RÞ, sinR, and
other functions of R can be considered as potential candi-
dates for fðRÞ. Some of these have already appeared in the
literature [7]. Beside the case of fðRÞ ¼ Rþ (electrostatic
field), and more aptly, cases such as fðRÞ ¼ Rþ (non-
minimal scalar field) cases also have been investigated [7].
Recently, the nonminimal Yang-Mills fields coupled

with fðRÞ gravity has also been studied [8]. In this paper
we show that Yang-Mills (YM) field can be accommodated
within the context of metric fðRÞ gravity as well. To the
best of our knowledge such a study, especially in higher
dimensions which constitutes our main motivation, is ab-
sent in the literature. While numerical solutions to the
problem of black holes in fðRÞ-YM theory [9] started to
appear in the literature our interest is in finding exact
solutions. It should be added also that the class of black
holes in fðRÞ gravity can be distinct from the well-known
classes such as Myers-Perry (in [2]). Some classes of black
holes in this paper also obey this rule since they are not
asymptotically flat in the usual sense. We show that in most
of our solutions asymptotically (i.e. r ! 1) an effective
cosmological constant can be identified which depends on
the dimension of spacetime, YM charge Q and the inte-
gration parameters. Herein, we do not propose an fðRÞ
Lagrangian a priori, instead we determine the fðRÞ func-
tion in accordance with the YM sources. By using the Wu-
Yang ansatz for the YM field [10,11] it is shown that a
general class of solutions can be obtained in the fðRÞ
gravity where the geometric source matches with the
energy-momentum of the YM field. Let us note that the
Wu-Yang ansatz works miraculously in all higher dimen-
sions which renders possible to solve fðRÞ gravity not only
in d ¼ 4, but in all d > 4 as well. Further, the zero trace
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condition for the energy-momentum is imposed to obtain
conformal invariant solutions which constitutes a parti-
cular class. Although our starting point is the nonlinear
YM field in which the Lagrangian is an arbitrary function
of the YM invariant our main concern is the special limit,
namely, the linear (or standard) YM theory. Power-law
type nonlinearity is a well-known class which we consider
as an example and as we have shown elsewhere [12] the
choice of the power plays a crucial role in the satisfaction
of the energy conditions, i.e. Weak, Strong or Dominant.
Essentially, conformal invariant property is one of the
reasons that we consider Power-YM (PYM) field in higher
dimensions. The implementation of zero trace condition
for the energy-momentum tensor becomes relatively sim-
pler in this PYM class. As in the example of Born-Infeld
electrodynamics case which plays crucial role in resolution
of point like singularities, in analogy, similar expectations
can be associated with the nonlinear version of the YM
theory. Such nonlinearities resemble the self-interacting
scalar fields which serve to define different vacua in quan-
tum field theory. More to that, in general relativity the
nonlinear terms effect black hole formation significantly,
it is therefore tempting to take such combinations seri-
ously. It is our belief that with the nonlinear YM field we
can establish effective cosmological parameters to contrib-
ute, in accordance with the energy conditions cited above,
to the distinction between the phantom and quintessence
data of our universe. This is a separate problem of utmost
importance that should be considered separately. We show

that, the choice fðRÞ ¼ ffiffiffiffi
R

p
in 6-dimensions yields an exact

solution for fðRÞ gravity coupled with YM fields which is
nonasymptotically flat/non-de Sitter in the sense that it
contains deficit angles at r ! 1. Other classes of solutions
that are asymptotically de Sitter, unfortunately cannot be
expressed in a closed form as fðRÞ.

Organization of the paper is as follows. In Sec. II we
introduce our theory of nonlinear YM field coupled to fðRÞ
gravity and give exact solutions. Section III specifies the
nonlinearity of YM field to PYM case in all dimensions.
The First Law of thermodynamics in our formalism is
discussed briefly in Sec. IV. We complete the paper with
Conclusion which appears in Sec. V.

II. NON-LINEAR YM FIELD IN fðRÞ GRAVITY

We start with an action given by

S ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
fðRÞ
2�

þ LðFÞ
�

(1)

in which fðRÞ is a real function of Ricci scalar R, LðFÞ is
the nonlinear YM Lagrangian with F ¼ 1

4 trðFðaÞ
��FðaÞ��Þ.

The particular choice LðFÞ ¼ � 1
4�F will reduce to the

case of standard YM theory. Here

F ðaÞ ¼ 1

2
FðaÞ
��dx� ^ dx� (2)

is the YM field 2-form with the internal index ðaÞ running
over the degrees of freedom of the YM nonabelian gauge
field. Our unit convention is chosen such that c ¼ G ¼ 1
so that � ¼ 8�.
Variation of the action with respect to the metric gives

the field equations as

fRR
�
� þ

�
hfR � 1

2
f

�
��
� �r�r�fR ¼ �T�

� (3)

where fR¼ dfðRÞ
dR and hfR¼r�r�fR¼

1ffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
@�ÞfR. Further, r�r�fR ¼ g��ðfRÞ;�;� ¼

g��½ðfRÞ;�;� � �m
��ðfRÞ;m�. The trace of the field equation

implies

fRRþ ðd� 1ÞhfR � d

2
f ¼ �T (4)

in which T ¼ T�
� .

The energy-momentum tensor is chosen to be

T�
� ¼ LðFÞ��

� � trðFðaÞ
��FðaÞ��ÞLFðFÞ (5)

in which LFðFÞ ¼ dLðFÞ
dF .

The YM ansatz, following the higher dimensional ex-
tension of Wu-Yang ansatz, is given by

AðaÞ ¼ Q

r2
CðaÞ
ðiÞðjÞx

idxj;

Q ¼ YM magnetic charge;

r2 ¼ Xd�1

i¼1

x2i ;

(6)

2� jþ1� i�d�1; and 1�a�ðd�2Þðd�1Þ=2;
x1¼ rcos�d�3 sin�d�4 .. .sin�1;

x2¼ rsin�d�3 sin�d�4 . . .sin�1;

x3¼ rcos�d�4 sin�d�5 .. .sin�1;

x4¼ rsin�d�4 sin�d�5 . . .sin�1;

. . .

xd�2¼ rcos�1;

in which CðaÞ
ðbÞðcÞ is the nonzero structure constants [10]. The

spherically symmetric metric is written as

ds2 ¼ �AðrÞdt2 þ dr2

AðrÞ þ r2d�2
d�2; (7)

where AðrÞ is the only unknown function of r and

d�2
d�2 ¼ d�21 þ

Xd�2

i¼2

Yi�1

j¼1

sin2�jd�
2
i ; (8)

with

0 � �d�2 � 2�; 0 � �i � �; 1 � i � d� 3:
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The YM equations take the form

d ½?FðaÞLFðFÞ� þ 1

�
CðaÞ
ðbÞðcÞLFðFÞAðbÞ ^? FðcÞ ¼ 0; (9)

where ? means duality. For our future use we add also that

F ¼ 1

4
trðFðaÞ

��FðaÞ��Þ ¼ ðd� 2Þðd� 3ÞQ2

4r4
(10)

and

tr ðFðaÞ
t� F

ðaÞt�Þ ¼ trðFðaÞ
r�FðaÞr�Þ ¼ 0; (11)

while

tr ðFðaÞ
�i�

FðaÞ�i�Þ ¼ ðd� 3ÞQ2

r4
: (12)

From (5) the nonzero energy-momentum tensor compo-
nents are

Tt
t ¼ L ¼ Tr

r ; (13)

T�i
�i
¼ L� ðd� 3ÞQ2

r4
LF: (14)

The trace of Eq. (5) implies

T ¼ d:L� 4FLF (15)

which yields from Eq. (3)

f ¼ 2

d
½fRRþ ðd� 1ÞhfR � �ðd:L� 4FLFÞ�: (16)

To write the exact form of the field equations we need the
general form of Ricci scalar and Ricci tensor which are
given by

R¼�r2A00 þ2ðd�2ÞrA0 þðd�2Þðd�3ÞðA�1Þ
r2

; (17)

Rt
t ¼ Rr

r ¼ � 1

2

rA00 þ ðd� 2ÞA0

r
; (18)

R�i
�i
¼ � rA0 þ ðd� 3ÞðA� 1Þ

r2
: (19)

in which a prime denotes derivative with respect to r.
Overall, the field equations read now

fR

�
�1

2

rA00 þðd�2ÞA0

r

�
þ
�
hfR�1

2
f

�
�rtrtfR¼�L;

(20)

fR

�
�1

2

rA00 þðd�2ÞA0

r

�
þ
�
hfR�1

2
f

�
�rrrrfR¼�L;

(21)

fR

�
� rA0 þ ðd� 3ÞðA� 1Þ

r2

�
þ

�
hfR � 1

2
f

�
�r�ir�ifR

¼ �

�
L� 4

ðd� 2ÞFLF

�
: (22)

Herein

hfR ¼ 1ffiffiffiffiffiffiffi�g
p @rð ffiffiffiffiffiffiffi�g

p
@rÞfR

¼ A0f0R þ Af00R þ ðd� 2Þ
r

Af0R; (23)

rtrtfR ¼ gttfR;t;t ¼ gttðfR;t;t � �m
tt fR;mÞ ¼ 1

2
A0f0R;

(24)

rrrrfR ¼ grrfR;r;r ¼ grrðfR;r;r � �m
rrfR;mÞ

¼ Af00R þ 1

2
A0f0R; (25)

and

r�ir�ifR ¼ g�i�ifR;�i;�i ¼ g�i�iðfR;�i;�i � �m
�i�i

fR;mÞ

¼ A

r
f0R: (26)

The tt and rr components of the field equations imply

rrrrfR ¼ rtrtfR (27)

or equivalently

f00R ¼ 0: (28)

This leads to the solution

fR ¼ 	þ 
r (29)

where 	 and 
 are two integration constants and to avoid
any nonphysical case we assume that 
; 	 > 0. The other
field equations become

ð	þ
rÞ
�
�1

2

rA00 þðd�2ÞA0

r

�
þ1

2

A0 þðd�2Þ

r
A
�1

2
f

¼�L; (30)

ð	þ
rÞ
�
�rA0 þðd�3ÞðA�1Þ

r2

�
þA0
þðd�3Þ

r
A
�1

2
f

¼�

�
L� 4

ðd�2ÞFLF

�
: (31)

In a similar manner the �i�i and tt components yield

ð	þ 
rÞ
�
2ðd� 3ÞðA� 1Þ � r2A00 � ðd� 4ÞrA0

2r2

�

þ
�
A

r
� A0

2

�

 ¼ �

4

ðd� 2ÞFLF: (32)

Equation (16) can equivalently be expressed by

f ¼ 2

d

�
fRRþ ðd� 1Þ

�
A0
þ ðd� 2Þ

r
A


�

� �ðd:L� 4FLFÞ
�
: (33)
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Here we comment that in the limit of linear Einstein-YM
(EYM) theory one may set L ¼ � 1

4�F, LF ¼ � 1
4� ,


 ¼ 0, and 	 ¼ 1 to get fR ¼ 1 or equivalently f ¼ R
and consequently

2ðd� 3ÞðA� 1Þ � r2A00 � ðd� 4ÞrA0 ¼ � 4ðd� 3ÞQ2

r2
:

(34)

This admits a solution as

AðrÞ ¼
(
1� m

rd�3 � d�3
d�5

Q2

r2
; d > 5

1� m
r2
� 2Q2 lnr

r2
; d ¼ 5

(35)

which was reported before [11]. Here we note that m
is an integration constant related to mass of the black
hole.

III. PYM FIELD COUPLED TO fðRÞ GRAVITY

A. General integral for the PYM field in fðRÞ gravity
Our first approach to the solution of the field equations,

concerns the PYM theory which is a particular nonlinearity
given by the Lagrangian L ¼ � 1

4�F
s, in which s is a real

parameter [13]. The EYM limit is obtained by setting s¼1.
The metric function, then, reads as (	 ¼ 0)

AðrÞ ¼
8><
>:

d�3
d�2 þ�r2 � m

rd�2 � ðd�1Þðd�2Þd�1=2ðd�3Þd�1=4

2d�5=2
d

Qd�1=2 lnr
rd�2 ; s ¼ d�1

4

d�3
d�2 þ�r2 � m

rd�2 � 42�ssðd�2Þs�1ðd�3ÞsQ2s

ð4sþ1Þðd�4s�1Þ
r4s�1 ; s � d�1
4

(36)

in which� andm arise naturally as integration constants. Obviously� is identified as the cosmological constant whilem is
related to the mass. The fact that our metric is asymptotically de Sitter seems to be manifest only with deficit angles at
r ! 1. We add that in order to have an exact solution we had to set 	 ¼ 0, which means that in this case we were unable to
obtain the fðRÞ ¼ R gravity from the general solution.

Using the metric solution we also find fðRðrÞÞ and RðrÞ as

fðRðrÞÞ ¼
8<
: 2
 d�3

r � ðd�3Þd�1=4ðd�2Þd�5=4

2d�5=2

Qd�1=2

rd�1 ; s ¼ d�1
4

2
 d�3
r � ðd�3Þsðd�2Þs�1ð4s�dþ2Þ

4s�1
Q2s

r4s
; s � d�1

4

(37)

and

RðrÞ ¼
8<
:

d�3
r2

��dðd� 1Þ � ðd�1Þðd�3Þd�1=4ðd�2Þd�5=4

2d�5=2
d

Qd�1=2

rd
; s ¼ d�1

4

d�3
r2

��dðd� 1Þ � ð4s�dþ2Þsðd�3Þsðd�2Þs�1

4s�2ð4sþ1Þ

Q2s

r4sþ1 ; s � d�1
4

: (38)

We recall from Eq. (29) that

fR ¼ df

dR
¼ 
r (39)

or equivalently

df=dr

dR=dr
¼ 
r: (40)

As it is seen from the expressions of RðrÞ and fðrÞ it is not
possible to eliminate r to have the exact form of fðRÞ,
instead we have a parametric form for fðRÞ.

Among all possible cases, we are interested in the con-
dition 4s� dþ 2 ¼ 0. Since this particular choice brings
significant simplifications in (37) and (38). Table I shows
for which values of s and d this is satisfied.

It is not difficult to observe that with these specific
choices, plus � ¼ 0, we obtain

fðRÞ ¼ ��
ffiffiffiffi
R

p
(41)

in which the constant �� is defined by

�� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p
: (42)

Accordingly the metric function AðrÞ takes the form

AðrÞ ¼ d� 3

d� 2
� m

rd�2
� ðd� 2Þd�2=4ðd� 3Þd�2=4Qd�2=2

4d�6=4ðd� 1Þ
rd�3

(43)

with the scalar curvature

RðrÞ ¼ d� 3

r2
: (44)

Since the constant term d�3
d�2 � 1, in (43) our solution for

r ! 1 is given by

TABLE I. The table for d versus s that satisfies the condition
4s� dþ 2 ¼ 0. The reason for making this choice is technical
for it simplifies the expressions in (37) and (38) to great extent.

d ¼ 5 6 7 8 9 10 d

s ¼ 3
4 1 5

4
3
2

7
4 2 d�2

4
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ds2 ¼r!1�d�t2 þ d�r2 þ ð��rÞ2d�2
d�2 (45)

where �t ¼ ffiffiffiffi
�

p
t, r ¼ ��r, (� ¼ d�3

d�2 ). This may be inter-

preted as a deficit angle at r ! 1. It can also be seen easily
from Table I that for the linear YM theory (s ¼ 1) in

d ¼ 6, with 
 ¼
ffiffi
3

p
6 , fðRÞ ¼ ffiffiffiffi

R
p

yields an exact solution.

B. Thermodynamics of the black hole solution

The black hole solution given by (36) admits horizon(s)
provided

AðrhÞ ¼ 0; (46)

which implies

m ¼
8><
>:

d�3
d�2 r

d�2
h þ�rdh � ðd�1Þðd�2Þd�1=2Qd�1=2ðd�3Þd�1=4

2d�5=2
d
lnrh; s ¼ d�1

4

d�3
d�2 r

d�2
h þ�rdh � 42�ssðd�2Þs�1ðd�3ÞsQ2s

ð4sþ1Þðd�4s�1Þ
r4s�dþ1
h

; s � d�1
4

: (47)

The standard definition of Hawking temperature

TH ¼ 1

4�
A0ðrhÞ (48)

yields

TH ¼
8><
>:



4dðd�3Þ1=4ððr2

h
�þ1Þd�3Þ� ffiffi

2
p ðd�2Þd�5=4ðd�1Þr1�d

h
Qd�1=2ðd�3

4 Þd=4rh
ðd�3Þ1=4�rh
d ; s ¼ d�1

4

½
ð4sþ1Þðd�2Þðr2�dþd�3Þ�4ðd�2
4 Þsðd�3ÞsQ2ssr1�4s

h
�

4�
ðd�2Þð4sþ1Þrh ; s � d�1
4

: (49)

It is known that the area formula S ¼ AH

4G , in fðRÞ gravity
becomes [14–16]

S ¼ Ah

4G
fRjr¼rh (50)

in which

fR ¼ 
rh (51)

and

A h ¼ d� 1

�ðdþ1
2 Þ�

d�1=2rd�2
h (52)

where rh is the radius of the event horizon or cosmological
horizon of the black hole. Using Swith the definition of the
heat capacity in constant charge we get

CQ ¼ TH

�
@S

@TH

�
Q
¼ �d�1=2
ðd� 1Þ2rd�1

4�ðdþ1
2 Þ


ðd� 2Þðsþ 1
4Þð�r2dþ d� 3Þ � 4sðd�2

4 Þsðd� 3ÞsQ2sr�4sþ1


ðd� 2Þðsþ 1
4Þð�r2d� dþ 3Þ þ 16s2ðd�2

4 Þsðd� 3ÞsQ2sr�4sþ1
: (53)

A thorough analysis of the zeros/infinities of this function
reveal about local thermodynamic stability/phase transi-
tions, which will be ignored here.

C. A general approach with s¼1

1. d�6

In this section, for the linear YM theory (s ¼ 1), we let 	
to get nonzero value and attempt to find the general solu-
tion. As one may notice the case of d ¼ 5 is distinct so that
we shall find a separate solution for it but for d � 6 the
most general solution reads

AðrÞ ¼ 1� m

rd�3
� ðd� 3ÞQ2

ðd� 5Þ	r2 þ 
�1 þ 
2�2 þ 
3�3

þ 
4�4 þ ð�1Þdr2�d�1ðd� 1Þm ln

��������	þ 
r

r

��������
þ Pd�7ð�Þ; (54)

in which � ¼ 

	 with the following abbreviations

�1 ¼ 4ðd� 3Þ
3ðd� 5Þ

Q2

	2r
þ d� 1

d� 2

m

	rd�4
� 2

d� 2

r

	
;

�2 ¼ 2

ðd� 2Þðd� 5Þ
r2

	2
ln

��������	þ 
r

r

���������d� 1

d� 3

m

	2rd�5

� 2ðd� 3Þ
ðd� 5Þ

Q2

	3
;

�3 ¼ 4ðd� 3Þ
d� 5

Q2

	4
rþ d� 1

d� 4

m

	3rd�6
;

�4 ¼ � 4ðd� 3Þ
d� 5

Q2

	5
r2 ln

��������	þ 
r

r

��������
� d� 1

d� 5

1

rd�7
; (55)
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Pd�7ð�Þ ¼ ð�1Þd�1ðd� 1Þm�5

"
�d�7r� 1

2
�d�8 þ 1

3
�d�9r�1 � . . .þ 1

d� 6
��ðd�8Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{d�6 termðsÞ#
; d � 7:

Using these results, we plot Fig. 1 which displays (for
d ¼ 6), AðrÞ and fðRÞ for different values of 
.

It can easily be seen that in the limit 
 ! 0 and 	 ¼ 1,
the metric function reduces to

AðrÞ ¼ 1� m

rd�3
� ðd� 3ÞQ2

ðd� 5Þr2 ; (56)

which is nothing but the well-known black hole solution
in fðRÞ ¼ R, EYM theory [11]. On the other hand for

 � 0 � 	, it is observed that asymptotical flatness does
not hold.

To complete our solution we find the asymptotic behav-
ior of the metric function AðrÞ. As one observes from (54),
at r ! 1 AðrÞ becomes

AðrÞ ’ 1þ�eff

3
r2; (57)

in which

�eff ¼ 3

�
2

ðd� 2Þðd� 5Þ �
4ðd� 3Þ
d� 5

Q2
4

þ ð�1Þd�d�1ðd� 1Þ	2m

�
�2 lnj
j: (58)

As one may see in Fig. 1, we add here that 
 plays a crucial
role in making the metric function asymptotically de Sitter,
anti-de Sitter and asymptotically flat (j
j< 1, j
j> 1 and
j
j ¼ 1 respectively).

a. Thermodynamics of the BH solution in 6-
dimensions In this part we would like to study the thermo-
dynamics of the solution (54) and compare the result with
the case of linear gravity fðRÞ ¼ R. As one can see from
the form of the solution (54), we are not able to study
analytically in any arbitrary dimensions d, and therefore
we only consider d ¼ 6. The metric solution in d ¼ 6
dimensions is given by

AðrÞ ¼ 1� m

r3
� 3Q2

	r2
þ 


�
4Q2

	2r
þ 5

3

m

	r2
� 1

2

r

	

�

þ 
2

�
1

2

r2

	2
ln

��������	þ 
r

r

��������� 5

2

m

	2r
� 6

Q2

	3

�

þ 
3

�
12

Q2

	4
rþ 5

2

m

	3

�

þ 
4

�
�12

Q2

	5
r2 ln

��������	þ 
r

r

���������5r

�
; (59)

and therefore the Hawking temperature is given by

TH ¼
�

3

4�rh
� 3

4

Q2

�r3h

�
þ

�
17Q2

16�r2h
� 3

16

1

�

�



�
�
123Q2

64�rh
þ 120rh lnrh þ 139rh

192�

�

2 þOð
3Þ (60)

and the specific heat capacity reads

CQ ¼
�
8�2r4hðQ2 � r2hÞ
ð3r2h � 9Q2Þ

�

þ
�
� 8

9

�2r5hð3r4h � 17Q2r2h þ 7Q4Þ
ðr2h � 3Q2Þ2

�

þOð
2Þ:

(61)

First we comment herein that, to get the above result we
considered 	 ¼ 1. Second we add that, by 
 ¼ 0 we get
the case of EYM black hole in R-gravity. In the case of
pure R-gravity we put 
 ¼ 0 and Q ¼ 0 which leads to

TH ¼ 3

4�rh
; and CQ ¼ � 8�2

3
r4h (62)

which are the Hawking temperature and Heat capacity
of the 6-dimensional Schwarzschild black hole. Diver-
gence in the Heat capacity for particular YM charge and
therefore a thermodynamic instability is evident from this
expression.

2. d¼5

As we stated before, dimension d ¼ 5 behaves different
from the other dimensions. The metric function is given in
this case by

AðrÞ ¼ 1�m

r2
� 2Q2

	r2
lnrþ
�1þ
2�2þ
3�3þ
4�4

(63)

in which

�1 ¼ 1

9	2r
½24Q2 lnrþ 12mþ 2Q2 � 6	r2�;

�2 ¼ 1

3	3

�
2	r2 ln

	þ 
r

r
� 12Q2 lnr� 3Q2 � 6m	

�
;

�3 ¼ 2r

	4
½2m	� 3Q2 þ 4Q2 lnr�;

�4 ¼ � 2r2

	5

�
4Q2 lnr ln

	þ 
r

	
ffiffiffi
r

p þ 4Q2dilog

�
	þ 
r

	

�

þ ð2m	�Q2Þ ln
�
	þ 
r

r

��
: (64)

Herein m is an integration constant and
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dilog ðxÞ ¼
Z x

1

lnt

1� t
dt (65)

is the dilogarithm function. Here also the EYM limit with

 ! 0 and 	 ¼ 1 is obvious.

Similar to the higher than 6-dimensional case we give
here also the asymptotic behavior of the metric solution
(65) as r ! 1,

AðrÞ ’ 1þ�eff

3
r2; (66)

in which

�eff ¼ �2

4

	5

�
6

�
3m	5 ln
�Q2 ln

�



	

�
lnð	
Þ

�

� 	3


2
ln
þ 2�2Q2

	
(67)

is the effective cosmological constant.

D. Black holes with a conformally invariant YM source

One of the interesting choice for s in Einstein-Power-
Maxwell theory-which has been considered first by
Hassaine and Martinez [13]-is given by s ¼ d

4 (for all

d � 4) which is conformally invariant. This choice yields
a zero trace for the energy-momentum tensor in any di-
mensions, i.e., T ¼ T�

� ¼ 0. In EPYM case also s ¼ d
4

leads to a traceless energy-momentum tensor and a metric
solution for the field equations with arbitrary values of 	
and 
 is given by

AðrÞ ¼ 1� m

rd�3
þ 4ðd� 2Þd=4

�
d� 3

4

�
d=4 Qd=2

	rd�2

þ r2
�
2�2

d� 2
þ ð�1Þdðd� 1Þm�d�1

�

� ln

��������	ð1þ �rÞ
r

��������� 2�

d� 2
rþ qð�Þ (68)

in which

qð�Þ ¼ ð�1Þdðd� 1Þm�d�2
Xd�2

k¼1

ð�1Þkr2�k

�k�1k
; (69)

and �¼

	 . Figure 2 (d ¼ 5, s¼ 5

4) and Fig. 3 (d¼6, s ¼ 3
2 )

depict AðrÞ, RðrÞ and fðRÞ which relate the conformally
invariant (s ¼ d

4 ) cases for different 
 values. For r ! 1,

it can be seen easily from Eq. (68) that we have an effective
cosmological constant term, given by

�eff ¼ 3

�
2�2

d� 2
þ ð�1Þdðd� 1Þm�d�1

�
lnj
j (70)

We note that as a limit, once 
 ! 0 (or equivalently
� ! 0) and 	 ! 1 the solution reduces to

AðrÞ ¼ 1� m

rd�3
þ 4ðd� 2Þd=4

�
d� 3

4

�
d=4 Qd=2

rd�2
(71)

which is the metric function in Einstein-PYM theory in
fðRÞ ¼ R gravity. Determination of horizons and thermo-
dynamical properties in this limit is much more feasible in
comparison with the intricate expression (68). To complete
this section we give the Hawking temperature and specific
heat capacity for d ¼ 5 which read

TH ¼ 2r3h �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p
4�r4h

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p � r3h
6�r3h




� 17r3h þ 10
ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p þ 12r3h lnrh
18�r2h


2 þOð
3Þ (72)

and

FIG. 1. The plot of 6-dimensional fðRÞ [Fig. 1(a)] and AðrÞ
[Fig. 1(b)]. We choose � ¼ 0, and four different values of 

(
A, 
B, 
c, and 
D) are depicted as plots A, B, C and D. From
Fig. 1(b) it can be seen that in A, B, and C we have single, while
in D double horizons.
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CQ ¼ � 3

4

�2r3hð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p � 2r3hÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p � r3h

þ 3�2r4hð4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p
r3h � r6h � 2

ffiffiffi
6

p
Q5Þ

ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
24Q104

p � r3hÞ

þOð
2Þ:

(73)

1. Constant d-dimensional curvature R ¼ R0

G. Cognola, et al. in Ref. [15] have considered the
constant four-dimensional curvature R ¼ R0 in pure fðRÞ
gravity, which implies a de-Sitter universe. Here wewish to
follow the same procedure in higher dimensions in fðRÞ
gravity coupled with the nonminimal PYM field. As stated
before, in order to have a traceless energy-momentum in
d-dimensions we need to consider the case of conformally
invariant YM source which is given by s ¼ d

4 in the PYM

source. In 4-dimensions s ¼ 1 is satisfied automatically for
the zero trace condition.

We start with the trace of the Eq. (4) which leads to

f0ðR0Þ ¼ d

2R0

fðR0Þ (74)

and therefore the field Eqs. (3) become

G�
� þ�eff�

�
� ¼ � ~T�

� (75)

with the effective cosmological constant and energy-
momentum tensor as

�eff ¼ ðd� 2ÞR0

2d
; ~T�

� ¼ 2R0

fðR0ÞdT
�
�: (76)

Now, we follow [15,16] to give the form of the entropy akin
to the possible BH solution. As we indicated in Eq. (50) the
entropy of the modified gravity with constant curvature is
given by

S ¼ Ah

4G
fR0

(77)

which after considering (78) it becomes

FIG. 2. The 5-dimensional plots of AðrÞ, fðrÞ and RðrÞ from Eq. (68), for a variety of parameters given in Figs. 2(a)–2(d). Since s ¼ 5
4

in this particular case, the source is the PYM field with Lagrangian L� F5=4. These are all black hole solutions with inner and outer
horizons. A general analytic expression for fðRÞ seems out of our reach.
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S ¼ Ahd

8GR0

fðR0Þ: (78)

Since our main concern in this paper is not the particular
class of R ¼ R0 ¼ constant curvature space time we shall
not extend our discussion here any further.

IV. FIRST LAW OF THERMODYNAMICS

In this section we follow Ref. [17] to find a higher
dimensional form of the Misner-Sharp energy [18] inside
the horizon of the static spherically symmetric black hole
in fðRÞ gravity. The corresponding metric is given by (7)
and the horizon is found from AðrhÞ ¼ 0. The field Eqs. (3)
may be written as

G�
� ¼ �

�
1

fR
T�
� þ 1

�
T̂�
�

�
(79)

where G�
� is the Einstein tensor and T̂�

� is a stress-energy

tensor for the effective curvature which reads

T̂ �
� ¼ 1

fR

�
r�r�fR �

�
hfR � 1

2
fþ 1

2
R

�
��
�

�
: (80)

At the horizon tt and rr parts of (79) imply

d� 2

2rh
A0fR � ðd� 2Þðd� 3Þ

2r2h
fR

¼ �

�
T0
0 þ

1

2�
½ðf� RfRÞ � A0f0R�

�
(81)

which upon multiplying by an infinitesimal displacement
drh on both sides can be reexpressed in the form

A0

4�
d

�
2�Ah

�
fR

�

� 1

2�

�ðd�2Þðd�3Þ
r2h

fRþðf�RfRÞ
�
Ahdrh¼AhT

0
0drh:

(82)

We add here that all functions are calculated at the horizon,

for instance A0 ¼ dAðrÞ
dr jr¼rh . The latter equation suggests

that

dE ¼ 1

2�

�ðd� 2Þðd� 3Þ
r2h

fR þ ðf� RfRÞ
�
Ahdrh (83)

in which E is the Misner-Sharp energy in our case.
Therefore (82) becomes

TdS� dE ¼ PdV (84)

where we set Hawking temperature T ¼ A0
4� , entropy of the

black hole S ¼ 2�Ah

� fR, radial pressure of matter fields at

the horizon P ¼ Tr
r ¼ T0

0 and finally the change of volume

of the black hole at the horizon is given by dV ¼ Ahdrh.
The exact form of the Misner-Sharp energy stored inside
the horizon may be found as

E ¼ 1

2�

Z �ðd� 2Þðd� 3Þ
r2h

fR þ ðf� RfRÞ
�
Ahdrh

(85)

in which the integration constant is set to zero (to read
more see Refs. [17,19]).
As an example we study the case of PYM field in fðRÞ

gravity in Sec. III A. Also to have an exact form for
fðRÞ we employ the metric (43) which corresponds to

fðRÞ ¼ ��
ffiffiffiffi
R

p
. Equation (82) yields,

FIG. 3. The plot of the metric function AðrÞ corresponding to
the conformally invariant case from Eq. (68) in d ¼ 6 and s ¼ 3

2 ,

for a set of 
 parameters. Black hole formations with single/
double horizons are explicitly seen. Specifically, Fig. 3(a) for
0 � 
 � 0:80 and Fig. 3(b) for 0:9 � 
 � 1:0.
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A0

4�
d

�
2�Ah

�

rh

�
� 1

2�

�ðd� 2Þðd� 3Þ
rh


þ 
ðd� 3Þ
rh

�
Ahdrh ¼ Ah

��1

4�

�ðd� 2Þðd� 3ÞQ2

4r4h

�
d�2=4

�
drh; (86)

in which R ¼ d�3
r2
h

has been used. Now, this equation leads
to

A0 ¼ ðd� 3Þ
rh

� 1


ðd� 1Þ
�
4

�ðd� 2Þðd� 3ÞQ2

4r4h

�
d�2=4

�
:

(87)

By taking derivative of (43) and substituting form in terms
of rh the foregoing equation easily follows.

Finally, one can see that the total energy is expressed by

E ¼ 
ðd� 3Þðd� 1Þ
2�ðd� 2Þ Ah: (88)

V. CONCLUSION

An arbitrary dependence on the Ricci scalar in the form
of fðRÞ as Lagrangian yields naturally an arbitrary geo-
metrical curvature. The challenge is to find a suitable
energy-momentum that will match this curvature by solv-
ing the highly nonlinear set of equations. For a number of
reasons it has been suggested that fðRÞ gravity may solve
the long-standing problems such as, accelerated expansion
and dark energy problems of cosmology. Richer theoretical
structure naturally provides more parameters to fit recent
observational data. We have shown that in analogy with the
electromagnetic (both linear and nonlinear) field, the Yang-
Mills field also can be employed and solved within the
context of fðRÞ gravity. So far, fðRÞ as a modified theory of
gravity has been considered mainly in d ¼ 4, whereas we
have been able in the presence of YM fields to extend it to
d > 4. In addition to the parameters of the theory the
dimension of space time also contribute asymptotically to
the effective cosmological constant created in fðRÞ gravity.
Admittedly, out of the general numerical solution techni-
cally it is not possible to invert scalar curvature RðrÞ as
r ¼ rðRÞ and obtain fðRÞ in a closed form. This happens

only in very special cases. In particular dimensions and
nonlinearities we obtained black holes with single/multi
horizons. From the obtained solutions for PYM field
coupled fðRÞ gravity we can discriminate three broad
classes as follows:
i) the asymptotically flat class in which 
 ¼ 0, 	 ¼ 1.

This class was already known [11].
ii) the asymptotically de Sitter/anti-de Sitter class cor-

responding to 
 � 0, 	 ¼ 1 (s ¼ 1).
iii) the nonasymptotically flat/nonasymptotically de

Sitter class for 
 � 0 � 	, s ¼ d
4 .

Our solutions admit black hole solutions with single/
multi horizons. In the proper limits we recover all the well-
known metrics to date. The case (ii) at large distance limit
exhibits deficit angle as shown in Eq. (45).
Conformally invariant class with zero trace of the

energy-momentum tensor, is obtained with the PYM

Lagrangian LðFÞ ¼ � 1
4� ðFÞ5=4 in d ¼ 5. In general, the

power of F becomes meaningful within the context of
energy conditions and causality. By introducing effective
pressure Peff and energy density �eff through Peff ¼ !�eff

and using the PYM fields in energy conditions ! factor
(i.e. whether !<�1, or !>�1) can be determined as a
cosmological factor [4]. This will be our next project in
this line of study. It may happen that, certain set of
powers eliminate nonphysical fields such as phantoms
and alikes. As far as exact solutions are concerned a
remarkable solution is obtained in the case of standard

YM Lagrangian LðFÞ¼� 1
4�F with d ¼ 6 in fðRÞ ¼ ffiffiffiffi

R
p

gravity which automatically restricts the curvature
to R> 0.
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