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Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in

Plank length which is consistent with doubly special relativity and string theory. The classical and

quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or

MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton

potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we

found that it is possible to get a late time acceleration for this model. For the quantum mechanical

description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-

DeWitt equation for the early universe and compare our results. We have used an approximation method

in the case of MUP.
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I. INTRODUCTION

Predictions from any candidate theory of quantum grav-
ity can be well tested by cosmology as this area of physics
can test physics at energies much higher than the collider
experiments. Until we get a satisfactory theory of quantum
gravity we can study the applications of the existing theo-
ries in cosmological scenarios. Quite recently string theory
has made remarkable efforts to solve some of the age-old
problems in understanding our universe [1–4]. In the pre-
big bang scenario based on the string effective action [5],
the birth of the universe is described by a transition from
the string perturbative vacuum with weak coupling, low
curvature and cold state to the standard radiation-
dominated regime, passing through a high curvature and
strong coupling phase. This transition is made by the
kinetic energy term of the dilaton, a scalar field with which
the Einstein-Hilbert action of general relativity is aug-
mented (also see [6] and the references therein for a brief
review of string dilaton cosmology). Duality is one of the
key features of string dilaton cosmology. If the scale factor
is a solution of the equation of motion then the inverse of
the former is also a solution. This indicates that our uni-
verse behaves like a string, i.e., has a minimal size of the
order of string scale and maximal size of the order of
inverse string scale.

The idea that the uncertainty principle could be affected
by gravity was first given by Mead [7]. Later modified
commutation relations between position and momenta
commonly known as the generalized uncertainty principle
(or GUP) were proposed by candidate theories of quantum
gravity such as, string theory, doubly special relativity
theory (or DSR) and black hole physics with the prediction
of a minimum measurable length [8–11]. A similar kind of
commutation relation can also be found in the context of

polymer quantization in terms of polymer mass scale [12].
From the point of view of perturbative string theory, strings
cannot probe distances smaller than their own size. This is
the key idea for the prediction of a minimum measurable
length. To incorporate the existence of a minimal length in
usual quantum mechanics, the standard commutation rela-
tion between position and momenta gets modified along
with the Hilbert space representation [10]. In one dimen-
sion the form of this generalized uncertainty principle can
be expressed by the associative Heisenberg algebra
generated by x and p obeying the relation (�> 0)

½x; p� ¼ iℏð1þ �p2Þ: (1)

The corresponding uncertainty relation can be written as

�x�p � ℏ
2
½1þ �ð�pÞ2 þ �hpi2�: (2)

It is clear from the above equations that the smallest
uncertainty in position has the value

�xmin ¼ ℏ
ffiffiffiffi
�

p
: (3)

If � ¼ 0 we get usual Heisenberg uncertainty relation.
Here � must be related to the Plank length. More general
cases and applications of such commutation relations are
studied in [13]. Since the scale factors, matter fields and
their conjugate momenta play the role of dynamical vari-
ables in cosmological models so the application of the
generalized uncertainty principle in constructing the phase
space of these models is reasonably relevant. Many re-
searchers have expressed a vested interest in studying the
classical and quantum solutions of some cosmological
models in the GUP framework and also in noncommutative
literature [14–16].
The authors in [17] proposed a GUP which is consistent

with DSR theory, string theory and black hole physics and
which says

½xi; xj� ¼ ½pi; pj� ¼ 0; (4)*barunbasanta@iiserkol.ac.in
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½xi; pj� ¼ iℏ
�
�ij � l

�
p�ij þ

pipj

p

�
þ l2ðp2�ij þ 3pipjÞ

�
;

(5)

�x�p� ℏ
2
½1� 2lhpiþ 4l2hp2i�

� ℏ
2

�
1þ

�
lffiffiffiffiffiffiffiffiffihp2ip þ 4l2

�
�p2þ 4l2hpi2� 2l

ffiffiffiffiffiffiffiffiffi
hp2i

q �
;

(6)

where p2 ¼ P
3
k¼1 pkpk, x2 ¼ P

3
k¼1 xkxk and l ¼ l0lpl

ℏ .

Here lpl is the Plank length ( � 10�35m). For a brief

discussion on Eq. (5) see Appendix. It is normally assumed
that the dimensionless parameter l0 is of the order unity. If
this is the case then the l dependent terms are only im-
portant at or near the Plank regime. But here we expect the
existence of a new intermediate physical length scale of the
order of lℏ ¼ l0lpl. We also note that this unobserved

length scale cannot exceed the electroweak length scale
[17] which implies l0 � 1017. These equations are approxi-
mately covariant under DSR transformations but not
Lorentz covariant [11]. These equations also imply

�x � ð�xÞmin � l0lpl (7)

and

�p � ð�pÞmax �
Mplc

l0
(8)

whereMpl is the Plank mass and c is the velocity of light in

vacuum. It can be shown that Eq. (5) is satisfied by the
following definitions (see Appendix)

xi ¼ xoi and pi ¼ poið1� lpo þ 2l2p2
oÞ; (9)

where xoi, poj satisfies ½xoi; poj� ¼ iℏ�ij. Here we can

interpret poi as the momentum at low energies having the
standard representation in position space (poi � �iℏ @

@xoi
)

with p2
o ¼

P
3
i¼1 poipoi and pi as the momentum at high

energies. Using (9) (to the best of our knowledge, this
definition is unique) we can also show that the p2 term in
the kinetic part of any Hamiltonian (including relativistic
ones) can be written as [17]

p2 ) p2
o � 2lp3

o þOðl2Þ þ . . . : (10)

Here we neglect terms Oðl2Þ and higher in comparison to
terms OðlÞ to study the effect of the linear term in l in the
first approximation as l ¼ l0lpl. Given the robust nature of

GUP, such corrections will continue to play a role irre-
spective of what other quantum gravity corrections one
may consider. In other words, they are in some sense
universal! The effect of this proposed GUP is well studied
recently for some well known physical systems in [17,18].

In this paper we are going to study a dilaton cosmologi-
cal model with an exponential dilaton potential. We will
study the model with a suitable metric and a particular

lapse function. At the beginning we will concentrate on the
classical solutions. Later we will study the effect of the
modified uncertainty principle (from now on we will use
the terminology Modified Uncertainty Principle or MUP
for the recently proposed GUP [17] to distinguish it from
the earlier version) on the classical model. In the next half
of the paper we are going to study the quantum model. In
each case we are going to solve the Wheeler-DeWitt equa-
tion but with a relevant approximation and compare the

results. As lpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
, where G is the Newtonian cou-

pling constant, we can imply that the extra terms in the
uncertainty relation (5) is a consequence of strong gravity.
So studying early universe quantum cosmological models
in the MUP framework is physically relevant. Here we will
apply the minisuperspace approach of quantum gravity
where one reduces a large number of degrees of freedom
by imposing symmetry conditions on the metric. Since our
model has 2 degrees of freedom, the scale factor and the
dilaton field, the study of this model within the MUP
framework appears to have physical grounds.

II. THE DILATON MODEL

The four-dimensional gravi-dilaton effective action in
the string frame can be written as [19]

S¼� 1

2�s

Z
d4x

ffiffiffiffiffiffiffi�g
p

e��½Rþ@��@��þVð�Þ�; (11)

where � is the dilaton field, �s is the fundamental string
length (ls) parameter and Vð�Þ is the dilaton potential. In
the string frame the fundamental unit is the string length ls,
and thus the Planck mass, which is the effective coefficient
of the Ricci scalar R, varies with the dilaton. An alter-
native way to describe things is to use the Einstein frame
which is physically more transparent than the string frame.
In the Einstein frame it is the Plank length which is more
directly related to the macroscopic physics through the
strength of gravity which is used as a fundamental unit.
So we would like to prefer the Einstein frame and in this
frame the action (11) takes the form [4]

S ¼ �M2

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 1

2
@��@��� Vð�Þ

�
; (12)

where M is the four-dimensional Plank mass. It is to be
noted that now the sign of the kinetic term of the scalar
field is familiar to us. We consider a spatially flat
Friedmann-Robertson-Walker spacetime which is speci-
fied by the metric of the form [20]

ds2 ¼ �N2ðtÞ
a2ðtÞ dt

2 þ a2ðtÞ�ijdx
idxj; (13)

where NðtÞ is the lapse function and aðtÞ is the scale factor
of the universe. The effective Lagrangian of the model can
be easily expressed as
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L ¼ 1

N

�
� 1

2
a2 _a2 þ 1

2
a4 _�2

�
� Na2Vð�Þ: (14)

We now use a set of transformations

x ¼ a2

2
coshð��Þ; y ¼ a2

2
sinhð��Þ; (15)

where � is a positive constant, so that we can finally write
the Hamiltonian decoupled in the variables x and y. In
these new variables the Lagrangian can be written as

L ¼ 1

2N
ð _y2 � _x2Þ � 2Nðx� yÞe��Vð�Þ: (16)

Here we take the opportunity to choose the potential as

Vð�Þ ¼ V0

2
e��� (17)

so that the Lagrangian can be written as

L ¼ 1

2N
ð _y2 � _x2Þ � NV0ðx� yÞ: (18)

We have a physical motivation for choosing this potential
as this type of potential finds its use in quintessence model
of dark energy (for a brief review see [21] and the refer-
ences therein) and also used in an inflationary model [22].
With the above Lagrangian the Hamiltonian constraint can
be written as1

H ¼ � 1

2
p2
x þ 1

2
p2
y þ V0ðx� yÞ: (19)

The minisuperspace of this model is a two-dimensional
manifold 0< a<1, �1<�<1. Its nonsingular
boundary is the line a ¼ 0 with j�j<1, while at singular
boundaries at least one of the two variables is infinite [23].
In terms of the new variables x and y the minisuperspace is
recovered by x > 0, x > jyj and the nonsingular boundary
may be represented by x ¼ y ¼ 0 [15].

III. CLASSICAL DILATON COSMOLOGY

In this section we are going to study the classical solu-
tions for the above Hamiltonian. We will study the com-
mutative case followed by the MUP effects on the model.

A. Commutative case

In the gauge N ¼ 1 we can get the equations of motion
for the above Hamiltonian keeping in mind that the phase
space variables satisfy

fxi; xjg ¼ fpi; pjg ¼ 0; fxi; pjg ¼ �ij: (20)

The equations of motion for the Hamiltonian in (19) are

_x ¼ fx;H g ¼ �px; _px ¼ fpx;H g ¼ �V0;

_y ¼ fy;H g ¼ py and _py ¼ fpy;H g ¼ V0: (21)

A straight forward integration yields

xðtÞ ¼ 1

2
V0t

2�poxtþ x0; pxðtÞ ¼�V0tþp0x;

yðtÞ ¼ 1

2
V0t

2þpoytþ y0 and pyðtÞ ¼ V0tþp0y: (22)

Here x0, y0, p0x, p0y are the arbitrary integration constants

to be evaluated with suitable initial conditions. With these
solutions and the constraint equation H ¼ 0 it can be
easily shown that classically only half of the minisuper-
space x > y > 0 (or a > 0, �> 0) is recovered by the
dynamical variables xðtÞ and yðtÞ. Considering x0 ¼ y0
andp0x ¼ p0y and using the transformation (15) we can get

aðtÞ ¼ ð8jp0xjV0t
3 þ 16x0jp0xjtÞ1=4 (23)

and

�ðtÞ ¼ 1

2�
ln

�
V0t

2 þ 2x0
2jp0xjt

�
: (24)

In Fig. 1 we have shown the time evolution of the dilaton
field. The approximate time dependence of the scale factor
and the field at earlier times can be written as

aðtÞ � t1=4 and �ðtÞ � ln

�
1

t

�
; (25)

and the late time behavior can be written as

aðtÞ � t3=4 and �ðtÞ � lnðtÞ: (26)

To get the standard parametrization of the Friedmann-
Robertson-Walker (FRW) metric one should make the
gauge choice NðtÞ ¼ aðtÞ because in that gauge the result-
ant time is the cosmic time (see Eq. (13)). But herewemade
the choice N ¼ 1. So we have to translate the time of
Eq. (23) and (24) in to cosmic time with the gauge choice

d� ¼ 1

aðtÞdt; (27)

where � represents the cosmic time. With this choice
Eq. (25) and (26) can be rewritten as

1In general, the main reason for applying the transformation
like (15) is that the minisuperspace is curved in terms of the
original coordinates (see (14)) and the application of some
deformed commutation relation like GUP is not an easy task.
However, we know that any 2-D Riemannian space is confor-
mally flat and if the Ricci scalar is zero this space will be
Minkowskian. This means that there is a set of coordinates in
terms of which the metric is flat. In our case the 2-D minisuper-
space (spanned by a and �) is a Riemannian space with vanish-
ing Ricci scalar. Therefore one can find a coordinate
transformation (15) in terms of which the minisupermetric takes
the form of a Minkowskian space (see(19)). We also note that we
did not introduce a canonical transformation and therefore after
introducing the new coordinates all of the quantum analysis
should be done based on them and one should not make an
inverse transformation in the wave functions.
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að�Þ � �1=3 and �ðtÞ � ln

�
1

�

�
; (28)

and the late time behavior can be written as

að�Þ � �3 and �ð�Þ � lnð�Þ: (29)

Equation (29) reminds us about the well known fact that if
a� ðTimeÞn, the universe will have an accelerated expan-
sion or a decelerated expansion for n > 1 or n < 1 respec-
tively throughout the period (for e.g., see [24]). So we get a
decelerated expansion at earlier times and an accelerated
expansion at late times. Our result contradict the classical
result of [15] for the time dependence of the dilaton field at
an earlier time but agrees quite well with the classical result
of [25]. Our result is physically more acceptable, at least
from the classical point of view.

B. Classical dilaton cosmology in the MUP framework

The motivation for studying this cosmological model in
the MUP framework lies in the fact that we have a linear
term in Plank length in the commutation relation (see
Eqs. (5) and (6)). Here we would like to explore the
consequences of this linear term in Plank length (as l ¼
l0lpl with ℏ ¼ 1) and compare our results with the commu-

tative case. Following Eq. (10) we rewrite Eq. (19) as

HMUP ¼ �p2
1

2
þ lp3

1 þ
p2
2

2
� lp3

2 þ V0ðx� yÞ
þOðl2Þ þ . . . ; (30)

where p1;2 can be interpreted as the momentum at low

energies having the standard representation in position
space (i.e., p1;2 � �i @

@x;y ). Throughout this paper we will

neglect termsOðl2Þ and higher to study the linear effect of l
perturbatively. The equations of motion in this case are

_x ¼ fx;HMUPg ¼ �p1 þ 3lp2
1 and

_p1 ¼ fp1;HMUPg ¼ �V0; (31)

_y ¼ fy;HMUPg ¼ p2 � 3lp2
2 and

_p2 ¼ fp2;HMUPg ¼ V0: (32)

Adding the second equations of (31) and (32) we get

_p 1 þ _p2 ¼ 0 ! p1 þ p2 ¼ p0 ða constÞ: (33)

The solution for p1 and p2 can be written after integration
as

p1ðtÞ ¼ �V0tþ p0

2
and p2ðtÞ ¼ V0tþ p0

2
: (34)

With Eq. (34) we can easily integrate the first equations
of (31) and (32) for the solution

xðtÞ ¼
�
�p0

2
þ 3lp2

0

4

�
tþ

�
V0

2
� 3lV0p0

2

�
t2 þ lV2

0 t
3 þ x0;

(35)

and

yðtÞ ¼
�
p0

2
� 3lp2

0

4

�
tþ

�
V0

2
� 3lV0p0

2

�
t2 � lV2

0 t
3 þ y0:

(36)

Now these solutions must satisfy the zero energy condition
HMUP ¼ 0. For that we require x0 ¼ y0 ¼ cða constÞ.
Using the transformation (15) we can calculate the time
dependence of the scale factor and the dilaton field as

aðtÞ ¼ ½f8jp0jcþ 12lcjp0j2gtþ f4jp0jV0 þ 18lV0jp0j2
þ 16lV2

0cgt3 þ 8lV3
0 t

5�1=4; (37)

and

�ðtÞ¼ 1

�
½lnfð8jp0jcþ12lcjp0j2Þt

þð4jp0jV0þ18lV0jp0j2þ16lV2
0cÞt3þ8lV3

0 t
5g1=2

� lnfð2jp0jþ3ljp0j2Þtþ4lV2
0 t

3g�: (38)

Here we have neglected termsOðl2Þ. If we set l ¼ 0we get
back Eqs. (23) and (24). At earlier times the limiting
behavior of aðtÞ and �ðtÞ can be written as

aðtÞ � t1=4 and �ðtÞ � lnðtÞ: (39)

Researchers from the field of dark energy define a parame-
ter known as deceleration parameter (q) and it is written as
(for e.g., see [24])

q ¼ � a €a

_a2
: (40)

In cosmology this is a dimensionless measure of the cos-
mic acceleration. From the recent observations we know
that our universe is expanding in an accelerated rate. For

0 2 4 6 8 10
t

0.5

1.0

1.5

t

FIG. 1 (color online). The classical behavior of � with respect
to time. The plot is with numerical values � ¼ 1, V0 ¼ 1:5,
x0 ¼ 1 and jp0xj ¼ 1. We have checked the limit of � in the
limit t ! 0 and it diverges.

BARUN MAJUMDER PHYSICAL REVIEW D 84, 064031 (2011)

064031-4



that we require q to be negative. For Eq. (23) and Eq. (37)
we have plotted the value of this deceleration parameter
with respect to time in Fig. 2. Fixing the constants l, jp0j,
V0 and c to some values, it is possible to get a late time
acceleration in this MUP framework of the model. So from
Fig. 2 we can clearly see that the modified uncertainty
principle not only has its effects on the early universe
cosmology but it is also possible that it can provide an
accelerated expansion of the universe at late times.

IV. QUANTUM DILATON COSMOLOGY

Here we are going to write the Wheeler-DeWitt equation
for the Hamiltonian constraint H ¼ 0 and find the ana-
lytical solution for the same cases studied for classical
dilaton cosmology.

A. Commutative quantum dilaton cosmology

We canonically quantize the Hamiltonian constraint of

Eq. (19) to get the Wheeler-DeWitt equation Ĥ� ¼ 0.
Here we use the usual prescription px;y � �i @

@x;y to get

�
@2

@x2
� @2

@y2
þ 2V0ðx� yÞ

�
�ðx; yÞ ¼ 0: (41)

Writing �ðx; yÞ ¼ �ðxÞ	ðyÞ we can write the variable
separated equations for x and y as

@2�

@x2
þ ð2V0x� kÞ� ¼ 0 and

@2	

@y2
þ ð2V0y� kÞ	 ¼ 0: (42)

Here k=2 is the separation parameter. The solutions of (42)
are known in terms of Airy functions AiðzÞ and BiðzÞ. We
will discard the functions BiðzÞ as the functions diverge for
large values of jzj. So eigenfunctions of the Wheeler-
DeWitt equation can be written as

�kðx; yÞ ¼ Ai

�
k� 2V0x

ð2V0Þ2=3
�
Ai

�
k� 2V0y

ð2V0Þ2=3
�
: (43)

The wave function vanishes at the nonsingular boundary
[23]. So �ð0; 0Þ ¼ 0 yields

kn ¼ ð2V0Þ2=3�n; (44)

where �n is the nth zero of the Airy function. The general
solution of the Wheeler-DeWitt equation can now written
as a superposition of the eigenfunctions

�ðx; yÞ ¼ X1
n¼1

CnAi

�
kn � 2V0x

ð2V0Þ2=3
�
Ai

�
kn � 2V0y

ð2V0Þ2=3
�
: (45)

In Fig. 3-Left we have shown the square of the wave
function in the plane of x and y. The figure on the right
shows the contour plot of the same figure. Clearly we can
see that the highest peak is around x ¼ 0 and y ¼ 0. Also
there are several peaks for nonzero positive values of x and
y. The smaller peaks are placed symmetrically around the
highest peak in the first quadrant for x and y. So we get
different states but only with positive values of x and y.
This means that the dilatonic field can only have values
� � 0 (see Eq. (15)) which agrees well with the classical
result for the evolution of� (24). These peaks indicate that
there were different possible states from which our present
universe might have evolved and tunnelled in the past. But
we also see that the probability of finding a state with zero
value of x is much higher.

B. Quantum dilaton cosmology in the MUP framework

Here we will use Eq. (30) for the Hamiltonian constraint
to write the Wheeler-DeWitt equation. Following the pro-
cedure of canonical quantization we write�
@2

@x2
þ2il

@3

@x3
� @2

@y2
�2il

@3

@y3
þ2V0ðx�yÞ

�
�ðx;yÞ¼ 0:

(46)

With the separation of variable�ðx; yÞ ¼ �ðxÞ	ðyÞwe can
write

2il
@3�

@x3
þ @2�

@x2
þ ð2V0x� kÞ� ¼ 0; (47)

and

2il
@3	

@y3
þ @2	

@y2
þ ð2V0y� kÞ	 ¼ 0; (48)

where k=2 is the separation parameter. An analytical closed
form solution cannot be found for these equations. Here we
use an approximation method (as used in [15]) for the
solution. As we are now studying the quantum model so
we require the solutions in the limit x ! 0 and y ! 0. This
is physically relevant as l is basically related to the Plank
length. So we clearly state that our approximation is valid
only for the early universe description of the model. In the

2 4 6 8 10 12 14
time

0.3

0.2

0.1

0.1

0.2

0.3

q deceleration parameter

q Commutative

q MUP L 0.01

q MUP L 0.02

q MUP L 0.05

FIG. 2 (color online). Plot of the deceleration parameter (q)
with time in the commutative case and in the MUP framework.
Here we have considered the numerical values of the constants in
such a way that ð8jp0jcþ 12lcjp0j2Þ ¼ 1 and ð4jp0jV0 þ
18lV0jp0j2 þ 16lV2

0cÞ ¼ 1. We have defined L ¼ 8lV3
0 and we

give the plots for three different values of L.
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limit l ! 0 we get back the same Eq. (42) which is ex-
pected. So the solution remains the same i.e., Airy func-
tion. Here we expand the Airy function in the asymptotic
limit x, y ! 0. For the solution of Eq. (47) this can be
done as

�ðxÞ�Ai

�
k�2V0x

ð2V0Þ2=3
�
�c0þc1xþc2x

2þc3x
3þ . . . : (49)

Approximately in the small x limit we get @3�
@x3

¼ 6c3. We

now put this value (12ilc3) back in Eq. (47) to incorporate
the effect of l. So

2il
@3�

@x3
þ @2�

@x2
þ ð2V0x� kÞ� ¼ 12ilc3: (50)

Similarly we rewrite Eq. (48) as

2il
@3	

@y3
þ @2	

@y2
þ ð2V0y� kÞ	 ¼ 12ilc3: (51)

The solutions of (50) and (51) can be written in terms of
Airy and Hyper-geometric functions. For (50) we write the
solution as

�ðxÞ ¼ Ai

�
k� 2V0x

ð2V0Þ2=3
�
� ikCAi

�
k� 2V0x

ð2V0Þ2=3
�
1

�F 2

�
1

3
;
2

3
;
4

3
;
ðk� 2V0xÞ3

36V2
0

�
þ . . . ; (52)

where

C ¼ 2
lc3�ð13Þ
21=331=6V4=3

0 �ð23Þ�ð43Þ
: (53)

We have neglected other terms of the solution including
BiðzÞ as in the limit l ! 0 we have to get back the solution
for commutative case. If we replace x by y in Eq. (52) we
get the solution of (51). Now we write the general solution
of the Wheeler-DeWitt equation in the MUP framework as

�MUPðx;yÞ¼
X1
n¼1

Cn

�
Ai

�
kn�2V0x

ð2V0Þ2=3
�
� iknCAi

�
kn�2V0x

ð2V0Þ2=3
�
1

�F 2

�
1

3
;
2

3
;
4

3
;
ðkn�2V0xÞ3

36V2
0

���
Ai

�
kn�2V0y

ð2V0Þ2=3
�
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�
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�
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�
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4

3
;
ðkn�2V0yÞ3
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0

��
;

(54)

where k0sn are related to the nth zeros of the equation

Ai

�
k

ð2V0Þ2=3
�
� ikCAi

�
k

ð2V0Þ2=3
�
1
F 2

�
1

3
;
2

3
;
4

3
;

k3

36V2
0

�
¼ 0:

(55)

In Fig. 4 we have plotted the square of the MUP wave
function on the x� y plane for the asymptotic limit x,
y ! 0. From the figure we can clearly see that the largest
peak is centered around nonzero values of x and y. But in
the commutative case the highest peak is around zero
values of x and y. This difference in the position of the
highest peak seems to portray the MUP effect. Here also
we found several other peaks but the density is noticeably
lower than the commutative case. So possible states are
less in the MUP framework.

FIG. 3 (color online). Left: The square of the wave function in the commutative case with V0 ¼ 1:5. Right: The contour plot of the
same figure on left. With other admissible values of V0 the same nature of the curves are repeated. A suitable scaling is used to enlarge
the figure.
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V. CONCLUSION

In this paper we have studied the dilaton cosmological
model with an exponential dilaton potential in the frame-
work of the recently proposed modified uncertainty prin-
ciple (or MUP) [17]. This MUP has a linear term in Plank
length and here our aim is to study the effect of this term in
the context of early universe. Replacing the commutation
relation of the position and the momentum operator by
their Poisson brackets we studied the classical dilaton
model in the flat FRW background. As an effect of the
MUP we found that the universe can undergo a late time
acceleration under certain choice of some parameters of
the problem. This is quite interesting that an extra term
which modifies the usual Heisenberg algebra having its
origin in the realm of quantum gravity also contributing
enormously to the late time acceleration of the universe.
Later we studied quantum cosmology under the same
considerations taken before. In the commutative case we
found the highest peak of the wave function is centered
around x ¼ 0 and y ¼ 0. Also there are several other
smaller peaks with nonzero positive values of x and y.
This could be interpreted as our universe might have
evolved from one of those peaks (analogous to states in
quantum mechanics). It is possible that the present uni-
verse could have evolved from one or different states with
positive values of x and y. This also indicates that the
dilatonic field � should be zero or have positive values.
This result supports our classical time evolution of the
dilatonic field. In the MUP framework we have presented
approximate analytical solutions of the Wheeler-DeWitt
equation. In this case the wave function peaks around some
nonzero positive values of x and y. Here also we found

several smaller peaks but the density of peaks is less than
the commutative case.
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APPENDIX

1. Proof for Eq. (5)

Since black hole physics and string theory suggest a
modified Heisenberg algebra (which is consistent with
GUP) quadratic in the momenta (see e.g. [17]) while
DSR theories suggest one that is linear in the momenta
(see e.g. [8–10]), we try to incorporate both of the above,
and start with the most general algebra with linear and
quadratic terms [26]

½xi;pj�¼ iℏ
�
�ijþ�ij�1pþ�2

pipj

p
þ�1�ijp

2þ�2pipj

�
:

(A1)

Assuming that the coordinates commute among them-
selves, as do the momenta, it follows from the Jacobi
identity that

� ½½xi; xj�; pk� ¼ ½½xj; pk�; xi� þ ½½pk; xi�; xj� ¼ 0: (A2)

FIG. 4 (color online). Left: The square of the wave function in the MUP framework with V0 ¼ 1:5. Right: The contour plot of the
same figure on left. With other admissible values of V0 the same nature of the curves are repeated. A suitable scaling is used to enlarge
the figure.
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Employing Eq. (A1) and the commutator identities, and
expanding the right-hand side, we get (summation conven-
tion assumed)

0 ¼ ½½xj; pk�; xi� þ ½½pk; xi�; xj�
¼ iℏð��1�jk½xi; p� � �2½xi; pjpkp

�1�
� �1�jk½xi; plpl� � �2½xi; pjpk�Þ � ði $ jÞ

¼ iℏð��1�jk½xi; p� � �2ð½xi; pj�pkp
�1

þ pj½xi; pk�p�1 þ pjpk½xi; p�1�Þ
� �1�jkð½xi; pl�pl þ pl½xi; pl�Þ
� �2ð½xi; pj�pk þ pj½xi; pk�ÞÞ � ði $ jÞ: (A3)

To simplify the right-hand side of Eq. (A3), we now
evaluate the following commutators.

a. ½xi;p� to OðpÞ
Note that

½xi; p2� ¼ ½xi; p 	 p� ¼ ½xi; p�pþ p½xi; p� (A4)

¼ ½xi; pkpk� ¼ ½xi; pk�pk þ pk½xi; pk�
¼ iℏð�ik þ �1p�ik þ �2pipkp

�1Þpk

þ iℏpkð�ik þ �1p�ik þ �2pipkp
�1ÞðtoO ðpÞ using

¼ 2ihpi½1þ ð�1 þ �2Þp�: (A5)

Comparing (A4) and (A5), we get

½xi; p� ¼ iℏðpip
�1 þ ð�1 þ �2ÞpiÞ: (A6)

b. ½xi;p�1� to OðpÞ
Using

0 ¼ ½xi; 1� ¼ ½xi; p 	 p�1� ¼ ½xi; p�p�1 þ p½xi; p�1�
(A7)

it follows that

½xi; p�1� ¼ �p�1
i ½xi; p�p�1

¼ �iℏp�1ðpip
�1 þ ð�1 þ �2ÞpiÞp�1

¼ �iℏpip
�3ð1þ ð�1 þ �2ÞpÞ: (A8)

Substituting (A6) and (A8) in (A3) and simplifying, we get

0 ¼ ½½xj; pk�; xi� þ ½½pk; xi�; xj�
¼ ðð�1 � �2Þp�1 þ ð�2

1 þ 2�1 � �2ÞÞ�jki; (A9)

where �jki ¼ pi�jk � pj�ik. Thus one must have �1 ¼
�2 � �l (with l > 0. The negative sign follows from [9]),
and �2 ¼ 2�1 þ �2

1. Since from dimensional grounds it
follows that �� l2, for simplicity, we assume �1 ¼ l2.
Hence �2 ¼ 3l2, and we get Eq. (5) of this paper, namely

½xi; pj� ¼ iℏ
�
�ij � l

�
p�ij þ

pipj

p

�
þ l2ðp2�ij þ 3pipjÞ

�
:

(A10)

2. Discussion for definitions in Eq. (9)

We would like to express the momentum pj in terms of

the low-energy momentum poj (such that ½xi; poj� ¼
iℏ�ij). Since Eq. (A10) is quadratic in pj, the latter can

at most be a cubic function of the poi. We start with the
most general form consistent with the index structure [26]

pj ¼ poj þ apopoj þ bp2
opoj; (A11)

where a� l and b� l2. From Eq. (A11) it follows that

½xi;pj�¼ ½xi;pojþapopojþbp2
opoj�

¼ iℏ�ijþað½xi;po�pojþpo½xi;poj�Þ
þbð½xi;po�popojþpo½xi;po�pojþp2

o½xi;poj�Þ:
(A12)

Next, we use the following four results to OðaÞ and
½xi; poj� ¼ iℏ in Eq. (A12):

(i) ½xi; po� ¼ iℏpoip
�1
o , which follows from Eq. (A6)

when �i ¼ 0, as well from the corresponding
Poisson bracket.

(ii) pj ¼ pojð1þ apoÞ þOða2Þ ’ pojð1þ apÞ (from

Eq. (A11)). Therefore poj ’ pj

1þap ’ ð1� apÞpj.

(iii) po¼ðpojpojÞ1=2¼ðð1�apÞ2pjpjÞ1=2¼ð1�apÞp.
(iv) poip

�1
o poj¼ð1�apÞpið1�apÞ�1p�1ð1�apÞpj¼

ð1�apÞpipjp
�1.

Thus, Eq. (A2) yields

½xi; pj� ¼ iℏ�ij þ iaℏðp�ij þ pipjp
�1Þ

þ iℏð2b� a2Þpipj þ iℏðb� a2Þp2�ij: (A13)

Comparing with Eq. (A10), it follows that a ¼ �l and
b ¼ 2l2. In other words

pj ¼ poj � lpopoj þ 2l2p2
opoj ¼ pojð1� lpo þ 2l2p2

oÞ;
(A14)

which is Eq. (9) of this paper.
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