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We discuss a scheme based on Ehrenfest-like equations to exhibit and classify transitions between two

phases (with ‘‘smaller’’ and ‘‘larger’’ masses) of Kerr-AdS black holes. We show that for fixed angular

velocity this phase transition is of second order as both Ehrenfest’s equations are satisfied. Finally, we

make a close connection of the results found from this analysis with those obtained from the

thermodynamic state space geometry approach.
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I. INTRODUCTION

The pioneering works of Bekenstein and Hawking have
opened up many interesting aspects of unification of quan-
tum mechanics, gravity, and thermodynamics. These as-
pects have been known for the last 40 years [1–6]. Since
then, various thermodynamical properties of black holes
have been widely studied, and now we have a considerable
understanding about the microscopic origin of these prop-
erties due to a pioneering work by Strominger and Vafa [7].
Recently, there has been a suggestion that fluctuation
theory, whose origin is contained in statistical mechanics,
can be described solely by thermodynamics [8]. This
approach is based on the thermodynamic state space
geometry [8,9] which is commonly known as the
Ruppeiner geometry. For second order phase transitions
the Ruppeiner curvature scalar (R) is expected to diverge
at the critical point [10–13]. Motivated by the success of
this geometry to identify a phase transition in a normal
thermodynamic system, there have recently been several
works [14–22] which address the black hole phase tran-
sitions through this approach.

In this paper we discuss a new formulation to analyze a
phase transition in Kerr-AdS black holes. It is based on an
application of Clapeyron’s and Ehrenfest’s ideas to black
hole systems. In our analysis we keep the angular velocity
� (analog of pressure) constant, which is essential for
implementing the above ideas in Kerr-AdS black holes.
Specifically, in Kerr-AdS black holes (for fixed �) we do
not find any discontinuity in entropy, and therefore the
chance of a first order phase transition is automatically ruled
out. In our analysis, we find a discontinuity in the specific
heat at constant angular velocity (C�). Conventional works
[23–30] have attempted to identify a phase transition from
this discontinuity but only at a qualitative level. One of the

motivations of this paper is to provide a detailed quanti-
tative analysis of this aspect. Before that, however, we
highlight an important point i.e. infinite divergence of all
relevant quantities (including the specific heat) at the
critical point. An infinite divergence of heat capacity
was also discussed earlier in [31], for the Kerr-Newman-
AdS black holes in a canonical ensemble. Note that in a
standard second order phase transition these discontinu-
ities are finite. Although a discontinuity in the specific
heat is necessary, it is not sufficient to correctly identify a
phase transition. Indeed, it is essential to verify the
Ehrenfest equations. These equations, in the context of
black holes, were earlier derived in [32]. Because of the
infinite divergence of all relevant quantities (including the
specific heat) we develop a technique to study Ehrenfest’s
equations infinitesimally close to the critical point. It is
found that both Ehrenfest’s equations are satisfied.
Consequently, this phase transition is a genuine second
order one.
The remainder of our work concerns the application of

the thermodynamic geometry approach [8,9] to identify the
occurrence of black hole phase transitions. We explicitly
calculate and plot the Ruppeiner curvature scalar (R). The
plots show the divergence of R at the same critical point
where the specific heat capacity (C�) was diverging (cor-
responding to �< 1). This behavior is remarkable in the
sense that these divergences are usually associated with
second order phase transitions in standard thermodynam-
ical systems. Indeed our study proves that the divergence
found here indicates a genuine second order phase transi-
tion in Kerr-AdS black holes. Furthermore, we find some
cases (when� � 1) where R diverges but the specific heat
does not. This is also a striking observation where the
divergence of R does not imply any discontinuity in the
specific heat. However, in this case (� � 1) the divergence
of R exhibits a special property. The left-hand limit and
the right-hand limit of R do not agree at the singular point.
This behavior is completely different from the previous
case (�< 1) where both limits are the same at the singular
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point (which is correctly associated with a phase transition
point). This illustrates the crucial role of the nature of the
divergence of R in identifying a discontinuity in the spe-
cific heat. Our analysis therefore reveals important impli-
cations of thermodynamic geometry in identifying and
classifying phase transitions in black holes as compared
to the usual thermodynamic systems.

II. THE KERR-ADS BLACK HOLE

The Kerr-AdS black hole is a solution of the Einstein
equation in ð3þ 1Þ dimensions with a negative cosmologi-
cal constant � ¼ � 3

l2
. It is characterized by two parame-

ters, namely, mass M and angular momentum J. The first
law of thermodynamics for the Kerr-AdS black hole is
given by [33]

dM ¼ TdSþ�dJ; (1)

where T is the Hawking temperature and � is the differ-
ence between the angular velocities at the event horizon
(�H) and at infinity (�1) [31,33–35]. The explicit expres-
sions for various parameters are given in [31,33–35]. We
write these equations with a suitable rescaling, where we
define Tl, M

l ,
J
l2
, S
l2
, �l as the temperature (T), mass (M),

angular momentum (J), entropy (S), and angular velocity
(�) of the black hole. This is done so that l no longer
appears in any equation. In terms of these newly defined
variables, we find

T ¼ 1

8�M

�
1� 4�2J2

S2
þ 4S

�
þ 3S2

�2

�
; (2)

M2 ¼ S

4�
þ �J2

S
þ J2 þ S

2�

�
S

�
þ S2

2�2

�
; (3)

� ¼ �J

MS

�
1þ S

�

�
; (4)

J

S
¼ M�

�þ S
; (5)

a ¼ J

M
¼ S�

�

�
1þ S

�

��1
: (6)

Now using (5) we substitute J in (3) to expressM2 in terms
of S and �. This yields

M2 ¼ S

4�

1þ 2S
� ð1þ S

2�Þ
1� �2S

�ð1þS
�Þ

: (7)

Likewise, replacing M (7) in (2), the semiclassical tem-
perature is found to be

T¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð�þSÞ3

ð�þS�S�2Þ

s �
�2�2�Sð�2�2Þ�3S2ð�2�1Þ

4�3=2Sð�þSÞ2
�
:

(8)

From the above equation we see that T is real only when

�þ S� S�2 > 0 (9)

which implies �2 < 1þ �
S . This imposes a restriction on

� for a fixed value of the entropy. To get further insight
into the thermodynamical behavior of the black hole, we
calculate the semiclassical specific heat at constant angular
velocity (which is the analogue of CP) from (8) by using
the relation C� ¼ Tð@S@TÞ� ¼ T

ð@T@SÞ� . This is found to be

C� ¼ 2Sð�þ SÞð�þ S� S�2Þð�2 � 2�Sð�2 � 2Þ � 3S2ð�2 � 1ÞÞ
ð�þ SÞ3ð3S� �Þ � 6S2ð�þ SÞ2�2 þ S3ð4�þ 3SÞ�4

: (10)

With these expressions for the temperature (8) and specific
heat capacity (10), we now proceed to the next section,
where the phase transition phenomena will be discussed.

III. EHRENFEST’S SCHEME AND PHASE
TRANSITION

In this section we shall use (and improve) the approach
developed in [32] to study the phase transition in a black
hole. This approach, based on standard thermodynamical
tools, deals with the identification and classification of a
phase transition in a black hole.

Let us first plot (8) and (10) with respect to S for a fixed
value of � (� ¼ 0:3). These plots are depicted in Fig. 1.
From Fig. 1(a) we find that the semiclassical Hawking
temperature (T) is continuous when plotted with the semi-
classical entropy (S). For a first order phase transition (like

liquid to vapor) the first order derivatives of Gibbs free
energy, i.e. volume and entropy, are discontinuous. The

continuity of entropy (S) (and also J) suggests that for fixed
� there is no first order phase transition taking place in the

Kerr-AdS black hole. Nevertheless, there is a minimum

temperature for a certain value of S (S ¼ 1:097 61).
Figure 1(b) shows a discontinuity in C� at this critical

value of entropy (S ¼ Sc ¼ 1:097 61). However, in this

plot the discontinuity of specific heat is infinite, which is

completely different from the ordinary thermodynamical

systems (for example, ferromagnetic to paramagnetic

transformation) where finite discontinuity occurs. Note

that these transitions between two phases of Kerr-AdS

black holes have different entropies. As entropy is propor-

tional to the square of the black hole mass, the critical point
Sc is essentially separating two branches of Kerr-AdS
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black holes with ‘‘smaller’’ and ‘‘larger’’ masses. In an
earlier work [31] an infinite divergence of specific heat was
reported in the case of Kerr-Newman-AdS black holes in a
canonical ensemble. The possibility of a second order
phase transition in this case was also stated.

The conventional way to understand a phase transition
phenomenon, where the entropy is continuous and the
specific heat capacity is discontinuous, is based on the
standard Ehrenfest prescription. Note that for any true
second order phase transition, both Ehrenfest equations
must be satisfied at the critical point. Because of the
differences between conventional systems and black
holes, care must be exercised in applying Ehrenfest’s
scheme to study phase transitions in black holes. In the
remaining part of this section we shall follow this spirit
to uncover the properties of the phase transition depicted
in Figs. 1(a) and 1(b).

Let us now recall Ehrenfest’s scheme of analyzing the
phase transition, which is done in the usual thermodynam-
ics. For a black hole system the two Ehrenfest equations
were derived in our earlier work [32]. Ehrenfest’s first and
second equations, for the Kerr-AdS black hole, are given
by [32]

�
�
@�

@T

�
S
¼ C�2

� C�1

TJð�2 � �1Þ (11)

and

�
�
@�

@T

�
J
¼ ð�2 � �1Þ

ðkT2
� kT1

Þ ; (12)

where

� ¼ 1

J

�
@J

@T

�
�
; (13)

kT ¼ 1

J

�
@J

@�

�
T
: (14)

The above quantities (13) and (14) were also defined in
[36,37] to discuss the thermodynamic stability of black
holes.
We noted earlier that there is a discontinuity in C�, as

shown in Fig. 1(b). Nevertheless, the presence of disconti-
nuities in � and kT is also necessary to show that a phase
transition is taking place. Since C�, �, and kT are all
second order derivatives of the Gibbs free energy, they
must be discontinuous in a second order phase transition.
So in order to proceed further, we calculate these physical
entities and plot them. First using (5) and (7) we can
express J as a function of S and �, as given by

JðS;�Þ ¼ S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð�þSÞ3

ð�þS�S�2Þ
q

2�3=2ð�þ SÞ : (15)

Using the definition of a (6) we write (13) as

J� ¼ M

�
@a

@T

�
�
þ a

�
@M

@T

�
�
: (16)

Now to calculate the first term of the right-hand side, we
need a functional relationship between a, T, and �. To do
so, we rewrite the semiclassical entropy of the Kerr-AdS
black hole (5) in terms of � and a as

S ¼ �a

�� a
: (17)

In (8) T was expressed as T ¼ TðS;�Þ. Substituting (17)
in (8) we write the temperature in terms of a and � as

T ¼ Tð�; aÞ ¼ 2a�2 þ�a2 � 2a��

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða��Þða�� 1Þp : (18)

Now it is straightforward to calculate ð@a@TÞ�. To calculate

the second term of the right-hand side of (16), we write
ð@M@T Þ� ¼ ð@M@S Þ�ð@S@TÞ�. Now using (7) and (8) we find

ð@M@T Þ�. Making use of these results, inserting a and J,

respectively, from (17) and (15), into (16), we finally
obtain the analog of the volume expansion coefficient,

FIG. 1 (color online). Semiclassical Hawking temperature (T) and specific heat (C�) vs entropy (S) for fixed � ¼ 0:3.
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�3Sð�þ SÞð�þ S� S�2Þp ½6�ð�þ SÞ2 � 2S�2ð2�þ 3SÞ�
ð�þ SÞ3ð3S� �Þ � 6S2ð�þ SÞ2�2 þ S3ð4�þ 3SÞ�4

: (19)

Now to find an expression for the analog of compressibility
kT ¼ 1

J ð @J@�ÞT , we first write J in terms of a and � in the
following manner,

J ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að�� aÞ
ð1� a�Þ

s �
a�

ð�� aÞ2
�
: (20)

Since J cannot be expressed in terms of T and �, we shall
use the rules of partial differentiation to find kT from (18)
and (20). From the theorem dJ ¼ ð@J@aÞ�daþ ð @J@�Þad� we
can write �

@J

@�

�
T
¼

�
@J

@a

�
�

�
@a

@�

�
T
þ

�
@J

@�

�
a
: (21)

The above equation is written in a more useful form by

substituting ð@a@�ÞT ¼ � ð@T@�Þa
ð@T@aÞ�

. This gives

�
@J

@�

�
T
¼ ð @J@�Það@T@aÞ� � ð@T@�Það@J@aÞ�

ð@T@aÞ�
: (22)

Using (18) and (20) in the above equation we obtain kT
in terms of a and �. Finally, eliminating a in favor of S
and � by using (17) and then substituting J from (15),
we find

kT ¼ ð3S� �Þð�þ SÞ3 þ 2Sð�þ SÞ2ð4�þ 3SÞ�2 � S2ð2�þ 3SÞ2�4

ð3S� �Þ�ð�þ SÞ3 � 6S2ð�þ SÞ2�3 þ S3ð4�þ 3SÞ�5
: (23)

Let us now plot (19) and (23) with respect to S for a fixed
value of� ¼ 0:3. These two plots are shown in Fig. 2, and
they show a discontinuity in both these quantities at the
same critical value of Sc ¼ 1:097 61 [see Fig. 1(a)]. With
these results we are now convinced about a genuine phase
transition in the Kerr-AdS black hole.

We shall now perform a numerical analysis to under-
stand the order of this phase transition. The idea is to
investigate the two Ehrenfest equations and check their
validity. For any true second order phase transition both
Ehrenfest equations must be satisfied at the critical point.
However, because of the infinite divergences of all relevant
quantities at that point, one should be very careful in doing
the numerical computations.

We start by considering the first Ehrenfest equation (11).
The left-hand side of (11) can be calculated easily from the
relation (8). This is found to be

�
�
@�

@T

�
S
¼ � 4�3=2ð�þ S� S�2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð�þSÞ3

ð�þS�S�2Þ
q

S�ðSð�þ SÞð2�þ 3SÞ�2 � 3ð�þ SÞ3Þ :
(24)

At the phase transition point we have S ¼ 1:097 61,
� ¼ 0:3. Using these values in (24) we obtain

�
�
@�

@T

�
S
¼ 23:2085 (25)

which yields the left-hand side of the first Ehrenfest
equation (11).
To calculate the right-hand side recall the expressions

of C� and � from (10) and (19). They have the form

C� ¼ fðS;�Þ
gðS;�Þ and � ¼ hðS;�Þ

gðS;�Þ , where the denominators of

FIG. 2 (color online). Volume expansion coefficient (�) and compressibility (kT) vs entropy (S) for fixed � ¼ 0:3.
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both quantities are identical, given by gðS;�Þ ¼
ð�þ SÞ3ð3S� �Þ � 6S2�2ð�þ SÞ2 þ S3�4ð4�þ 3SÞ.
Note that for a fixed value of angular velocity (say,
� ¼ 0:3) both C� and � diverge when gðScÞ ¼ 0. Since
this is a polynomial equation with a maximum power of 4,
there are four roots of this equation. Among these, two are
real and the other two are imaginary. The real roots are
positive and negative. Since entropy by definition is always
positive, Sc ¼ 1:097 61 is the only root which is contrib-
uting physically. This is the phase transition point where
both Ehrenfest relations are applicable. Let us now expand
the denominators of C� and � infinitesimally close to the
critical point (Sc) in the following manner:

C� ¼ fðScÞ
g0ðScÞ½ðS� ScÞ þ 1

2 ðS� ScÞ2 g00ðScÞ
g0ðScÞ þ � � �� (26)

¼ 4:82247

ðS� ScÞ þ 1
2 ðS� ScÞ2 g00ðScÞ

g0ðScÞ þ � � � ; (27)

� ¼ hðScÞ
g0ðScÞ½ðS� ScÞ þ 1

2 ðS� ScÞ2 g00ðScÞ
g0ðScÞ þ � � �� (28)

¼ 24:6136

ðS� ScÞ þ 1
2 ðS� ScÞ2 g00ðScÞ

g0ðScÞ þ � � � : (29)

Now consider two points S1 ¼ Sc þ � and S2 ¼ Sc � �
(� � 1) which are infinitesimally close to Sc and are,
respectively, connected with phase 1 and phase 2 of the
curves given in Figs. 1(b) and 2. The values of C� and �
for the corresponding phases are given by C�jS1 ¼ C�1

,

C�jS2 ¼ C�2
and �jS1 ¼ �1, �jS2 ¼ �2, respectively.

Consequently, the right-hand side of the first Ehrenfest
relation (11) reads as

C�2
� C�1

TJð�2 � �1Þ ¼
4:822 47

�
1

ðS2�ScÞþ1
2ðS2�ScÞ2g

00 ðScÞ
g0ðScÞ

þ � � � � 1

ðS1�ScÞþ1
2ðS1�ScÞ2g

00ðScÞ
g0 ðScÞ

þ � � �
�

TJ � 24:6136

�
1

ðS2�ScÞþ1
2ðS2�ScÞ2g

00 ðScÞ
g0ðScÞ

þ � � � � 1

ðS1�ScÞþ1
2ðS1�ScÞ2g

00ðScÞ
g0 ðScÞ

þ � � �
� : (30)

Remarkably, from the above equation we find that the
divergences in C� and � (inside the third brackets) near
the critical point exactly cancel out for all order expan-
sions, and we are left with a finite result. Using the critical
values TðScÞ [found from (8)] and JðScÞ [found from (15)],
as one can check, the right-hand side of the first Ehrenfest
relation is found to be

C�2
� C�1

TJð�2 � �1Þ ¼ 23:2085: (31)

A comparison between the above equation and (25) proves
that the first Ehrenfest relation is satisfied for the phase
transition in Kerr-AdS black holes.

Let us now examine the validity of the second Ehrenfest

equation (12). To calculate ð@�@T ÞJ, Eq. (18) is written as

dT ¼
�
@T

@a

�
�
daþ

�
@T

@�

�
a
d�: (32)

For a process where J is constant, from (20), one has

�
@J

@a

�
�
daþ

�
@J

@�

�
a
d� ¼ 0: (33)

Now eliminating terms involving da from the above two
relations and then rearranging terms yields

�
�
@T

@�

�
J
¼ ð@T@aÞ�ð @J@�Þa � ð@T@�Það@J@aÞ�

ð@J@aÞ�
: (34)

Finally, using (18) and (20) and substituting a in terms of
� and S from (17), we find

�
�
@�

@T

�
J
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ S� S�2

Sð�þ SÞ3
s �

4�3=2Sð�þ SÞ2�ðð3ð�þ SÞ2 � Sð2�þ 3SÞ�2ÞÞ
ð�þ SÞ3ð3S� �Þ þ 2Sð�þ SÞ2ð4�þ 3SÞ�2 � S2ð2�þ 3SÞ2�4

�
: (35)

At the critical point (S ¼ 1:097 61) and for the chosen
value of � ¼ 0:3, we obtain

�
�
@�

@T

�
J
¼ 23:2085; (36)

which gives the left-hand side of the second Ehrenfest
equation (12).

In order to calculate the right-hand side, first let us write

(23) in the following manner: kT ¼ uðS;�Þ
gðS;�Þ . For � ¼ 0:3,

expanding kT near the critical point (Sc) we find

kT ¼ 1:060 55

ðS� ScÞ þ 1
2 ðS� ScÞ2 g00ðScÞ

g0ðScÞ þ � � � : (37)
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Now repeating the steps as carried out for the right-hand side of (11), we finally obtain the right-hand side of the second
Ehrenfest relation (12) as

�2 � �1

kT2
� kT1

¼
24:6136

�
1

ðS2�ScÞþ1
2ðS2�ScÞ2g

00 ðScÞ
g0ðScÞ

þ � � � � 1

ðS1�ScÞþ1
2ðS1�ScÞ2g

00 ðScÞ
g0 ðScÞ

þ � � �
�

1:060 55

�
1

ðS2�ScÞþ1
2ðS2�ScÞ2g

00ðScÞ
g0 ðScÞ

þ � � � � 1

ðS1�ScÞþ1
2ðS1�ScÞ2g

00 ðScÞ
g0ðScÞ

þ � � �
� (38)

¼ 23:2083: (39)

Thus from the above equation, once again we find that the
divergent terms exactly cancel out for all orders and the
remaining finite value exactly matches with the left-hand
side (36) of the second Ehrenfest relation (the mismatch
between the last digit is only due to a rounding error).
Finally, to get the full picture we repeated the above
analysis for those values of � (0<�< 1) for which the
critical points lie within the physical domain, and results
clearly suggest that this phase transition is second order.

IV. THERMODYNAMIC GEOMETRY

Recently, analysis of black hole phase transitions
from the point of view of thermodynamic state space
(Ruppeiner) geometry has drawn some attention. In this
approach the Ruppeiner metric is defined by the Hessian of
the entropy, and this gives the pair correlation function
[8,9]. Also, the invariant length on the thermodynamic
state space, defined by the Ruppeiner metric, when expo-
nentiated, gives the probability distribution of fluctuations
around the maximum entropy state [10]. Using the tools
of Riemannian geometry, the Ruppeiner curvature scalar
(R) is defined, and this is interpreted as the correlation
volume multiplied by some proportionality constant [11].
Normally, it is believed that the idea of the correlation
length has its roots in the microscopic details of the system.
But, remarkably, in Ruppeiner geometry, a purely thermo-
dynamic quantity (R) is claimed to serve the same purpose
as the correlation length. This interpretation has been

found to be quite successful in describing many second
order phase transitions where this curvature scalar diverges
at the critical point [12,13]. Now we examine whether such
an interpretation holds for phase transitions in Kerr-AdS
black holes.
The Ruppeiner metric is defined as [8]

dS2 ¼ gRijdX
idXj; (40)

where gij ¼ � @2SðXkÞ
@Xi@Xj and Xi � XiðM;NaÞ. Here the Na’s

are all other extensive variables of the system. For Kerr-
AdS black holes, Na ¼ J. In order to find gij it is desir-

able to express S in terms of M and J. However, from (3)
we see that M is expressed as a function of S and J,
which is not invertible. In fact, in this situation we can
calculate the Weinhold metric, which is defined in the
following way [38],

dS2W ¼ gWij dX
idXj; (41)

where gWij ¼ @2MðXkÞ
@Xi@Xj and Xi � XiðS; JÞ. It is well known

that the Ruppeiner metric and the Weinhold metric are
related by a conformal factor [39,40]

dS2R ¼ 1

T
dS2W; (42)

FIG. 3 (color online). Thermodynamic scalar curvature (R) vs entropy (S): � ¼ 0:3 in (a) and � ¼ 1:5 in (b).
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where T is the temperature of the system. In our example this would correspond to the Hawking temperature of the
Kerr-AdS black hole. Now using (3) we can easily calculate dS2W , and from that we can get dS2R by using (2) and (42).
An explicit form of dS2R is given by

dS2R ¼ gSSdS
2 þ 2gSJdSdJ þ gJJdJ

2; (43)

where

gSS ¼ � 1

2

�
� 3

S
� 1

�þ S
� Sð2�þ 3SÞ

4J2�3 þ S2ð�þ SÞ þ
4Sð�2 þ 6�Sþ 6S2Þ

�4J2�4 þ S2ð�þ SÞð�þ 3SÞ
�
;

gSJ ¼ gJS ¼ �4J�3

�
� 1

4J2�3 þ S2ð�þ SÞ þ
2�

4J2�4 � S2ð�þ SÞð�þ 3SÞ
�
;

gJJ ¼ � 4�3S3ð�þ SÞ2
ð4J2�3 þ S3 þ S2�Þð�4J2�4 þ S2ð�þ SÞð�þ 3SÞÞ :

(44)

By definition, the Ruppeiner curvature is constructed ex-
actly like the Riemannian curvature, and for two dimen-
sions the curvature scalar is given by [8]

R ¼ � 1ffiffiffi
g

p
�
@

@S

�
gSJffiffiffi
g

p
gSS

@gSS
@J

� 1ffiffiffi
g

p @gJJ
@S

�

þ @

@J

�
2ffiffiffi
g

p @gSJ
@J

� 1ffiffiffi
g

p @gSS
@J

� gSJffiffiffi
g

p
gSS

@gSS
@S

��
: (45)

Considering the metric (44) we now calculate R as a
function of S and J. Finally, using the relation (15), one
can find R as a function of S and �. Since these expres-
sions are quite lengthy we do not give those results here;
instead we plot Rwith S for different values of�, as shown
in Fig. 3.

Let us now explain the different plots one by one:
(i) In Fig. 3(a) we take� ¼ 0:3, and this curve shows a

divergence at Scrit ¼ 1:0976 which is exactly the
case where C� was discontinuous. Since we have
already shown that the nature of this phase transition
is second order, it confirms the common belief that
the divergence of R means the occurrence of a
second order phase transition.

(ii) In Fig. 3(b) we see that R is also divergent at
S ¼ 1:4 for � ¼ 1:5. Note that this choice for S
and � is compatible with the consistency condition
(9). But we do not find any discontinuity in C� at
this point, and therefore there is no phase transition
occurring here. This clearly shows that for this case
it is incorrect to associate the divergence of R with
a phase transition.

Though R is divergent in both Figs. 3(a) and 3(b), it is clear
that the nature of the divergences is completely different.
While in Fig. 3(a) the divergent sector of the curve is
symmetric with respect to the R axis shifted at the singular
point (Scrit ¼ 1:0976), in the other figure it is antisymmet-
ric at the singular point. Thus from our analysis we con-
clude that a divergence of R that is similar to Fig. 3(a)

signals a second order phase transition in the Kerr-AdS
black hole.

V. CONCLUSIONS

Let us now summarize the findings of the present paper.
Here we adopted the standard formalism, based on
Clapeyron’s and Ehrenfest’s scheme used in conventional
thermodynamic systems. According to Clapeyron’s for-
malism a discontinuity in entropy with respect to the
temperature is necessary for a first order phase transition.
However, the semiclassical entropy of the Kerr-AdS black
hole was continuous, and thus the possibility of a first order
phase transition was absent. The discontinuity in the spe-
cific heat (C�) of the Kerr-AdS black hole suggested the
possibility of a higher order phase transition and motivated
us to check the validity of Ehrenfest’s equations. For a true
second order phase transition these equations must be
satisfied. We discovered that for all allowed values of the
angular velocity (0<�< 1), where the critical point lied
in the physical domain, Ehrenfest’s equations were
satisfied.
The differences in the application of Ehrenfest’s scheme

to black holes vis-à-vis conventional thermodynamical
systems were highlighted. The infinite divergences ap-
pearing on the phase transition curves were discussed.
We developed a method for checking the validity of
Ehrenfest’s relations infinitesimally close to the critical
point. As a remarkable fact it was found that the infinite
divergences of various physical quantities ðC�; �; kTÞ
cancel each other eventually, leading to a confirmation
of both Ehrenfest relations.
Another important part of our paper was an attempt to

connect the state space geometry with the phase transition
of the Kerr-AdS black hole. We calculated the Ruppeiner
curvature scalar (R) and investigated its behavior at the
critical point of a second order phase transition (�< 1). It
was found that R always diverged at this critical point. This
was compatible with a pattern, suggested by individual
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studies carried out for various thermodynamic systems (for
a review see [8]), that the divergence of R is a characteristic
of a second order phase transition. However, a divergence
in R was also noted for � � 1, where no phase transition
occurs. This indicated a deviation from the aforementioned
pattern, where a divergence in R signaled a phase transi-
tion. But it must be stressed that the nature of the diver-
gence of R in the latter (� � 1) case was found to be
completely different from the previous (�< 1) case. This
is illustrated by looking at Fig. 3 [Fig. 3(a) corresponds to

�< 1 while Fig. 3(b) corresponds to � � 1]. Thus our
study revealed that only a particular type of singularity
(symmetric type) in R can correctly locate the phase tran-
sition point for the Kerr-AdS black hole.
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