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I consider a landscape containing three vacua and study the topology of global spacelike slices in

eternal inflation. A discrete toy model, which generalizes the well-studied Mandelbrot model, reveals a

rich phase structure. Novel phases include monochromatic tubular phases, which contain crossing curves

of only one vacuum, and a democratic tubular phase, which contains crossing curves of all three types of

vacua. I discuss the generalization to realistic landscapes consisting of many vacua. Generically, the

system ends up in a grainy phase, which contains no crossing curves or surfaces and consists of packed

regions of different vacua. Other topological phases arise on the scale of several generations of

nucleations.
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I. INTRODUCTION

The realization that string theory gives rise to a land-
scape of vacua opened the possibility that our Universe
may be one of many nucleating bubbles expanding in an
eternally inflating false vacuum [1,2]. The resulting picture
poses a number of novel, conceptual problems: it is diffi-
cult to consistently define probabilities in eternal inflation
(the cosmological measure problem) while the richness of
the string landscape may pose an intrinsically insurmount-
able obstacle to phenomenological studies traceable to
complexity theory [3]. This paper follows a suggestion of
[4] to study one aspect of eternal inflation that is not
afflicted by these difficulties, namely, the topology formed
by the nucleating bubbles. One such study was carried out
in [5], whose authors considered the topology and physics
arising from a toy landscape containing two vacua, called
white and black. This paper explores the effects of includ-
ing more realistic, richer landscapes on the resulting
multiverse topologies.

Classifying multiverses by topology is worthwhile for
several reasons. First, it is well defined: I will be looking at
topologies formed by nucleating and expanding bubbles on
global spacelike slices of an inflating geometry, but as
shown in [5], these topologies are independent of the
choice of slicing. Second, topology allows one to study
the global picture of eternal inflation without tackling the
cosmological measure problem first. Third, it is robust in
that it is not sensitive to details of bubble wall dynamics or
other modeling peculiarities. Consequently, one can reli-
ably resort to simplified models; in what follows I shall
employ a discrete toy model due to Mandelbrot [6], which
has been utilized previously in studies of eternal inflation,
notably in [5]. Finally, the different topological phases of
eternal inflation are characterized by different physics,
much of which has not yet been fully understood.

In Sec. II I will briefly review the results of [5], who
gave a physical characterization of the topological phases
arising from a two-vacuum landscape. It is important to
understand which of their findings carry over to more
realistic, richer landscapes. As a first step in this direction,
the present paper classifies the topologies arising from a
landscape consisting of three vacua (called white, gray, and
black) and discusses the many-vacuum limit qualitatively.
Topological phases of eternal inflation are differentiated

by the existence of crossing curves and crossing surfaces
[5]. Roughly, the system is said to possess white crossing
curves if, at arbitrarily late times, any two arbitrarily far
regions are connected by a curve wholly surrounded by the
white vacuum. The definition of white crossing surfaces
pertains to the existence at arbitrarily late times of surfaces
entirely contained in the white region, whose boundary is
arbitrarily large. Of course, the definitions for gray and
black crossing curves and surfaces are analogous. Below
I consistently use abbreviations WXC (white crossing
curves) and WXS (white crossing surfaces) and their ana-
logues for gray and black regions. As shown in [5], the
existence of crossing curves and surfaces is independent of
the choice of time slicing. Topological phases are defined
over a parameter space, whose natural coordinates are the
dimensionless nucleation rates of the bubbles of various
colors, � ¼ �H�4, where H�4 is the Hubble volume.
The main results of this paper are phase diagrams, which

describe how multiverse topology varies over the space of
landscape parameters. I consider explicitly a landscape
containing three vacua and comment on the general case
in the discussion in Sec. IV. In finding the phase diagrams,
I employ the following strategy:
(1) Reduce the problem to its discrete version, a three-

vacuum analogue of the Mandelbrot model [6,5].
This, along with a brief review of previous results, is
the content of Sec. II.

(2) Identify sectors in the parameter space of the dis-
crete model, whose phases can be inferred from the*czech@phas.ubc.ca
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phase structure of the well-studied two-vacuum
Mandelbrot model. This is the content of Sec. III A.

(3) Assemble the full phase diagrams (Secs. III B and
III C).

This methodology qualitatively determines the phase struc-
ture of the three-vacuum Mandelbrot model. Though one
cannot lift it to continuous eternal inflation on a quantita-
tive level, its qualitative lessons are robust and general-
izable to more realistic landscapes. They suggest that rich
landscapes generically give rise to a grainy phase, in which
the geometry is packed with a hodgepodge of bubbles of
various colors. Other topological phases arise on the scale
of several generations of nucleations. More details are
given in the discussion.

II. PRELIMINARIES

A. Setup

Consider a toy landscape consisting of three vacua: a
false vacuum labeled white, an intermediate vacuum
labeled gray, and a true vacuum labeled black. Assume
that each vacuum has a non-negative cosmological con-
stant. Start in an initial all-white universe. Bubbles of gray
or black vacuumwill form in the white region [7] with rates
�wg and �wb and further, inside the nucleated gray regions,
bubbles of black vacuum will appear with the rate �gb. The
�’s compete with the rates of expansion of the parent white
and gray vacua: when �H�4 � 1, the nucleated regions
may percolate and form nontrivial topologies that are the
subject of this paper. Because for ‘‘upward transitions’’
� � H4 [8], I make the simplifying assumption of irrever-
sibility: �bg ¼ �bw ¼ �gw ¼ 0. The goal is to understand
the connectivity of gray and black regions on spatial slices
of this system at late times, as functions of the dimension-
less nucleation rate �wb � �wbH�4

w and its analogues �wg

and �gb. Reference [5] showed that this question is well
defined, because the topology of the regions filled with
descendant vacua is independent of the choice of time
slicing.

B. Topological phases of eternal
inflation with two vacua

Reference [5] (see also [9]) studied the analogous prob-
lem for a landscape consisting of two vacua. They found
four topological phases, distinguished by the presence or
absence of white crossing surfaces, white crossing curves,
and their black analogues (BXS and BXC). Formally,
these objects are defined as follows. Consider a three-
dimensional ball of constant comoving radius in the multi-
verse, and select two disjoint open sets on the sphere
surrounding it. If at arbitrarily late times the ball possesses
a curve entirely contained in regions of one vacuum (defi-
nite color, henceforth ‘‘monochromatic’’) that connects the
two open sets, then we say that the multiverse contains

crossing curves of that color. Likewise, if at arbitrarily late
times the ball contains a monochromatic surface that bi-
sects it and screens the two open sets from one another,
then we say that the multiverse contains crossing surfaces
of that color.
The four topological phases identified by [5] are:
(1) The black island phase, which contains WXS but no

BXC or BXS. The white regions inflate eternally.
The black regions are isolated Coleman–De Luccia
(CDL) bubbles filled with open Friedmann-
Robertson-Walker (FRW) universes. They will oc-
cassionally collide with other similar bubbles so that
their boundary will be a surface whose genus in-
creases in time.

(2) The tubular phase, which contains crossing curves
of both colors, but no crossing surfaces of either
color. It is separated from the black island phase by a
percolation transition studied in [10]. The genus of
the boundary of the black region becomes infinite in
finite time.

(3) The white island phase containsBXSbut noWXCor
WXS. It is characterized by a phenomenon, which
[5] called ‘‘cracking,’’ whereby the white regions
become disconnected. The analysis of [5] indicates
that this leads to a formation of singularities in black
regions, which may be mimicked by Kruskal-
Schwarzschild black holes. Thus, an observer in a
black region does not see all the disconnected
boundaries, but rather a finite number of boundaries
demarcating white regions and a finite number of
black hole horizons, each sized no larger than
roughly the Hubble scale of the ancestor vacuum.
A likely final fate of this geometry is a big crunch.

(4) The aborted phase is the phase in which the black
vacuum entirely takes over the geometry while the
white regions disappear. This takes place when
�wbH�4

w * 1.

Part of the motivation of this work is to check to what
degree these findings extend to more general scenarios. As
a first step toward that goal, I classify the phases of the
three-vacuumMandelbrot model by their topology, leaving
their observational or theoretical characterization to future
work.

C. Deriving the Mandelbrot model

Reference [5] motivated and illustrated their findings
with a discrete model of eternal inflation. Variants of the
same model were also used in prior studies of eternal
inflation [4,10–12]. Because the present paper deals with
a more complex situation, it is useful to carefully derive the
correspondence between eternal inflation and its discrete
analogue.
The interesting topology of eternal inflation arises from

collisions between bubbles. A bubble of a descendant
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vacuum grows with a speed approaching the speed of light
[7]. Meanwhile, the surrounding parent vacuum expands
with a rate determined by its Hubble scale. Thus, in comov-
ing coordinates of the parent vacuum, the bubble ap-
proaches a finite size given by the Hubble scale of the
parent at the time of nucleation. Consequently, in cosmol-
ogies characterized by an accelerated expansion such as
de Sitter, younger bubbles are smaller when expressed in
coming coordinates. This is represented on the left of Fig. 1.

The goal is to study this system using a discrete model.
How to discretize the left of Fig. 1? The first step is to chop
the spatial slices of the geometry into discrete cells. The
optimal cell size is the Hubble scale of the ancestor vac-
uum. With this choice, a nucleation event can be repre-
sented by filling the cell with the color of the nucleated
vacuum. This is consistent, because each bubble quickly
attains the parent Hubble size, though it never outgrows it.
Furthermore, two bubbles are expected to collide if their
nucleations are separated by distances smaller than the
parent Hubble distance; otherwise their growth does not
catch up with the expansion of the surrounding vacuum and
they remain disconnected. This rule, which determines the
connectivity of the bubbles, is naturally captured by setting
the spatial unit cell to be Hubble sized.

The Hubble length in comoving coordinates is given by
1= _aðtÞ, where aðtÞ is the scale factor. If the expansion of the
parent vacuum accelerates, 1= _aðtÞ is a decreasing function
of time, which means that the Hubble length, when ex-
pressed in comoving coordinates, decreases. Thus, our unit
spatial cells must in time be subdivided into smaller units.
If one splits time into �t intervals, each unit cell must be
subdivided into

N ¼ _aðtþ �tÞ
_aðtÞ (1)

subunits in each linear dimension. Thus, in three spatial
dimensions, one subdivides each unit cell into N3 subcells
while in two dimensions the subdivision is into N2

subunits. To take advantage of the convenience of a

discrete model, one should select �t so that N is a natural
number. In de Sitter space, this corresponds to setting�t to
be an order unity multiple of the Hubble time. The result-
ing model is known as the Mandelbrot model [6].
It remains to find a discrete analogue for the nucleation

rate �, which defines the probability with which bubbles
nucleate in a given four-volume. Our time intervals and
spatial cells select a discrete unit of four-volume H�3�t
and, by extension, a dimensionless quantity �H�3�t. The
probability with which the cells of the discrete model are
colored black (or gray) must be a function of this quantity,

p ¼ pð�H�3�tÞ: (2)

Setting p ¼ �H�3�t is natural, but it is not the only
reasonable choice. For example, the frequency of bubble
nucleations in a given four-volume is given by the Poisson
distribution; from that point of view, not coloring a
discrete cell should happen with probability 1� p !
expð��H�3�tÞ. The ambiguity in defining p shows that
one should not attempt to derive quantitative results about
eternal inflation from theMandelbrot model. It is only a toy
model of eternal inflation, which is expected to carry
qualitative lessons.
I close this subsection by highlighting the definition of

the Mandelbrot model in the form in which I will use it
below. Begin with an infinite lattice of white cubes1 and
iterate the following procedure: subdivide each white cube
into N3

w (N2
w in two dimensions) smaller cubes and color

them gray with probability pwg and black with probability

pwb; likewise, subdivide each gray cube into N
3
g (N

2
g in two

dimensions) smaller cubes and color them black with
probability pgb. Take the limit of infinitely many iterations.

Check for the existence of monochromatic curves that span
an infinite distance (crossing curves) and for the existence
of monochromatic two-surfaces that are unbounded in any

FIG. 1. An example history of three-vacuum eternal inflation (left) and its discretized analogue (right). Horizontal axes correspond to
comoving coordinates and span several initial Hubble lengths; the vertical axes mark time. The discrete evolution was emulated for
pwb ¼ 1=10, pwg ¼ 1=3, pgb ¼ 1=2, Nw ¼ 3, Ng ¼ 2.

1I consider an infinite lattice instead of a single cube to
eliminate tedious artifacts of an infrared cutoff.
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direction (crossing surfaces). Note that Nw � Ng, because

the expansions of the white and gray vacua accelerate at
different rates [see Eq. (1)].

D. Topological phases of the Mandelbrot model
with two vacua

The phase structure of the white-black Mandelbrot
model in three dimensions was established in [13,14]. It
mimics the phases of eternal inflation reviewed in Sec. II B.
There is a black island phase (which contains WXS and no
BXC), a tubular phase (which has crossing curves of both
colors but no crossing surfaces), a white island phase
(which contains BXS and no WXC), and the aborted phase
(all black). The crossover value between the black island
phase and the tubular phase is denoted ps: after infinitely
many iterations, BXC appear and WXS are eliminated if
and only if p � ps. In the tubular phase white and black
regions each form connected networks of infinite genus.
The critical value separating the tubular and the white
island phase is pc: after infinitely many iterations BXS
appear and WXC are eliminated if and only if p � pc. The
phase transitions at ps, pc are first order.2 Finally, in the
aborted phase every region becomes all black after suffi-
ciently many iterations. The onset of the aborted phase
happens at p;ðNÞ ¼ 1� N�3. The other transition points
also depend on N. The exact forms of psðNÞ, pcðNÞ as
functions of N are not known.

I will also study the two-dimensional Mandelbrot model,
that is, one defined over a lattice of squares instead of cubes
and in which cells are divided into N2 units at each
iteration. It is a toy model for studying the topology of
gray and black regions on a spacelike two-dimensional
surface, such as the wall surrounding a fiducial CDL
bubble at a late time (compare with [15]). The two-
dimensional model contains three phases: the black island
phase (with WXC but no BXC), the white island phase
(with BXC but no WXC), and the aborted phase. I will
denote the boundary between the black island and the
white island phases with pcðNÞ. In two dimensions
p;ðNÞ ¼ 1� N�2.

III. PHASE DIAGRAMS

The goal is to understand the phase structure of three-
vacuum eternal inflation (Sec. II A). I follow the strategy
outlined in the introduction. The first step—a discretization
of the system—was accomplished in Sec. II C. In this
section the next two steps of the strategy are carried out.
Section III A identifies special loci in the parameter space
of the three-vacuum Mandelbrot model, whose topological
phases can be inferred from the two-vacuum model and its

phase structure (reviewed in Sec. II D). These ingredients
are then assembled to form the full phase diagrams of the
three-vacuum Mandelbrot model in two (Sec. III B) and
three dimensions (Sec. III C). I will discuss the extent to
which these results can be lifted back to realistic, continu-
ous eternal inflation in the discussion.
Before proceeding, some comments are in order. In the

two-vacuum Mandelbrot model, the phases are character-
ized by whether at late enough times the white region
contains crossing surfaces, crossing curves, or whether it
is empty. The threshold values ps, pc, p; are functions of
N, the number of subdivisions of white cells at each
iteration. The technique is to lift these results to the
three-vacuum model whenever possible. However, the
three-vacuum Mandelbrot model contains two different
values of N: Nw, which defines the number of subdivisions
of white cells, and Ng, which is the number of subdivisions

of gray cells. Consequently, the threshold values for the
existence of white and gray crossing curves and surfaces,
as well as for the white and gray regions to be empty, are
different from one another. For this reason, I use super-
scripts to distinguish the critical probabilities governing
the behavior of white and gray regions. For example, the
probability of finding a WXS after infinitely many itera-
tions vanishes if and only if pwg þ pwb � pw

s , but an

analogous statement for gray regions, whatever its exact
form, must depend on pg

s and not pw
s . Note that the pa-

rameter space of the three-vacuum Mandelbrot model is a
product of a 1-simplex (0 � pgb � 1) and a 2-simplex

(0 � pwg þ pwb � 1). I do not consider variations of Nw

and Ng explicitly, because their effect is captured by shift-

ing the phase boundaries pw
s , p

g
s , pw

c , p
g
c , pw;, p

g
;.

In all figures in this section, phase divisions that are
known exactly [as functions of pw

s ðNwÞ, etc.] are distin-
guished with the use of continuous lines from those which
are known only qualitatively, represented by dashed lines.
Dotted lines are auxiliary.

A. Ingredients

This subsection compiles the reasoning, by which results
from the two-vacuum Mandelbrot model may be adapted
to the three-vacuum case. Whenever possible, I list facts in
indexed lists and use the same indices in the figures to mark
the corresponding features of phase diagrams. I consider in
turn the reasoning applicable to white, black, and gray
regions.
White regions: For the purposes of studying the topol-

ogy of the white regions, it is sufficient to focus on the
projection of the parameter space onto the 2-simplex 0 �
pwg þ pwb � 1, because pgb plays no role here. On the

projection, the different regimes are separated by
downward-sloping 45� lines intersecting the pwb axis at
the critical values. The logic is that from the viewpoint of
the white region, nucleations of the gray and black types
are indistinguishable, so the boundary of the region

2At least in some models of eternal inflation, one would
anticipate transitions that are second or higher order [15]. This
disagreement is not relevant to the purposes of this paper, which
are qualitative.
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containing WXS must be a level set of pwb þ pwg. For

example, since pw
s marks the two-vacuum crossover from

the black island (including WXS) to the tubular (including
WXC) phase, the line pwg þ pwb ¼ pw

s demarcates the

presence and absence of WXS. Analogous reasoning re-
veals the significance of parallel lines intersecting the
values pw

c and pw;, which separate the region containing
only islands of white from that containing WXC and from
the white-aborted phase. Facts about the white regions,
which follow from the two-vacuum results, are summa-
rized in Fig. 2.

Black regions: The topology of the black regions cannot
be simply read off from the two-vacuum results, because it
depends heavily on the value of pgb. One may determine

the boundaries between the topological phases of the black
vacuum in the following steps, indexed in Fig. 3:

(1) Consider BXS and BXC. For positive pwg and at

pgb ¼ 0, their existence necessitates greater values

of pwb than in the two-vacuum system, because any
white ! gray transitions effectively lock those re-
gions from ever becoming black. Therefore, a phase
boundary at constant pgb ¼ 0 initially curves to-

ward the diagonal pwb þ pwg ¼ 1, but becomes a

straight line in the region pwb þ pwg � pw;, because
in the white-aborted phase and in the absence of
gray ! black transitions the relative abundance of
gray and black can only depend on the ratio
pwb=pwg.

(2) Consider the boundary between the phases contain-
ing black islands and BXC as pgb increases. When

pgb ¼ pg
s , an intermediate formation of gray re-

gions has no effect on the eventual formation of
BXC, so that boundary is vertical (independent of
pwg). When pgb ¼ pg

c , an analogous argument

holds for the boundary between the phases contain-
ing BXC and BXS.

(3) If pgb � pg
;, then every gray region eventually be-

comes black and pwb þ pwg is again the relevant

quantity for studying the topology of black. Point 3
of gray regions extends this conclusion to pgb � pg

s ,

pg
c (for BXC and BXS, respectively).

(4) Finally for the aborted phase, in addition to the
condition eliminating white regions, pwb þ pwg �
pw;, for positive pwg one must also impose pgb � pg

;
to ensure that all the nucleating gray regions even-
tually become black. See also point 2 in gray
regions.

Gray regions: The topology of the gray regions is
determined by the following facts, which are indexed in
Fig. 4:
(1) For pgb ¼ 0, the phase diagram is gray $ black

symmetric and Fig. 3 describes GXS and GXC, too.

FIG. 2. Moving away from the origin, the successive regions
contain WXS, WXC, white islands, and no white at all (the
white-aborted phase). The points marked on the pwb axis, pw

s ,
pw
c , p

w;, are the locations of phase transitions in the two-vacuum
Mandelbrot model.

FIG. 3. The lines demarcating topological phases of black bubbles at constant pgb. Left: the boundaries of the regions containing
BXC (pw� ¼ pw

s ) or BXS (pw� ¼ pw
c ). Right: the aborted (all black) phase. The numbers refer to the observations listed in the text.
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(2) For positive pwg a necessary and sufficient condition

for the system to contain no gray regions is pwb þ
pwg � pw; and pgb � pg

;. To see this, note that the

expected number of gray bubbles in one initial
lattice cube after iþ 1 iteration steps is

ngðiþ1Þ

¼Nd
wpwg

Xi

k¼0

ðNd
wð1�pwg�pwbÞÞkðNd

gð1�pgbÞÞi�k

¼Nd
wpwg

ðNd
wð1�pwg�pwbÞÞiþ1�ðNd

gð1�pgbÞÞiþ1

ðNd
wð1�pwg�pwbÞÞ�ðNd

gð1�pgbÞÞ
;

(3)

where k in the summation indexes the generation of
gray bubbles that formed at the (kþ 1)th step of the
iteration. This expression cannot vanish unless both
terms in the numerator go to zero individually,
which is equivalent to the condition stated above.
Physically, the requirement on pwb þ pwg is neces-

sary because when it is violated, white regions con-
tinue to nucleate gray bubbles forever, which
therefore persist arbitrarily late despite the fact

that each individual gray bubble eventually turns
entirely black.

(3) Consider the regime pwb ¼ 0 and pwg � pw
s . If we

ignore gray ! black nucleations, the system devel-
ops GXC. One may then emulate the effect of a
nonzero pgb by studying an auxiliary two-vacuum

(white vs nonwhite) Mandelbrot model, in which
with probability pwg one fills cells with gray cubes

that already contain appropriate black structures in-
side them: black islands for pgb < pg

s , black cross-

ing curves (spanning the length of the cube) for
pg
s � pgb < pg

c , or black crossing surfaces (span-

ning the cross section of the cube) for pgb � pg
c .

Only the last possibility represents an obstruction to
GXC, which shows that on pwb ¼ 0 and pwg � pw

s ,

the boundary of the gray tubular phase is pgb ¼ pg
c .

When pg
s � pgb < pg

c , one obtains a gray tubular

network of infinite genus forming GXC, which is
percolated by a black tubular network of infinite
genus containing BXC. This confirms the statement
anticipated in point 3 of black regions — that BXC
exist so long as pwg þ pwb � pw

s and pgb � pg
s . An

identical argument shows that BXS exist so long as
pwg þ pwb � pw

c and pgb � pg
c .

(4) One may similarly deduce the boundary of the
phase containing GXS in the regime pwb ¼ 0 and
pwg � pw

c . Again consider an auxiliary two-vacuum

(white vs nonwhite) Mandelbrot model, in which
with probability pwg one fills cells with gray cubes

that already contain the black structures dictated by
pgb. Now, as soon as pgb � pg

s , the BXC spanning

the gray cubes preclude the survival of GXS. Thus,
on pwb ¼ 0 and pwg � pw

c , the boundary of the

phase containing GXS is pgb ¼ pg
s .

(5) Consider the boundaries of the loci containing gray
islands only, GXC, and GXS, and fix attention on
the region pwb þ pwg � pw;, where the system is all

gray and black. By analogy with the two-vacuum
system, these boundaries must coincide with phase
boundaries demarcating domains with BXS, BXC,
and black islands, respectively.

(6) Next, we noted in point 2 of Fig. 3 that these
boundaries contain the points

ðpwb; pwg; pgbÞ ¼ ðpw� ; 1� pw� ; p
g
�Þ; (4)

with p� ¼ pc, ps, respectively. On the other hand,
points 3 and 4 above dictate that the same bounda-
ries contain the points ð0; 1; pg

�Þ. These two pairs of
points are connected with straight lines.

B. Three vacua in two dimensions

It is interesting to study the topology of bubble colli-
sions with the wall of a fiducial bubble. The Mandelbrot
model in two dimensions is applicable to this problem.

FIG. 4. The topological phases of the gray regions. Moving
along the pwg axis away from the origin, the successive domains

contain gray islands, GXC, and GXS. The top wedge of the
diagram is the aborted phase without any gray regions. The
numbers refer to the observations listed in the text.
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Figure 5 is the phase diagram of the d ¼ 2 Mandelbrot
model, assembled from the observations of the preceding
subsection.

Recall that in d ¼ 2 vacua of a given color may be found
in three phases, wherein regions of that color form crossing
curves, isolated islands, or are absent altogether.
Consequently, the phase diagram contains two boundaries
of each color (vacuum). The domain of the diagram is
the product of a 2-simplex (0 � pwb þ pwg � 1) and a

1-simplex (0 � pgb � 1).

The following seven phases are distinguished in the
diagram in Fig. 5:

White Gray Black White Gray Black White Gray Black

WXC islands islands islands GXC islands ; GXC islands

islands islands islands ; islands BXC

islands islands BXC ; ; whole

Interesting is the emergence of a grainy phase, in which
observers inside the fiducial bubble see on their sky three

types of vacua, none of which percolates. Also note that the
boundary between the white-aborted phases containing
GXC and BXC is marked in Fig. 5 with a continuous
line. Its exact location is fixed by symmetry.

C. Three vacua in three dimensions

The Mandelbrot model relevant for studying the topol-
ogy of the inflating universe is in d ¼ 3. Its phase diagram,
assembled from facts listed in Sec. III A, is presented in
Fig. 6. In three dimensions vacua of a given color may be
found in four phases, in which regions of that color form
crossing surfaces, crossing curves, isolated islands, or are
absent altogether. Thus, the phase diagram contains three
boundaries of each color (vacuum).
The point marked with a black dot in Fig. 6 is estab-

lished as follows. A priori, there are three possibilities for
where the boundaries of the phases containing BXC and
GXC intersect on the plane pgb ¼ 0: below the line pwb þ
pwg ¼ pw

c , on that line, or above it. In the first case, the

phase containing crossing curves of all three colors would

FIG. 5 (color online). The complete phase diagram of the
d ¼ 2 three-vacuum system. Boundaries of the topological
phases of white regions are parallel planes, marked in red online;
moving away from the origin, they contain WXC, white islands
and no white at all (the aborted phase). Boundaries of the
topological phases of gray regions are marked in green online;
moving down from the top right, they contain no gray at all (the
aborted phase), gray islands, and GXC. Boundaries of the
topological phases of black regions are marked in blue online;
moving down from the top right, they contain all space (the
aborted phase), BXC, and black islands.

FIG. 6 (color online). The complete phase diagram of the
d ¼ 3 three-vacuum system. Boundaries of the topological phases
of white regions are parallel planes, marked in red online; moving
away from the origin, they containWXS,WXC,white islands, and
no white at all (the aborted phase). Boundaries of the topological
phases of gray regions are marked in green online; moving down
from the top right, they contain no gray at all (the aborted phase),
gray islands, GXC, and GXS. Boundaries of the topological
phases of black regions are marked in blue online; moving down
from the top right, they contain all space (the aborted phase), BXS,
BXC, and black islands. The black dot is explained in the text.
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persist to pgb ¼ 0. This is unlikely, because point 3 of gray

regions in Sec. III A identified nonzero pgb as responsible

for giving rise to that phase. I expect that the phase con-
taining all three types of crossing curves persists only to
some finite value of pgb, but a formal proof of this state-

ment is outside the scope of this paper. Next, if the
boundaries of the phases with BXC and GXC met on
pgb ¼ 0 above the line pwb þ pwg ¼ pw

c , then another

phase would exist, in which there would be no crossing
curves of any color. But the absence of white crossing
curves would imply that the combined gray and black
regions form crossing surfaces, and the d ¼ 2 two-vacuum
Mandelbrot model reveals that any such a crossing surface
must contain either a gray or a black crossing curve. Hence
this possibility is also excluded. This implies that the
phases with GXC and BXC meet on the plane pgb ¼ 0

precisely on the line pwb þ pwg ¼ pw
c .

In summary, Fig. 6 contains the following 14 phases:

White Gray Black White Gray Black White Gray Black

WXS islands islands islands GXS islands ; GXS islands

WXC GXC BXC islands GXC islands ; GXC BXC

WXC GXC islands islands GXC BXC ; islands BXS

WXC islands BXC islands islands BXC ; ; whole

WXC islands islands islands islands BXS

The tubular phases arrange themselves in qualitatively
novel ways. Recall that in the two-vacuum system crossing
curves of both colors necessarily coexist. In contrast, the
three-vacuum model contains three new, monochromatic
tubular phases as well as a democratic tubular phase, which
contains crossing curves of all three colors. The latter
phase has an analogue for any number of vacua: the
sequence of transition probabilities pi

s � piiþ1 <pi
c

(with all other pij set to zero) leads to a series of tubular

networks, which are contained in one another in the order
in which they nucleate.

IV. DISCUSSION

This paper determines the phase structure of the three-
vacuum Mandelbrot model, which is a natural discrete toy
model for studying the topology of three-vacuum eternal
inflation. The model differs from those studied in [15–17]
in that it was not designed in order to reveal quantitative
results for a specific scenario. Instead, it illustrates the
wealth of behaviors which can arise in a complex land-
scape containing many disorderly arranged minima: al-
ready with three vacua, the model has 14 topological
phases. Some of them are qualitatively novel, especially
the all-tubular phase containing crossing curves of all
colors, one inside another. These new phases are not arti-
facts of the discreteness of the model or of limiting the
landscape to three vacua. On the contrary, their emergence
is a good starting point for imagining the phase structure of
realistic eternal inflation.

It is useful to focus first on the three monochromatic
tubular phases, which contain crossing curves of only one
color. It is natural to conjecture that with four vacua, the
three-dimensional Mandelbrot model develops a grainy
phase devoid of any crossing curves. (Indeed, such a phase
exists in the three-vacuum Mandelbrot model in two di-
mensions.) This phase should have an analogue in realistic
eternal inflation, at least when the number of vacua is large
enough. Furthermore, it is clear that as the number of vacua
grows, the grainy phase takes up more and more volume of
the phase diagram. This is because additional vacua take
up space, so it is increasingly difficult to sustain extended
structures of any color. At the same time, the conditions for
the existence of crossing curves and surfaces becomes
increasingly limiting: if a vacuum i decays to n descend-
ants, crossing curves or surfaces require the smallness of a
sum of n transition rates. Thus, one is led to the conclusion
that as the number of vacua grows, the system is increas-
ingly likely to find itself in the grainy phase, in which
isolated bubbles of different vacua fill the geometry with-
out forming crossing curves or surfaces.3 Of course, this
statement relies on the landscape being so large as to be
essentially random; the grainy phase is generic in the
ensemble of all large landscapes.
The grainy phase is physically interesting. It is charac-

terized by continuous cracking: a process in which the
boundary of the parent vacuum region becomes discon-
nected. Reference [5] concluded that in the two-vacuum
model cracking leads to a formation of singularities in the
surrounding descendant vacuum. In the many-vacuum
case, however, every connected component of the parent
vacuum region is surrounded by a collection of bubbles,
each filled with a different vacuum. It is difficult to imagine
surrounding such a structure with a homogeneous horizon.
It would be exciting to study this scenario in detail.
If the grainy phase is generic, can we forget all about

the 14 phases of the three-vacuum Mandelbrot model?
Definitely not. Notice that Fig. 6 describes the existence
of crossing curves and surfaces that span the infinite lattice
that is the domain of the model. It does not tell us about
curves which cross the interior of only a single bubble of a
given color. One example of this is shown in Fig. 7: the
range of parameters in the shaded region of the phase
diagram gives rise to an arrangement containing gray is-
lands, each of which is percolated by a black tubular net-
work that could be called an intrabubble BXC.4 The right
panel of Fig. 7 presents a cartoon of the resulting geometry.
The emerging picture is the following. On a global slice

the grainy phase is generic. The global geometry becomes
partitioned into randomly colored solids, which do not
form crossing curves. However, particular spheres can

3This finding should not be compared with the results of
[16,17], who were interested in the number of collisions in the
past light cone of a particular observer.

4This example was also considered in Sec. VIII of [5].
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contain interesting topologies such as intrabubble crossing
curves described in the last paragraph, or intrabubble
crossing surfaces. Moreover, from Sec. III C we know
that crossing curves can in principle be nested inside one
another ad infinitum. Overall, the topological phases
studied in the present paper and in [5] are also generic in
eternal inflation. Their appearance, however, is likely lim-
ited to a scale of several generations, beyond which the
multiverse finds itself in the grainy phase. It would be
extremely interesting to derive this picture of eternal in-
flation from a theoretical framework such as [18].
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