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We investigate the pair creation of noncommutative black holes in a background with a positive

cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild–

de Sitter solution. By varying the mass and the cosmological constant parameters, we find several

spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon

and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological

horizon. These new black holes share the properties of the corresponding asymptotically flat solutions,

including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a

second step we determine the action which generates the matter sector of gravitational field equations and

we construct instantons describing the pair production of black holes and the other admissible topologies.

As a result we find that for current values of the cosmological constant the de Sitter background is

quantum mechanically stable according to experience. However, positive-mass noncommutative black

holes and solitons would have plentifully been produced during inflationary times for Planckian values of

the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck

size black holes production would have been largely disfavored. We also find a potential instability for

production of negative-mass solitons.

DOI: 10.1103/PhysRevD.84.064014 PACS numbers: 04.70.Dy, 04.20.Jb

I. INTRODUCTION

Noncommutative geometry inspired black holes [for
brevity noncommutative black holes (NCBHs)] are a fam-
ily of black hole solutions of Einstein equations which
incorporate effects of quantum gravity in the short dis-
tance/extreme energy regime of the gravitational field of a
black hole [1]. The derivation of line elements for NCBHs
is based on the possibility of implementing an effective
minimal length in general relativity. Instead of embarking
in the formulation of the full theory of quantum gravity, it
has been shown that the primary effects of manifold quan-
tum fluctuations can be modeled by a nonstandard form of
the energy-momentum tensor, while keeping formally un-
changed the Einstein tensor in gravity field equations [2].
Noncommutative geometry is the underlying structure em-
ployed to implement, in agreement with the tenets of
quantum gravity, a minimal length responsible for deloc-
alization of any pointlike object and the new form of the
energy-momentum tensor [3]. NCBHs match known black
hole solutions at large distances where the presence of the
minimal length is negligible, while affording new physics
that emerges at small scales. A major result is that for all
NCBHs the curvature singularity at the origin is smeared

out, being replaced by a regular de Sitter core. The pres-
ence of a de Sitter core discloses further insights about the
nature of NCBHs: the center of NCBHs is a complex
turbulent storm-tossed sea which accounts for the seething
fabric of spacetime and sustains a Gaussian shaped mass
density profile preventing its collapse into a singular dis-
tribution. In other words the actual mean effect of manifold
fluctuations at short scales is a region characterized by a
net repulsive gravitational field. Energy condition viola-
tions at the origin certify that de Sitter cores can only be
attained in a nonclassical gravity framework.
Another important feature concerns an improved

thermodynamics. Indeed, even for neutral NCBHs, the
Hawking temperature reaches a maximum before running
a positive heat capacity, cooling down phase towards a
zero temperature remnant configuration [4,5]. As a conse-
quence, according to this scenario quantum backreaction is
strongly suppressed in contrast to conventional limits of
validity of the semiclassical approximation in the terminal
phase of the evaporation.
Both the regularity of the manifold and the improved

thermodynamics seem to be model independent results as
far as quantum gravity effects are taken into account.
Indeed these features of NCBHs are corroborated by analo-
gous results coming from other approaches to quantum
gravity [6,7]. However, NCBHs are currently the richest
class of quantum gravity black holes since they can be dirty
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[8], charged [9], and spinning [10] and admit a variety of
companion geometries [11] like traversable wormholes
[12]. In addition, it has been shown that NCBHs are con-
nected with a recently proposed ultraviolet complete quan-
tum gravity [13]: modeling manifold fluctuations by means
of a noncommutative diffused energy-momentum tensor in
Einstein gravity turns out to be equivalent to a nonlocal
ultraviolet complete quantum gravity, in the presence of an
ordinary matter energy-momentum tensor [14]. As a result
for the dual link between the two formulations, NCBHs are
solutions of gravity field equations of the ultraviolet com-
plete quantum gravity too. While the stability of their
interiors remains a subject of ongoing investigation [15],
higher dimensional NCBHs [16,17], due to their attractive
properties, have been recently taken into account in
Monte Carlo simulations as reliable candidate models to
describe the conjectured production of microscopic black
holes in particle accelerators [18,19].

In this paper we want to broaden our perspective. In
inflationary epochs, the Universe is well described by the
de Sitter spacetime, which is known to be stable under
classical perturbations [20]. However, at the quantum me-
chanical level, the de Sitter spacetime exhibits instability
due to the spontaneous nucleation of black holes. The
standard semiclassical formalism for pair creation is based
on the study of instantons. In Euclidean quantum gravity
one calculates amplitudes by means of path integrals over
various classes of positive defined metrics gab [21]:

� ¼
Z

D½gab�e�IE½g�: (1)

Usually the evaluation of the path integral is only viable by
considering dominant contributions coming from saddle
points of IE. Then the path integral is given by a sum over
instantons or extrema of the action. In the case of pair
production one finds two instantons, one for the back-
ground Ibg and one for the object nucleated on the back-

ground, Iobj. Squaring � one obtains two probability

densities whose ratio is the rate of black hole production
on inflationary background [21], i.e.,

�� expð�2IobjÞ
expð�2IbgÞ : (2)

The background contribution is crucial since it is the
positive cosmological constant that supplies the necessary
negative potential energy to produce black holes. A lot work
has been done to calculate the rate of black hole production
per unit of volume [21–24]. However, in Einstein gravity

the black hole production rate is / e�1=�G, an extremely
low value unless the cosmological constant � approaches
the Planck scale. Thus the only time when black hole pair
creation was possible in our Universe was during the infla-
tionary era, when � was large. In addition the pair pro-
duced black holes have Planckian masses and therefore
quickly evaporate off. In this context wewant to investigate

the nucleation rate of NCBHs and understand how they
affect the quantum (in)stability of the de Sitter space-
time. Furthermore NCBHs are longer-lived with respect
to conventional black holes, since they do not completely
evaporate. Thus a relevant NCBH production could have
potential repercussions for Planck-scale inflation as well as
for the production of primordial black holes.We remark that
NCBHs also efficiently provide reliable scenarios in the
semiclassical regime in which the instanton formalism
works. This is due to the fact that noncommutative effects
emerge at a length scale ‘, which need not be the Planck
length, but can be treated as a parameter adjustable to the
relevant scale at which noncommutative effects set in.
Our paper is organized as follows. In Sec. II we derive

the noncommutative geometry inspired Schwarzschild–
de Sitter (NCSchwdS) spacetime for both positive- and
negative-mass parameters, in Sec. III we derive the func-
tional action which leads to the nonstandard energy-
momentum tensor for the solutions in the previous section;
in Sec. IV, we calculate the pair production rate for all
instantons compatible with the given spacetime metric and
in Sec. V we draw the conclusions.

II. THE NONCOMMUTATIVE INSPIRED
SCHWARZSCHILD–DE SITTER SPACETIME

A. The line element

Before determining a new solution of Einstein equa-
tions, we need to recall the general ideas behind noncom-
mutative geometry inspired solutions. Being a model of
quantum geometry, a noncommutative manifold undergoes
strong quantum fluctuations in the high energy/short dis-
tance regime. So before talking about length, line elements,
and other more sophisticated geometrical objects we need
to understand the ultimate fate of a point and of all physical
objects we are used to considering as pointlike. A simple
way to address this issue is to estimate the mean position of
an object by averaging coordinate operators on suitable
coordinate coherent states. As a result one finds that the
mean position of a pointlike object in a noncommutative
manifold is no longer governed by a Dirac delta function
but by a Gaussian distribution

f‘ð ~xÞ ¼ 1

ð4�‘2Þd=2 e
�j ~xj2=4‘2 ; (3)

where d is the manifold dimension and ‘ is the mini-
mal length implemented through the noncommutative re-
lations among coordinate operators [3]. The value of ‘ is
not fixed a priori. However, in the absence of extradimen-
sions, a natural choice for ‘would be a value of the order of

the Planck length, i.e., ‘� ffiffiffiffi
G

p � 1:6� 10�33 cm. It has
been shown that primary corrections to any field equation
in the presence of a noncommutative background can be
obtained by replacing the conventional pointlike source
term (matter sector) with a Gaussian distribution, while
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keeping formally unchanged differential operators (geom-
etry sector) [1]. In the specific case of the gravity field
equations this is equivalent to saying that the only modifi-
cation occurs at the level of the energy-momentum tensor,
while G�� is formally left unchanged.

For a static, spherically symmetric, noncommutative
diffused, particlelike gravitational source of mass M, one
gets a Gaussian profile for the T0

0 component of the energy-

momentum tensor

T0
0 ¼ ��‘ðrÞ ¼ � M

ð4�‘2Þ3=2 exp

�
� r2

4‘2

�
: (4)

The covariant conservation law r�T
�� ¼ 0 and the

‘‘Schwarzschild-like’’ condition g00 ¼ �g�1
rr completely

specify the energy-momentum tensor, whose form is
given by

T�
� ¼ Diagð��‘ðrÞ; prðrÞ; p?ðrÞ; p?ðrÞÞ: (5)

We notice that there are nonvanishing pressure terms with
pr � p?, corresponding to the case of an anisotropic fluid.
Contrary to the conventional picture of matter squeezed at
the origin, here the noncommutative geometry is effec-
tively described as a fluid diffused around the origin. If
one substitutes the above energy-momentum tensor in
Einstein equations one obtains the noncommutative ge-
ometry inspired Schwarzschild solution (NCSchw) [4].
At short distances the NCSchw solution is regular due to
the noncommutative smearing effect. At large distances,
namely, for r � ‘, the above energy-momentum tensor
exponentially vanishes and one recovers the conventional
vacuum solution, i.e., the Schwarzschild spacetime.

In this paper we want to determine black hole solutions
in the presence of a background cosmological term. As a
result we consider the Einstein equations

R�� � 1

2
Rg�� þ�g�� ¼ 8�GT�� (6)

and a line element of the form

ds2 ¼ �VðrÞdt2 þ VðrÞ�1dr2 þ r2d�2: (7)

To solve Einstein equations it is convenient to introduce the
following tensor,

T �
� � T�

� � �

8�G
��
�

¼ DiagðEðrÞ;P rðrÞ;P?ðrÞ;P?ðrÞÞ (8)

with EðrÞ ¼ ����=8�G, which yields the following
‘‘fluid’’ equations:

dM
dr

¼ 4�r2EðrÞ; (9)

1

2g00

dg00
dr

¼ G
MðrÞ þ 4�r3P rðrÞ
rðr� 2GMðrÞÞ ; (10)

dP r

dr
¼ � 1

2g00

dg00
dr

ðE þ P rÞ þ 2

r
ðP? � P rÞ: (11)

We recall that the condition g00 ¼ �g�1
rr ¼ �VðrÞ is

equivalent to the equation of state

P rðrÞ ¼ �EðrÞ: (12)

As a result we obtain the NCSchwdS line element

VðrÞ ¼ 1� 4MG�ð3=2; r2=4‘2Þ
r

ffiffiffiffi
�

p ��r2

3
; (13)

where

�ð3=2; xÞ ¼
Z x

0
dtt1=2e�t: (14)

The angular pressure turns out to be

p?ðrÞ ¼ ��‘ðrÞ
�
1� r2

4‘2

�
: (15)

We start the analysis of (13) by noticing that for r � ‘ the
solution coincides with the conventional Schwarzschild–
de Sitter line element. In other words this is the regime
where noncommutative fluctuations are negligible and
the spacetime can be well described by a smooth differen-
tial manifold. On the other hand, at small length scales,
i.e., high energies, there is a crucial departure from the
conventional scenario. Expanding (13) for r � ‘ we get

VðrÞ � 1��eff

3
r2; (16)

where

�eff ¼ �þ 1ffiffiffiffi
�

p MG

‘3
: (17)

The metric is regular at the origin and we find a local
de Sitter spacetime whose cosmological constant �eff is
due to both the background cosmological term � and the
noncommutative fluctuations �MG=‘3.
An interesting feature of the solution is the horizon

equation VðrHÞ ¼ 0. This depends on two parameters, M
and �. As a result there is a mass M0 ¼ M0ð�Þ depending
on � such that
(a) for M>M0 there are three horizons, an inner r�

and an outer black hole horizon rþ and a cosmo-
logical horizon rc (see Fig. 1).

(b) forM ¼ MN >M0, the black hole outer horizon rþ
and the cosmological horizon rc coalesce into a
single degenerate horizon rN , corresponding to the
case of a Nariai-like solution (see Fig. 2).

(c) for M ¼ M0 the two black hole horizons coalesce
into a single degenerate horizon r0 and there is also a
cosmological horizon rc (see Fig. 3).

(d) forM<M0 there is just one (cosmological) horizon
(see Figs. 4–6), yielding a soliton.
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We recall that the NCSchw solution admits two, one, or no
horizon depending of the value of the mass parameterM. A
difference between the two solutions is that M0 now de-
pends on the cosmological term. The cases (a) and (c) are
good approximations of the NCSchw black hole with two
and one horizons, respectively. The case (b) is a novelty
since for the NCSchw solution no Nariai configuration
occurs. Finally the case (d) occurs in a variety of situations,
by decreasing the mass or increasing the cosmological

term. For instance in Fig. 4 the internal horizon becomes
the unique horizon and around r� 10‘ there is a compen-
sation of the massive and the cosmological term for nega-
tive values of VðrÞ, preventing the formation of any other
horizon. This case has no analogue in the asymptotically
flat space. For lighter masses, the cosmological term domi-
nates even at short distances and the horizon takes place at
larger distances. The cases in Fig. 5 and in 6 are the

FIG. 2 (color online). The function VðrÞ vs r=‘ for M ¼ 5‘=G
and �=3 ¼ 15� 10�4‘�2.

.

.

.

.

FIG. 3 (color online). The function VðrÞ vs r=‘ for M ¼ 1:9‘
and �=3 ¼ 6� 10�4‘�2.

FIG. 1 (color online). The function VðrÞ vs r=‘ for
M ¼ 10‘=G and �=3 ¼ 10�4‘�2.

FIG. 4 (color online). The function VðrÞ vs r=‘ for
M ¼ 10‘=G and �=3 ¼ 10�2‘�2.
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analogues of the minigravastar case of the NCSchw solu-
tion, namely, a regular geometry without black hole hori-
zons. However, topologically the geometries in Figs. 4–6
are equivalent.

B. Negative-mass solutions

In view of the study of the stability of the de Sitter
background one must consider contributions coming

from instantons, corresponding to all possible spacetime
configurations. To this purpose we must clarify the sce-
nario when the radial coordinate assumes negative values.
At first sight one may be tempted to say that we are
continuing our spacetime through the origin. However,
we stress that the region of negative radial coordinate is
not a continuation of the spacetime for positive r. Indeed
the spacetime at r ¼ 0 is locally flat, and so the spacetime
for positive r is geodesically complete. This means that
we have two distinct spacetimes, one for r > 0 and one for
r < 0, and both must be considered in the contribution to
the action (1). An equivalent and maybe more correct way
to see this fact is to consider two distinct spacetimes having
either positive M> 0 or negative M< 0 mass parameter.
Regions of negative density might occur in spacetime as a
result of quantum fluctuations of the vacuum energy den-
sity at sufficiently short distances and/or early times [25].
To this purpose it has been shown that negative energy
density can undergo gravitational collapse to form a black
hole [26]. As a result we have an additional line element
with de Sitter background for M ¼ �jMj:

V�ðrÞ ¼ 1þ 4jMjG�ð3=2; r2=4‘2Þ
r

ffiffiffiffi
�

p ��r2

3
: (18)

In the asymptotically flat case, � ¼ 0, we have the
special case of the noncommutative geometry inspired
Schwarzschild spacetime

VNCSchw�ðrÞ ¼ 1þ 4jMjG�ð3=2; r2=4‘2Þ
r

ffiffiffiffi
�

p (19)

describing a soliton of negative mass.
To discover the properties of these spacetimes, we start

from the latter solution. In Fig. 7 we see that no horizon
occurs. In addition the spacetime is regular and geodesi-
cally complete, being asymptotically flat both at the origin
and infinity. Recall that this solution is generated by an
energy-momentum tensor of an anisotropic fluid as in (5).
However, contrary to the positive-mass solution for which
negative pressures prevent the collapse of the energy den-
sity into a Dirac delta function, in the negative-mass case
we have a negative energy density whose expansion is
contained by positive (inwards) pressure terms. The case
with � � 0 is shown in Fig. 8. We see that there is only a
cosmological horizon.

C. Thermodynamics

To discover the thermodynamic properties of the solu-
tion let us start by considering the internal energy of the
black holeUðrHÞ. Following an approach analogous to that
for the conventional Schwarzschild–de Sitter case, this is
simply the mass parameterM which becomes a function of
the horizon by requiring VðrHÞ ¼ 0. Thus

.

.

.

.

.

.

FIG. 5 (color online). The function VðrÞ vs r=‘ for M ¼ 1‘=G
and �=3 ¼ 10�2‘�2.

.

.

.

.

FIG. 6 (color online). The function VðrÞ vs r=‘ for M ¼ 1‘
and �=3 ¼ 10�4‘�2.
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M ¼ UðrHÞ ¼ rH�ð3=2Þ
2G�ð3=2; r2H=4‘2Þ

�
1��

3
r2H

�
; (20)

where �ð3=2Þ ¼ ffiffiffiffi
�

p
=2. For convenience we introduce the

function gðrÞ ¼ �ð3=2; r2=4‘2Þ=�ð3=2Þ. As a consequence

@U

@rH
¼ 1

2GgðrHÞ
��
1� rH

g0ðrHÞ
gðrHÞ

��
1��

3
r2H

�
� 2

3
�r2H

�
:

(21)

By definition the temperature reads

TH ¼ 1

4�

dVðrÞ
dr

��������rH

; (22)

where from (13)

dVðrÞ
dr

¼ 2GMgðrÞ
r2

�
1� r

g0ðrÞ
gðrÞ

�
� 2

3
�r: (23)

As a consequence the temperature is

TH ¼ 1

4�rH

��
1� rH

g0ðrHÞ
gðrHÞ

��
1��

3
r2H

�
� 2

3
�r2H

�
:

(24)

The above result holds also in the case of the negative-mass
solution V�ðrÞ.
Some comments are in order. Insofar as we have three

horizons as in Fig. 1, the formula in (24) describes for
rH ¼ rþ the black hole temperature, where for conve-
nience we write

Tþ ¼ T?ðrþÞ � TdSðrþÞ; (25)

where

T?ðrþÞ ¼ 1

4�rþ

�
1� r3þ

4‘3
e�r2þ=4‘

2

�ð3=2; r2þ=4‘2Þ
��

1��

3
r2þ

�
(26)

approaches, in the regime rþ
ffiffiffiffi
�

p � 1, the black hole
temperature in the asymptotically flat case and

TdSðrþÞ ¼ �

6�
rþ (27)

is the de Sitter background temperature at the black hole
event horizon. The background temperature TdS and the
term depending on � in T? decrease the temperature Tþ
with respect to the corresponding value in asymptotically
flat space (see Fig. 9).
Black hole evaporation takes place in two phases. The

first is the Hawking phase, where the temperature follows
the law 1=rH and the black hole heat capacity is negative.
This continues until the temperature reaches a maximum,
after which the second phase takes place. This phase is the
cooling down phase and is characterized by a positive heat
capacity. The latter phase takes place until the black hole
shrinks to the radius r0, corresponding to the case of
thermal equilibrium between the temperature T? and the
de Sitter temperature TdS. Also the evaporation end point
is modified with respect to the asymptotically flat case.
At r0 we have an extremal black hole remnant whose size
is in general bigger than the corresponding value for the
asymptotically flat case� 3:0‘ (Fig. 9). On the other hand

.

.

.

.

.

.

.

.

FIG. 7 (color online). The function VNCSchw�ðrÞ vs r=‘ for
M ¼ �3‘, corresponding to the negative-mass noncommutative
geometry inspired Schwarzschild solution.

FIG. 8 (color online). The function V�ðrÞ vs r=‘ forM ¼ �3‘
and �=3 ¼ 6� 10�3‘�2.
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the remnant mass is in general lighter than the correspond-
ing value for the asymptotically flat case due to the pres-
ence of the de Sitter term in (20). However, in the limit

rþ
ffiffiffiffi
�

p � 1, the de Sitter terms are negligible and one
recovers the usual temperature for the asymptotically flat
NCSchw solution

Tþ � T?: (28)

For rH ¼ rc � 1=
ffiffiffiffi
�

p � rþ the formula in (24) no lon-
ger describes the temperature of the black hole but rather
that of the cosmological horizon. To get the correct ex-
pression for the temperature one has to consider the abso-
lute value of (24) to obtain a positive defined quantity. As a
result one finds

Tc ¼ TdSðrcÞ þ T?ðrcÞ (29)

which is the conventional de Sitter bath temperature
TdSðrcÞ plus the black hole temperature at rc. For rc � ‘
the dominant correction coming from T?ðrcÞ is

T?ðrcÞ � �

12�
rc: (30)

This tells us that the black hole thermalizes the de Sitter
background, which reaches a temperature higher than the
conventional case in the absence of black holes. As a result
we find

Tc � �

4�
rc; (31)

which exceeds TdSðrcÞ. For rc � MG, the cosmological

horizon approaches the conventional value rc �
ffiffiffiffiffiffiffiffiffi
3=�

p
.

Therefore the temperature reads

Tc � 3

4�

ffiffiffiffi
�

3

s
: (32)

In the case of a single horizon, (24) still holds and one
can determine the temperature for gravitational objects
described in Figs. 4–6. We shall get back to these cases
in the section about the gravitational instantons.

III. THE ANISOTROPIC FLUID
FUNCTIONAL ACTION

The production of black holes in the de Sitter back-
ground is governed by the Euclidean version of the action

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
ðR� 2�Þ þ Lm

�
(33)

generating gravitational field equations. To this purpose,
we still need to find the form of the Lagrangian Lm,
supposed to lead to the noncommutative Schwarzschild
solution. We will proceed along the line of Ref. [27]. Our
effective fluidlike approach takes leading order quantum
geometry effects into account while letting us formally
work in a classical framework. To begin, we recall the
basic notation for the case of an isotropic fluid. Then we
will extend the formalism to the anisotropic fluid case.
An isotropic fluid has a generic energy density � and a

unique pressure pr ¼ p? � p. In addition to these varia-
bles, we can introduce the standard notation for the space-
time scalar fields

n ¼ particle number density; (34)

T ¼ temperature; (35)

s ¼ entropy per particle; (36)

whose values represent measurements made in the rest
frame of the fluid. The fluid motion can be characterized
by its unit four velocity vector field u�, which in the rest
frame reads

u� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi�g00
p ð�1; 0; 0; 0Þ: (37)

It is also convenient to define

� � �þ p

n
¼ chemical potential: (38)

The chemical potential is the energy per particle re-
quired to inject a small amount of fluid into a fluid sam-
ple, keeping the sample volume and the entropy per
particle s constant. Of course in case of anisotropicity,
chemical potentials depend on the direction of the injection
due to the occurrence of different pressures. The above

.

.

.

.

.

.

.

.

FIG. 9 (color online). The thin line represents the black hole
temperature in a de Sitter background, Tþ � ‘, as a function of
rþ=‘ for �=3 ¼ 3� 10�3‘�2. The thick line represents the
temperature of the NCSchw black hole in asymptotically flat
space.
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thermodynamic variables are related by the local expres-
sion of the first law of thermodynamics, namely,

d� ¼ �dnþ nTds; (39)

showing that the equation of state for the fluid can be
specified by giving the function �ðn; sÞ, the energy density
as a function of the number density and the entropy per
particle. The equations of motion of a perfect fluid, both
isotropic or anisotropic, consist of stress-energy conserva-
tion, namely, T��

;� ¼ 0, and the equation ðnu�Þ;� ¼ 0

expressing conservation of particle number. The action
functional we are going to present here provides the stress
tensor

T�� ¼ �u�u� þ pðg�� þ u�u�Þ; (40)

its conservation, and the first law of thermodynamics,
given the equation of state �ðn; sÞ. The fluid action S is a
function of j� � ffiffiffiffiffiffiffi�g

p
nu�. As a result the fluid four

velocity can be written as

u� ¼ j�=jjj; (41)

where jjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j�g��j
�

p
. The particle number density is

therefore given by

n ¼ jjj= ffiffiffiffiffiffiffi�g
p

: (42)

As explained in [27], for our specific purposes we just
need to consider the ‘‘on shell’’ action, namely,

Sðon shellÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
pðn; sÞ (43)

with the equation of state � ¼ �p.
The above analysis can be extended to the anisotropic

fluid case in order to generate the NCSchwdS geometry.
To this purpose, we follow the results in [28] to determine
the ‘‘on shell’’ action. It is convenient to introduce a new
vector k� � ~n

ffiffiffiffiffiffiffi�g
p

l�, where

l� ¼ 1ffiffiffiffiffiffiffi
grr

p ð0; 1; 0; 0Þ (44)

and ~n is a generic particle number density to be identified
later. As a result we have

~n ¼ jkj= ffiffiffiffiffiffiffi�g
p

; (45)

where jkj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��k

�k�
p

. We begin by writing the action

Imðon shellÞ ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

Lm as

Imðon shellÞ¼
Z
d4x

ffiffiffiffiffiffiffi�g
p

prðn;sÞþ
Z
d4x

ffiffiffiffiffiffiffi�g
p

L?ðn; ~n;sÞ;
(46)

where the first term in the square brackets gives the iso-
tropic fluid energy-momentum tensor

T
��
iso ¼ �‘u

�u� þ prðg�� þ u�u�Þ; (47)

with equation of state pr ¼ ��‘, while L? provides the
breaking of the isotropy. As a consequence the energy-
momentummomentum tensor whose action we are looking
for is nothing but

T�� ¼ T
��
iso þ ðp? � prÞðg�� þ u�u� � l�l�Þ; (48)

namely, an isotropic term plus corrections coming from
variations of L?. The latter can be computed and read

T
��
? ¼

�
L? � n

@L?
@n

� ~n
@L?
@~n

�
g��

þ ~n
@L?
@~n

l�l� � n
@L?
@n

u�u�: (49)

If we want to reproduce the form of (48), we have that

L? ¼ ~n
@L?
@~n

¼ n
@L?
@n

¼ �ðp? � prÞ: (50)

Thus without loss of generality we can assume n ¼ ~n, with
n ¼ nðjjj= ffiffiffiffiffiffiffi�g

p
; jkj= ffiffiffiffiffiffiffi�g

p
; sÞ, and write the action as

Sðon shellÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ð2pr � p?Þ: (51)

Employing Eq. (15), one finds that

Lmðon shellÞ ¼ pr þ r2

4‘2
M

ð4�‘2Þ3=2 e
�ðr2=4‘2Þ (52)

and finally

T�� ¼ ð�‘ þ p?Þðu�u� � l�l�Þ þ p?g��: (53)

We notice that in (52) we have, in addition to the usual
pressure term as in the isotropic case, another term which is
due to the fact that pr � p?.

IV. PAIR CREATION RATES

A. Gravitational instantons

The pair production of objects in a cosmological back-
ground is described by propagation from nothing to a
surface �, whose topology depends on the kind of instan-
ton considered [29]. The amplitude for these processes will
be given by the path integral in (1), over all metrics which
agree with given boundary data hij on �.

In general a Euclidean solution will not match onto its
real Lorentzian counterpart according to the standard
t ! i� prescription, and it is not possible to require that
the instanton both be real and match its Lorentzian counter-
part along a t ¼ constant hypersurface [30], though for
diagonal metrics both requirements can be satisfied. The
matching conditions are the only conditions available
that prescribe the connection between the instantons and
the physical Lorentzian solutions, and so we match on a

ROBERT B. MANN AND PIERO NICOLINI PHYSICAL REVIEW D 84, 064014 (2011)

064014-8



hypersurface�whose extrinsic curvature vanishes. Conse-
quently � can be interpreted as the zero momentum initial
data for the Lorentzian extension of the solution [23].

By analytically continuing t ! i� one gets the
Euclidean line element

ds2E ¼ VðrÞd�2 þ VðrÞ�1dr2 þ r2d�2: (54)

The spacetime is defined only for regions where the func-
tion VðrÞ assumes positive values. The corresponding
Euclidean action is the Wick rotated version of (33) and
reads

IE ¼ �
Z
Mþ

d4x
ffiffiffi
g

p �
�

8�G
� T

2
þ Lm

�
þ ðgravitational boundary termsÞ; (55)

where T ¼ T
�
� . Here Mþ is one of the parts the surface �

divides the (simply connected) spacetime M into. Since
amplitudes due to each part are equal, we need only con-
sider the path integral (1) over all metrics on the half
manifolds, e.g.,Mþ. The above Euclidean action describes
the de Sitter universe with nucleation of gravitational
objects. For this reason we shall refer to it as Iobj. Note

that since we identify � with a surface of zero extrinsic
curvature in the Euclidean section, the gravitational bound-
ary term will not contribute to the action. On the other
hand, if there is a Euclidean classical solution, i.e., an
instanton which interpolates within the given boundary,
the integral is dominated by the contribution coming
from it. There exists another relevant topology, which
describes the de Sitter background universe without nu-
cleation, i.e., Ibg. We can determine this instanton from

Ibg ¼ �
Z
Mþ

d4x
ffiffiffi
g

p �

8�G
¼ � 3

2

�

�G
(56)

which gives the probability at which de Sitter space is itself
created:

Pbg ¼ e3�=�G: (57)

As explained in the introduction the ratio of the two

probability measures Pobj=Pbg ¼ e�2ðIobj�IbgÞ gives the

rate of pair creation on an inflationary background, � in
(2). The object created depends on the properties of the
function VðrÞ. We recall that in the Lorentzian section
0 	 r <1 the spacetime is geodesically complete for
positive- as well as negative-mass parameter. For positive
mass M> 0, the function VðrÞ can have three roots,
i.e., r�, rþ, and rc (see Fig. 1). To obtain a positive-definite
metric, we must restrict r to rþ 	 r 	 rc. However, the
resulting instanton might be singular for a conical sin-
gularity at r ¼ rþ and r ¼ rc. In the degenerate case
(see Fig. 3), i.e., for r� ¼ rþ, the range of r in the
Euclidean section will be rþ < r 	 rc, as the double root
in VðrÞ implies that the proper distance from any other
point to r ¼ rþ along spacelike directions is infinite.

As a consequence we may obtain a regular instanton by
identifying � periodically with period 2�=�c, where �c is
the surface gravity of the cosmological horizon. Following
[31], this instanton will be referred to as a cold instanton.
For nondegenerate horizons, we must have the same period
for � and this corresponds to requiring

�þ ¼ �c: (58)

As a special case we have the Nariai instanton for which
rþ ¼ rc. In general, i.e., for rþ � rc, the condition (58) is
satisfied by a lukewarm instanton, following the definition
in [31].
In addition to these instantons, there are those corre-

sponding to topologies in Figs. 4–6, which do not have
any classical analogue. These cases occur when VðrÞ has
just a single root r1. In this group of new topologies we
need to consider also the negative-mass topology which
exhibits a single horizon (see Fig. 8). This means that, as
far as pair production is concerned, we always integrate
the action from r ¼ 0 outward to the single horizon r1,
i.e., 0 	 r 	 r1. The nature of the single horizon will be
equivalent to that of any single cosmological horizon,
regardless of its size with respect to the cosmological scale

1=
ffiffiffiffi
�

p
.

B. Black hole pair production

We now explicitly calculate black hole pair production
rates. For notational convenience we start by introducing

I� ¼
Z
Mþ

d4x
ffiffiffi
g

p �

8�G
(59)

and

IM ¼ M

ð4�‘2Þ3=2
Z
Mþ

d4x
ffiffiffi
g

p �
r2

2‘2
� 1

�
e�r2=4‘2 : (60)

Up to boundary terms, the Euclidean action Iobj can be cast

in the form Iobj ¼ �IM � I�. In the lukewarm instanton

case, we need to compute the integral

I� ¼
Z
Mþ

d4x
ffiffiffi
g

p �

8�G
¼ �	c

12G
ðr3c � r3þÞ;

where 	c ¼ T�1
c ¼ 2�=�c. If the cosmological horizon

rc � rþ, we have

I� � �

�G
½1� ðrþ

ffiffiffiffiffiffiffiffiffi
�=3

p
Þ3� (61)

for rc �
ffiffiffiffiffiffiffiffiffi
3=�

p
. Furthermore, if rþ

ffiffiffiffi
�

p � 1 we can con-
sider just the first term, i.e.,

I� � �

�G
: (62)

We can now calculate

IM ¼ M

ð4�‘2Þ3=2
Z
Mþ

d4x
ffiffiffi
g

p �
r2

2‘2
� 1

�
e�r2=4‘2
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recalling that rþ > r0 
 3:0‘. As a result one finds

IM ¼ M	cffiffiffiffi
�

p ½2�ð5=2; x2=4Þ � �ð3=2; x2=4Þ�rc=‘rþ=‘
: (63)

Since

�ð5=2; x2=4Þ ¼ 3

2
�ð3=2; x2=4Þ � 1

8
x3e�x2=4

we can express (63) in terms of �ð3=2; x2=4Þ only:

IM ¼ M	cffiffiffiffi
�

p
�
2�ð3=2; x2=4Þ � 1

4
x3e�x2=4

�
rc=‘

rþ=‘
: (64)

For large values of the argument, x � 1, we have

2�ð3=2; x2=4Þ � 1

4
x3e�x2=4 � 2�ð3=2; x2=4Þ � ffiffiffiffi

�
p

;

while for small values of the argument, x � 1, we have
�ð3=2; x2=4Þ � x3=12, and

2�ð3=2; x2=4Þ � 1

4
x3e�x2=4 � � 1

12
x3;

a negative vanishing value. From Fig. 10, we see that

2�ð3=2; x2=4Þ � 1
4 x

3e�x2=4 is zero for x � 2 whereas it

rapidly asymptotes to
ffiffiffiffi
�

p
for any x > 6.

As a result, for the cold instanton we have

Icold � � �

�G

�
1þ 4M0G

ffiffiffiffi
�

3

s �
1� 0:67ffiffiffiffi

�
p

�
� ðr20�=3Þ3=2

�
;

(65)

with r0 � 3:0‘,

2�ð3=2; r20=4‘2Þ �
1

4
ðr0=‘Þ3e�r20=4‘

2 � 0:67;

and assuming rc � ‘. To obtain the black hole remnant
pair production rate we consider the probability measure
Pcold ¼ e�2Icold and we divide this by the probability mea-
sure for a universe without black holes, i.e., Pbg. This

yields

�cold � e�ð�=�GÞð1�8M0G
ffiffiffiffiffiffiffi
�=3

p
½1�ð0:67= ffiffiffi

�
p Þ�þ2ðr2

0
�=3Þ3=2Þ (66)

and so the probability for pair creation of cold NCBHs is
very low, unless � is close to the Planck value �G ¼ 1.
However, for large � black holes do not occur, unless for
masses M � ‘=G. Thus in place of Planck-sized black
holes we have the production of single-horizon spacetimes
(see Figs. 4–6). We shall discuss the nature of these gravi-
tational objects in the next section. For the lukewarm
instanton case, the contribution of IM is vanishing.

However, the term ðr2þ�=3Þ3=2 coming from I� can grow
with respect to the cold case. As a result we get

�lw � e�ð�=�GÞð1þ2ðr2þ�=3Þ3=2Þ: (67)

These extremely suppressed rates are in agreement with
results found in [21] for the Schwarzschild–de Sitter
spacetime.

C. Nariai and other instantons

To exclude instabilities of the de Sitter background
we need to conclude our analysis by studying the re-
maining topologies, namely, the Nariai instanton and the
single-horizon geometries. For the Nariai instanton, where
rþ ¼ rc, we can make a coordinate transformation and
rewrite the metric as

ds2E ¼ 1

A
ðd
2 þ sin2
dc 2Þ þ 1

B
ðd#2 þ sin2#d�2Þ;

(68)

where A and B are constant, 
 and # run from 0 to �, and
c and � are periodic coordinates with period 2�.
The instanton has topology S2 � S2, the direct product of
two spheres with different radii. The condition rþ ¼ rc
implies that the origin retreats to infinite proper distance
and so there is no longer any global event horizon. The
Lorentzian section is just the direct product of two-
dimensional de Sitter space and a two sphere of fixed
radius, dS2 � S2. Consequently this instanton does not
represent pair creation of black holes, though higher-order
quantum corrections are expected to break the degeneracy
of the two roots [23], rendering this solution equivalent to
that of the NCBH of the previous section.
Finally we are left with the case of a single cosmo-

logical horizon r1, which occurs in Figs. 4–6 or for
negative masses. The instanton in this case is calculated
for 0 	 r 	 r1 assuming � ¼ 0, 	1=2 with 	1 ¼ 2�=�1,
i.e.,

.

.

FIG. 10 (color online). The function 2�ð3=2; x2=4Þ �
1
4 x

3e�x2=4 vs x.
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I1 ¼ 	1Mffiffiffiffi
�

p
�
2�ð3=2; r21=4‘2Þ �

1

4

r31
‘3

e�r21=4‘
2

�
� 	1�

12G
r31:

This leads to the following pair creation rate:

�1 ¼ eð	1�=6GÞr3
1e�ð2	1M=

ffiffiffi
�

p Þ½2�ð3=2;r2
1
=4‘2Þ�ð1=4Þðr3

1
=‘3Þe�r2

1
=4‘2 �

� e�ð3�=�GÞ: (69)

We now demonstrate that production of such single-
horizon objects is negligible, unless �G� 1. For small
r1, a non-negligible pair production might occur only if

	1r
3
1

�
�

6G
þ M

6
ffiffiffiffi
�

p
‘3

�
>

3�

�G
: (70)

For small r1 the temperature increases (see Fig. 4), then 	1

is little and this condition cannot be met. Indeed in the
regime r1 � ‘ the temperature is

T1 � 3

4�r1
(71)

and we have

4�r41
3

�
�

6G
þ M

6
ffiffiffiffi
�

p
‘3

�
>

3�

�G
: (72)

Hence for r1 � 1=
ffiffiffiffi
�

p
the condition (70) is not fulfilled for

either small M or large M (as the latter will yield two
horizons and thus lukewarm instantons) and no pair pro-
duction occurs. Indeed the pair production rate is

�1 � e�ð3�=�GÞ: (73)

The interpretation of this result is the following. The
horizon in Fig. 4 is similar to a cosmological horizon, apart
from its size. The above result tells us that Planck size
de Sitter space does not occur in present times, in accord
with experience. Conversely it could have been plentifully
produced in early epochs of the Universe, i.e, for �G� 1.
Indeed this instanton occurs when the cosmological term�
overcomes the mass term M in the NCSchwdS solution.
This means that in place of Planck size black holes, this
single-horizon geometry would have been favored during
inflation. However, this instanton can be simply considered
equivalent to the de Sitter space when �G� 1 and cannot
be considered as a source of instability.

For large horizon radii, the temperature T1 � Tc is very
low and 	1 can significantly grow (see Figs. 5, 6, and 8).
However, we have

�r31
6GTc

�
1� 12GM

�r31

�
&

3�

�G
(74)

since for single-horizon objects we have
ffiffiffiffi
�

p
r1 & 1 and

GM
ffiffiffiffi
�

p
& 1. This is in agreement to what was found for

the cold and lukewarm case. As a result the pair production
rate is higher but yet largely suppressed unless for
Planckian values of the cosmological constant, i.e.,

�1 � e�ð�=�GÞ: (75)

This result corresponds to the fact that the lowest limit for
the temperature, i.e., the highest value for 	1, is given by
the de Sitter universe in the absence of pair production

TdS ¼ ð2�Þ�1
ffiffiffiffiffiffiffiffiffi
�=3

p
.

If M< 0 then the inequality in (70) can be satisfied,
rendering the possibility that copious production of such
objects could perhaps be responsible for dark energy.
However, the production rate grows exponentially with
increasing jMj, leading to an instability for pair production
of these negative-M objects, and so some kind of cutoff
would be required for this to be viable [32]. We leave these
issues for future study.

D. Contribution to the entropy

All the above instantons are cosmological solutions.
They do not enjoy the presence of an asymptotic region
in the Euclidean section or equivalently the presence of a
point at infinity. Physically this means these instantons
describe closed systems, i.e., systems able to exchange
heat and energy. Therefore they necessarily have fixed
energy and contribute to the microcanonical ensemble. In
such a case it has been shown that the partition function is
given by Z ¼ �2, namely, as the density of states [33–35].
As a consequence the contribution to the entropy from

these instantons is just

S ¼ lnZ ¼ �2Iobj: (76)

For the lukewarm and cold (and Nariai) cases the entropy
can be easily obtained from the above formula. As a con-
sistency check for topologies without horizons, the instan-
ton (and consequently the entropy) vanishes as expected.
Wenote that horizons contribute to the gravitational entropy
only if they contribute to the instanton. Thus extreme black
hole horizons make no contribution to the entropy, even if
they have nonzero area. This confirms that the pair creation
probability of extreme black holes is lower than that of
nonextreme black holes. We can estimate the suppression
of the pair creation of extreme black holes relative to that of
nonextreme black holes as a factor eSbh , where Sbh is the
entropy associated with the black hole horizon.

V. FINAL REMARKS

In this paper we have studied potential quantum insta-
bilities of de Sitter spacetime due to nucleation of NCBHs.
We have solved Einstein equations with both nonvanishing
cosmological constant and energy-momentum tensor. In
order to determine the NCSchwdS solution, the energy-
momentum tensor was chosen in agreement with smearing
prescriptions which led to the NCSchw solution in asymp-
totically flat space. We have found an everywhere regular
geometry for both positive- and negative-mass parameter.
For positive masses, the solution admits one, two, or three
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horizons. The last case corresponds to an inner black hole
horizon r�, an outer black hole horizon rþ, and a cosmo-
logical horizon rc. In the case of two horizons, either r�
and rþ or rþ and rc coalesce, corresponding to the case of
extremal or Nariai regular black holes. In the case of a
single horizon r1 there exist several geometries with posi-
tive- as well as negative-mass parameter. These geometries
turn out to be topologically equivalent to that with a
cosmological horizon, regardless of the value of r1. On
the thermodynamic side, we have computed the tempera-
ture of NCSchwdS black holes. Contrary to conventional
Schwarzschild black holes, the profile of the temperature
admits a maximum value avoiding the divergence in the
final stage of the evaporation. Indeed the black hole, after
the temperature peak, cools down towards a configuration
of thermal equilibrium with the de Sitter background bath.
This final configuration corresponds to the case of a degen-
erate black hole horizon r� ¼ rþ. Apart from small devi-
ations due to the de Sitter influence, the process resembles
what happens in the case of asymptotically flat space
NCSchw black holes. On the other hand, the temperature
of the cosmological horizon Tc approaches the conven-
tional value TdS, even if we always have Tc > TdS for
the thermal contribution of the black hole. As a second
step, we determined the action generating the energy-
momentum tensor for the NCSchwdS solution. The
Euclidean version of this action permits us to analyze the
quantum probability of having each of all the aforemen-
tioned gravitational objects, namely, universes with three,
two, or one horizon. This probability is compared with that
for the de Sitter background. By calculating instantons, we
showed that the probability of producing gravitational
NCBHs or the other gravitational objects is exponentially
small and lets us conclude that de Sitter space is at the

present time quantum mechanically stable in agreement
with experience. However, we found that the nucleation of
NCBHs is relevant for Planckian values of the cosmologi-
cal constant, i.e., �G� 1. Therefore the only time when
black hole pair creation was possible in our Universe was
during the inflationary era, since during both the radiation
and matter dominated eras until the present time, the
effective cosmological constant was nearly zero. In the
absence of additional constraints there appears to be an
instability toward production of M< 0 solitons.
However, even for �G� 1 the production of M> 0

Planck size black holes (or solitons) seems to be strongly
disfavored, a fact that is against the conventional scenario
based on the Schwarzschild–de Sitter spacetime [21]. For
this reason we believe that the present analysis should be
extended to the case of a specific model for inflation,
including recent proposals which exploit, in place of the
inflaton field, noncommutative quantum fluctuations to
drive the universe expansion [36,37].
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