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A new q deformation of the Euclidean EPRL/FK (Engle-Pereira-Rovelli-Livine/Freidel-Krasnov)

vertex amplitude is proposed by using the evaluation of the Vassiliev invariant associated with a

4-simplex graph [related to two copies of quantum SU(2) group at different roots of unity] embedded

in a 3-sphere. We show that the large-j asymptotics of the q-deformed vertex amplitude gives the Regge

action with a cosmological constant. In the end we also discuss its relation with a Chern-Simons theory on

the boundary of 4-simplex.
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I. INTRODUCTION

The spinfoam formalism is currently understood as a
covariant formulation of loop quantum gravity (LQG)
[1–5]. In an LQG community, it was commonly conjec-
tured that one should make a q deformation of the spin-
foam amplitude (with quantum group) in order to
implement the cosmological constant term in the theory
[3,6,7]. Such a conjecture was suggested by the lesson
from 3d gravity and 4d topological field theory. In 3d
gravity, the Turaev-Viro model [8] is a deformation of
the Ponzano-Regge model [9] by the quantum group
SUqð2Þ (q is a root of unity). The partition function of

the Turaev-Viro model is finite, and its large spin asymp-
totics give the 3d Regge action with a positive cosmologi-
cal constant [10]. In 4d, the Crane-Yetter model [11] is a
deformation of 4d SU(2) BF theory (the Ooguri model
[12]) by SUqð2Þ (q is a root of unity). The partition function

of the Crane-Yetter model is finite and shown to be the
partition function of 4d SU(2) BF theory with a cosmo-
logical constant [13].

For 4d quantum gravity, there are early pioneer works
for q-deformed LQG [6]. In the spinfoam formulation,
there are several proposals to make q-deformed spinfoam
models, which are hoped to give the cosmological constant
term in the semiclassical limit [14–17]. In this paper, we
propose a new q deformation of the Euclidean EPRL/FK
(Engle-Pereira-Rovelli-Livine/Freidel-Krasnov) vertex
amplitude by using the evaluation of the Vassiliev invariant
associated with a 4-simplex graph [relates to the quantum
group SUqþð2Þ � SUq�ð2Þ with q� roots of unity]. We also

show that the large-j asymptotics of the q-deformed vertex
amplitude gives the Regge action with cosmological con-
stant. This result can be considered evidence supporting
the statement that the q-deformation of spinfoam

amplitude implements the cosmological constant term in
the framework of covariant LQG.

II. HEURISTIC DEFORMATION

Before we come to the systematic q-deformation of the
amplitude, we first present a heuristic deformation of EPRL/
FK vertex amplitude to give an idea for obtaining the cos-
mological constant term in the spinfoam vertex amplitude.
Given a 4-simplex�, we label by a; b ¼ 1; . . . ; 5 the five

tetrahedra on the boundary of the 4-simplex and denote by
the pair ða; bÞ the triangle shared by two tetrahedra a and b.
We assume that because the Barbero-Immirzi parameter
0<�< 1, the Euclidean EPRL/FK vertex amplitude can
be written in a coherent state representation [18] (� stands
for the self-dual/anti-self-dual contribution):

A�ðkab;nabÞ :¼ð�1Þ�
Z Y5

a¼1

dg�a
Y
a<b

P�
abðkab;g�a ;nabÞ; (1)

where ð�1Þ� is a sign defined by the diagrammatic calcu-
lus of SU(2) spin-network, P�

ab is a coherent propagator

P�
ab

:¼ hj�ab;�nabjðg�a Þ�1g�b jj�ab; nbai; (2)

ga (a ¼ 1; . . . ; 5) are 2� 2 SU(2) matrices, and jj; ni is a
coherent state in the spin-j representation of SU(2) [19].

Here fkab; nabg with j�ab ¼ 1��
2 kab and nab 2 S2 is a set of

boundary data for a vertex amplitude. The vector jabnab is
an oriented area vector of the triangle ða; bÞ viewed at the
tetrahedron a. The coherent state representation of
the EPRL/FK vertex amplitude is the starting point for

FIG. 1 (color online). The �þ
5 graph with one crossing between

l31 and l42.
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the asymptotic analysis, and it turns out also to be useful in
the analysis of a quantum group spinfoam vertex.

Now we make a heuristic modification of the EPRL/FK
vertex amplitude: We consider a 4-simplex graph �þ

5

(Fig. 1). In Fig. 1 we order the 5 nodes on the paper from
left to right, and connect the nodes by oriented links. A link
oriented from the node a to the node b is denoted by lab.
We notice that there is a crossing between the links l31 and
l42, which motivate us to make the following modification
of the coherent propagator P�

31 and P�
42. We define two

operators R� on the SU(2) tensor representations Vj�
31
�

Vj�
42
, respectively1:

R� :¼ exp

� �4i

ð1� �Þ2 !
X3
j¼1

X�
j � X�

j

�
; (3)

where ! is a real dimensionless parameter (a deformation
parameter), and X�

j are self-dual/anti-self-dual generators

of spin(4) with commutator ½X�
j ; X

�
k � ¼ i�jklX

�
l . We write

formally that R� � P
R�R�

31 � R�
42, and insert them by

hand into the coherent propagators, i.e. we modify
P�
13P

�
24 by

!P�
31

!P�
42 ¼

X
R�

hj�31;�n31jðg�3 Þ�1R�
31g

�
1 jj�31; n13i

� hj�42;�n42jðg�4 Þ�1R�
42g

�
2 jj�42; n24i; (4)

while we leave the other coherent propagators unchanged
as Eq. (2). The modified (deformed) vertex amplitude is
defined in the same way as Eq. (1) but with modified
coherent propagator. We denote the modified vertex am-
plitude by A!

�ðkab; nabÞ, which can written by

A!
�ðkab; nabÞ ¼

Z Y5
a¼1

dg�a K!
31;42

Y
a<b

P�
ab; (5)

where K!
31;42 is a ratio

K !
31;42 ¼

Q
�¼�

!P�
31

!P�
42Q

�¼�
P�
13P

�
24

: (6)

We can then expand Eq. (3) into a power series of!, which
results in a power expansion of K!

31;42 in terms of the

deformation parameter !. A building block for construct-
ing the power expansion of K!

31;42 is

Y
ab¼31;42

hj�ab;�nabjðg�a Þ�1X�
k1
� � �X�

kn
g�b jj�ab; nbai

hj�ab;�nabjðg�a Þ�1g�b jj�ab; nbai
; (7)

which contributes the power expansion at the order !n.

By using the resolution of identity for coherent state
dimðjÞRS2 dnjj; nihj; nj ¼ 1j, we can compute

hjab;�nabjg�1
a Xk1 � � �Xkngbjjab; nbai

hjab;�nabjg�1
a gbjjab; nbai

¼ dimðjabÞn�1

hjab;�nabjg�1
a gbjjab; nbai

Z
ðS2Þn

dn1 � � � dnn
� exp½2jabðlnh�nabjg�1

a jn1i þ � � � þ lnhnnjgbjnbaiÞ�

� jab
h�nabjg�1

a �k1 jn1i
h�nabjg�1

a jn1i
� � � jab

hnnj�kngbjnbai
hnnjgbjnbai ; (8)

where we have used the following identity:

hj;�n1jg�1
1 Xkg2jj; n2i ¼ jh�n1jg�1

1 �kg2jn2i
� h�n1jg�1

1 g2jn2i2j�1: (9)

We scale the spin jab � �jab and study the large-j asymp-
totic behavior of the integral in Eq. (8) as � ! 1. The
leading asymptotics is determined by the critical point of
the action

S0¼2jab½lnh�nabjg�1
a jn1iþ���þ lnhnnjgbjnbai�: (10)

The condition ReS0 ¼ 0 gives the critical equations

� ganab ¼ n1 ¼ n2 ¼ � � � ¼ nn ¼ gbnba: (11)

The variations of the action �S0=�nk vanishes automati-
cally, once the above critical equations are satisfied. The
asymptotics of Eq. (8) is given by the integrand evaluated
at the critical point (critical equations). By using the
following relation

h�nabjg�1
a ~�gbjnbai

h�nabjg�1
a gbjnbai

¼ ~nba � ~nab þ i~nab � ~nba
1� ~nab � ~nba ; (12)

where ~nab ¼ ganab, we obtain the following asymptotic
formula:

h�jab;�nabjg�1
a Xk1 � � �Xkngbj�jab; nbai

h�jab;�nabjg�1
a gbj�jab; nbai

� �jabðgbnbaÞk1 � � ��jabðgbnbaÞkn½1þ oð1=�Þ�: (13)

Since Eq. (7) is a product of two factors with ab ¼ 31 and
ab ¼ 42, the building block in Eq. (7) scales as �2n as its
leading large-j asymptotics. Moreover, Eq. (7) contributes
the expansion at the order !n, thus [!n � Eqð7Þ] does
not scale asymptotically if we propose a scaling of ! by
! � !=�2.
From Eq. (13) we see that the asymptotic formula of a

coherent state expectation value for Xk1 � � �Xkn is given by

simply replacing each ~X by �jabðgb ~nbaÞ. Then we find that
under the scaling jab � �jab and ! � !=�2, the
asymptotic formula for K!

31;42 as � ! 1 is obtained by

considering the product RþR� and replacing each ~X� in
RþR� by �j�ab ~n

�
ba ( ~n�ba ¼ g�b ~nba):

1The original EPRL/FK amplitude does not take into account
the embedding of the 4-simplex spin-network, i.e. it does not
depend on whether l31 is over-crossing or under-crossing l42.
However, the deformed amplitude does take into account the
embedding, thanks to the operators R�.
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K !
31;42 � ei!V31;42½1þ oð1=�Þ�; (14)

where we denote

V31;42 :¼ k31 ~n
þ
13 � k42 ~nþ24 � k31 ~n

�
13 � k42 ~n�24: (15)

Recall that j�ab ¼ 1��
2 kab.

We write
Q

a<bP
�
ab ¼ eS in the deformed vertex ampli-

tude A!
� in Eq. (5), where S is a ‘‘spinfoam action’’ used in

the spinfoam asymptotic analysis [18]

S ¼ X
a<b

X
�¼�

2j�ab logh�nabjðg�aÞ�1g�bjnbai: (16)

The spinfoam action S does not depend on !. Thus under
the scaling k � �k,! � !=�2, and � ! 1, the eS part of
the integrand is affected only by the scaling of the spins
kab. The critical point of the action S under � ! 1 is
analyzed in [18]. The critical equations from S

X
b

kabnab ¼ 0; g�a nab ¼ �g�b nba (17)

imply that (i) the closure of each tetrahedron and (ii) two
neighboring tetrahedron are glued with each other at a
triangle. Note that the critical equations (17) from S are
consistent with the critical equations (11) from S0. Suppose
we fix a set of boundary data fkab; nabg corresponding to a
nondegenerated flat 4-simplex Regge geometry, and also
fix the dihedral angles between each pairs of neighboring
tetrahedra (e.g. via imposing boundary state [20]), then
there is a unique solution ðgþa ; g�a Þ for the above critical
equations. The solution specifies uniquely a bivector
geometry of the 4-simplex up to an inversion. The bivector
(at the center of the 4-simplex) for each triangle ða; bÞ is
given by

Babð�Þ ¼ ðBþ
ab; B

�
abÞ ¼ �kabðgþa ; g�a Þðnab; nabÞ: (18)

Then one can see immediately the above V31;42 evaluated at

the critical point ðgþa ; g�a Þ gives precisely the 4-volume of
the 4-simplex � (up to an overall constant)

V31;42jcritical ¼ Bþ
31 � Bþ

42 � B�
31 � B�

42 ¼ V�: (19)

For a geometrical 4-simplex, this expression of a 4-volume
does not depend on the choice of triangle (3, 1) and (4, 2).

The asymptotics of the deformed vertex amplitude A!
� is

given by its integrand K!
31;42e

S evaluated at the critical

point satisfying both Eqs. (11) and (17) from both actions S
and S0. We have seen that the two critical equations (11)
and (17) are consistent with each other. The action S
evaluated at the critical point gives the 4-simplex Regge
action iSRegge ¼ i‘2p

P
a<b�kab�ab without cosmological

constant. Equation (14) gives the asymptotic behavior of
K!

31;42. Therefore, we have the following large-j

asymptotics

A!
� �

�
2�

�

�ðD=2Þ eindHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detHjp e
i�
P
a<b

�kab�ab

ei!V�½1þ oð1=�Þ�

(20)

under kab � �kab, ! � !=�2, and � ! 1, where H is
the Hessian matrix of the spinfoam action S, and D is the
dimension of the integral. The above asymptotic formula
manifests that the deformation parameter! is proportional
to the cosmological constant � in Regge gravity. Note that
the above Regge action with �

SRegge;� ¼ ‘2p
X
a<b

�kab�ab þ�V� (21)

corresponds to the Regge calculus approximation of con-
tinuous curved geometry with flat 4-simplices.
We now discuss the physical meaning of the scaling

kab � �kab, ! � !=�2, and � ! 1, which leads us to
the asymptotic formula Eq. (20). Given a cosmological
constant � ¼ 1=‘2c where ‘c is the cosmological length,
the dimensionless parameter ! has to be interpreted as
! ¼ �‘2p ¼ ‘2p=‘

2
c from the asymptotic formula Eq. (20).

The spins kab relate to the area Aab of the triangle shared by
tetrahedra a and b by the relation �kab ¼ Aab=‘

2
p. Then the

scaling kab � �kab can be understood as a scaling of the
Planck length by ‘2p � ��1‘2p while keeping the area Aab

fixed. The other scaling ! � !=�2 combined with ‘2p �
��1‘2p results in the scaling of the cosmological length

‘2c � �‘2c. As � ! 1, we see that the asymptotic formula
Eq. (20) is valid in the regime where the area Aab is much
larger than the Planck area ‘2p but much smaller than the

cosmological area ‘2c. The assumption that the cosmologi-
cal length ‘c is much larger than the physical scale of the
4-simplex is the reason why we can approximate the local
geometry with a flat 4-simplex given by the critical equa-
tions (17) and the boundary data fkab; nabg.

III. Q-DEFORMATION AND VASSILIEV
INVARIANTS

From the above derivation, we have seen that the ex-
pected cosmological constant term comes from the inser-
tion of the operator R� in the vertex amplitude, which is
responsible for the crossing in the spin-network graph �þ

5 .

Here we present a more systematic deformation of the
EPRL/FK vertex amplitude by using the evaluation of
Vassiliev invariants [21] (see also [13] for a brief introduc-
tion). The resulting q-deformed vertex amplitude has
the same asymptotic behavior as the above heuristic
deformation.
Let us recall Eq. (1) and carry out the integration over

g�a . We obtain

A�ðkab; nabÞ ¼
X
fi�a g

f15jg�
i�a

Y5
a¼1

fi�a ðj�ab; nabÞ; (22)
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where f15jg�
i�a

denotes two copies of SU(2) 15j symbol

with spins j�ab and intertwiners i�a , and fi�a ðj�ab; nabÞ de-
notes two copies of SU(2) intertwiner i�a in the coherent
state representation.

We define a deformation of the vertex amplitude by
simply replacing the 15j symbols in Eq. (22) by two
q-deformed 15j symbols with q� at different roots of unity.
Therefore, we define the q-deformed EPRL/FK vertex
amplitude by

Aq
�ðkab; nabÞ :¼

X
fi�a g

f15jg�
i�a ;q�

Y5
a¼1

fi�a ðj�ab; nabÞ: (23)

The q-deformed 15j symbols are obtained from the evalu-
ation of a 4-simplex spin-network with the corresponding
Vassiliev invariant. Here we briefly describe the procedure
for the construction.

Let X be a one-dimensional oriented compact manifold
(an oriented graph). A chord diagram with support X is
defined by the union C ¼ D [ X, whereD (dashed lines) is
a (nonplanar) graph with end points on X, and the graph D
has only univalent and trivalent vertices. The degree of the
chord diagram C is defined by half of the number of
vertices in D. We define a vector space AnðXÞ generated
by all the chord diagrams with degree n, subject to some
relations [13,21,22]

The space of chord diagrams is used to define the
universal Vassiliev invariant for the framed links. Given a
deformation parameter q ¼ eih, the Vassiliev invariant Z
assigns to any framed link X a formal power series ZðXÞ ¼P1

n¼0 h
nZnðXÞ, where the coefficients ZnðXÞ 2 AnðXÞ is a

linear combination of degree-n chord diagrams. Given the
link X, we need three types of building blocks to construct
ZnðXÞ to each order: (1) For each crossing in X we assign a
braiding R 2 P 2. (2) For each maximum or minimum in X

we assign an unknot ��ð1=2Þ 2 P 1. (3) There is also an
associator � 2 P 3 [23]. Here P n denotes the space of the
series of chord diagrams based on n lines in X. These
building blocks are expressed as power series in Fig. 2
(in the exponential for the R matrix, the product of two
chord diagrams is defined by placing one diagram on top of
the other).

Given a compact Lie group G and a spin-network s
based on the oriented graph X, for each chord diagram
based on X, we can define the evaluation map �G;s given

by Fig. 3. Here Xa is a basis of the Lie algebra LieðGÞ with
structure constant fabc, and tabXaXb is the quadratic casi-
mir of LieðGÞ. It turns out that the evaluation�G;s of links

gives the same result as the Reshetikhin-Turaev evaluation
of the link associated with the quantum group UqðGÞ
[21,24,25].
For a 4-simplex SU(2) spin-network based on the graph

�þ
5 , the corresponding 15j symbol f15jgia;q is given by the

evaluation of Fig. 4 with appropriate insertions of

R-matrix, associators � and unknots �ð1=2Þ. We evaluate
Fig. 4 for both the self-dual and anti-self-dual sector, and
insert them in the definition of the q-deformed vertex
amplitude Eq. (23). As we did for the heuristic deformation
A!
� , we expand the q-deformed vertex amplitude Aq

� into a
power series of !. For the braiding R matrix responsible
for the only crossing in Fig. 4, its evaluation coincides with
Eq. (3) used in the heuristic deformation, if we choose the

deformation parameter q� ¼ eih
�
such that

h� ¼ � 8

ð1� �Þ2 !: (24)

In the following, we show that both the associator� and
unknot � do not contribute to the leading asymptotic
behavior of Aq

� under the scaling kab � �kab, ! �
!=�2, and � ! 1. First of all, the SU(2) evaluation of
unknot � can be expanded as a power series of h by (see
e.g. [21])

� ¼ X1
n¼0

qnðcÞh2n; (25)

where c is the quadratic casimir of su(2); the polynomial
function qn relates to the Bernoulli polynomial B2nþ1 by

qn

�
x2 � 1

2

�
¼ 2

ð2nþ 1Þ!
B2nþ1½12 xþ 1

2�
x

: (26)

In the scaling of spins kab � �kab, the quadratic casimir
scales as �2. Then qnðcÞ scales as �2n since B2nþ1½�x� �
�2nþ1B2nþ1½x� as � ! 1. As a result each term qnðcÞh2n inFIG. 2. The building blocks for Vassiliev invariant.

FIG. 3. Evaluation of Vassiliev invariant.
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Eq. (25) scales as ��2n by taking into account the scaling
! � !=�2. Thus the leading asymptotic behavior of Aq

�

only sees � ¼ 1 since all the higher order corrections only
contribute oð1=�Þ terms in Eq. (20) as � ! 1.

The perturbative expansion of the associator � can be
presented in terms of chord diagrams in Fig. 2, where
the degree-n chord diagram at each hn order is built by
connecting the 3-valent vertices of the dashed lines in
Fig. 3. There are 2n vertices in each degree-n diagram, in
which there arem vertices are attached to the framed links.
Thus 2n�m is the number of internal 3-valent vertices
and 2n�m> 0 for a nontrivial chord diagram. When we
scale spins kab � �kab and � ! 1, the evaluation of each
vertex attached to a framed link gives a factor of �j�ab ~n

�
ab as

its leading asymptotics, since on each link the su(2) gen-
erator Xa is sandwiched by SU(2) coherent states. Thus for
each degree-n diagram in the perturbative expansion of�,
the scaling of spins kab � �kab leads to a scaling �

m of the
diagram, while the other scaling ! � !=�2 contributes
hn � ��2nhn. Thus the overall scaling of each term is

��ð2n�mÞ, from which we see that the nontrivial diagrams
in� only contribute to the oð1=�Þ-terms in the asymptotic
formula as � ! 1.

The above power-counting shows that we can take
� ¼ 1 and � ¼ 1 for the asymptotic analysis of the
q-deformed vertex amplitude Aq

�. By the coincidence of
the R-matrix between Aq

� and A!
� , the asymptotic analysis

of Aq
� reduces to the previous analysis of heuristic defor-

mation A!
� , i.e. under the scaling kab � �kab, ! � !=�2,

and � ! 1, Aq
�, and A!

� have the same asymptotic behav-
ior. Thus we can write down the asymptotic formula of the
q-deformed vertex amplitude with a given Regge boundary
data:

Aq
� �

�
2�

�

�ðD=2Þ eindHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detHjp e
i�
P
a<b

�kab�ab

ei!V�½1þ oð1=�Þ�:

(27)

Before conclusion, we would like to point out an inter-
esting fact: there is another possibility for obtaining the
same asymptotics from another q deformation. We use the
deformation parameter h� ¼ 8

ð1��Þ2 ! instead of Eq. (24)

but evaluate the self-dual and anti-self-dual 15j symbols on
different graphs, i.e. we evaluate the self-dual sector on the
�þ
5 graph as before but evaluate the anti-self-dual sector on

the ��
5 graph Fig. 5 with the opposite crossing (with

braiding R�1) to the one in �þ
5 . Then it is not hard to see

that the resulting q-deformed vertex amplitude has the
same asymptotic behavior as the above up to higher order
in ��1.

IV. CONCLUSION AND DISCUSSION

To summarize, in this paper we propose a new q defor-
mation of the Euclidean EPRL/FK spinfoam vertex ampli-
tude. The concrete construction uses the evaluation of the
Vassiliev invariant from a 4-simplex graph. We also show
that the asymptotics of the q-deformed vertex amplitude
gives the Regge gravity with a cosmological constant
(from Regge calculus using flat 4-simplices) in the regime
that the physical scale of the 4-simplex is much greater
than the Planck scale ‘p but much smaller than the cos-

mological area ‘c.
The Vassiliev invariants of links come from the

Feymann diagrams of perturbative Chern-Simons theory,
for evaluating the link observables [22,24]. The q defor-
mation of the 15j symbol employed above can be viewed
as a Chern-Simons expectation value of a 4-simplex spin
network. Moreover, we suppose the boundary of the
4-simplex under consideration is a 3-sphere S3, and the
q-deformed vertex amplitude for this 4-simplex is given by
the following expectation value of a Chern-Simons theory
[with gauge group spinð4Þ ¼ SUð2Þ � SUð2Þ] on the
boundary 3-manifold:

Aq
� ¼

Z
�½A��eðð2�iÞ=ðhþÞÞSCS½Aþ�þðð2�iÞ=ðh�ÞÞSCS½A��DA�;

(28)

where SCS½A� is the SU(2) Chern-Simons action, and
�½A�� is a projective spin-network function on spin(4)
holonomies [26] associated with a 4-simplex graph �þ

5

(or two graphs ��
5 ) imbedded in the boundary 3-sphere.

Interestingly, this result also relates to an old idea by L.
Smolin et al. (see [6]).
In addition, although all the discussion in this paper

concerns only a single 4-simplex, the asymptotic analysis
can be done also for a triangulation with arbitrary many
4-simplices, which results in a Regge action with a cos-
mological constant (from the Regge calculus with flat
simplices) on the triangulation. The detailed analysis will
be reported in [27].

FIG. 4. The evaluation of 4-simplex graph via Vassiliev
invariant.

FIG. 5 (color online). The ��
5 graph.
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Finally we note that the scaling kab � �kab,! � !=�2

used in this paper leads us to the Regge calculus with a flat
4-simplex, which is an approximation of curved geometry
in the presence of a cosmological constant. It would be
interesting to find the relation between the q-deformed
vertex amplitude and a curved 4-simplex with constant
curvature, in analogy with the 3d case (see e.g. [28]). We
leave this point to the future research.
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