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Renormalization for the self-potential of a scalar charge in static space-times
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A method is presented which allows for the renormalization of the self-potential for a scalar point
charge at rest in static curved space-time. The method is suitable for the scalar field with arbitrary mass m
and coupling to the scalar curvature. The asymptotic behavior of self-potential is obtained in the limit in
which the Compton wavelength 1/m of the massive scalar field is much smaller than the characteristic
scale of curvature of the background gravitational field. The self-force is calculated in this limit.
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L. INTRODUCTION

It is known that a charged particle interacts with the
field, the source of which is this particle. In flat space-time
the effect is determined by the derivative of acceleration of
the charge [1]. The origin of self-interaction in curved
space-times is associated with the nonlocal structure of
the field. In static curved space-times and space-times
with nontrivial topology the self-force can be nonzero
even for the charge at rest (here and below the words
‘““at rest” mean that the velocity of charge is collinear to
the timelike Killing vector which always exists in a static
space-time). The formal expression for the electromagnetic
self-force in an arbitrary curved space-time has been de-
rived by DeWitt and Brehme [2] and a correction was later
provided by Hobbs [3]. Mino, Sasaki, and Tanaka [4] and
independently Quinn and Wald [5] obtained a similar ex-
pression for the gravitational self-force on a point mass.
The self-force on a charge interacting with a massless
minimally coupled scalar field was considered by Quinn
[6]. A discussion of the self-force in detail may be found in
reviews [7-9].

Calculating the self-force one must evaluate the field
that the point charge induces at the position of the charge.
This field diverges and must be renormalized. There are
different methods of such type of renormalization. Some of
them are reviewed in [10,11]. Note also the zeta function
method [12] and the “massive field approach™ for the
calculation of the self-force [13,14]. In the ultrastatic
space-times the renormalization of the field of static charge
can be realized by the subtraction of the first terms from
DeWitt-Schwinger asymptotic expansion of a three-
dimensional Euclidean Green’s function [15-18]. In this
paper a similar approach expands to the case of static
space-times. In the framework of the suggested procedure
one subtracts some terms of expansion of the correspond-
ing Green’s function of a massive scalar field with arbitrary
coupling to the scalar curvature from the divergent expres-
sion obtained. The quantities of terms to be subtracted are
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defined by a simple rule—they no longer vanish as the
field’s mass goes to infinity. Such an approach is similar to
renormalization introduced in the context of the quantum
field theory in curved space-time [19,20]. The Bunch and
Parker method [21] is used for expansion of the corre-
sponding Green’s function of a scalar field.

The organization of this paper is as follows. In Sec. II,
we expand the potential of a scalar point charge as two
points (in 3D space) function in powers of distance be-
tween these points and determine the procedure of renor-
malization. In Sec. III we calculate the renormalized
self-potential of the scalar point charge in Schwarzschild
space-time, as an example of the presented method.
We discuss the results in Sec. IV. Our conventions are
those of Misner, Thorne, and Wheeler [22]. Throughout
this paper, we use units ¢ = G = 1.

II. RENORMALIZATION

Let us consider an equation for the scalar massive field
with source

¢mm;'u - (m2 + gR)(bm

——J= —47TQ[6(4)(X_XO(T)) e

where £ is a coupling of the scalar field with mass m to the
scalar curvature R, g(‘” is the determinant of the metric
8uv» q 1s the scalar charge, and 7 is its proper time. The
world line of the charge is given by x5 (7). The metric of
static space-time can be presented as follows:

)

ds? = _gtt(xi)dtz + gjk(xi)dxjdxk’ 2

where i, j, kK = 1, 2, 3. This means that one can write the
field equation in the following way:
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where m is the mass of the scalar field, g® = detg; ;> and
we take into account that d7/dr = ./g,, for the particle at
rest. In the case

3)

m> 1/L, 4

where L is the characteristic curvature scale of the back-
ground geometry, it is possible to construct the iterative
procedure of the solution of Eq. (3) with small parameter
1/(mL) [19-21]. This expansion can be used in the regu-
larization procedure of Rosenthal [13]

§€1f(x ) _ q hm {11_1"1’1 (¢(X; xO)a;Md)m(-X; )C()))

qm n,u(xO) + qmay,(x())}

> ) (&)

because this procedure demands the calculation of the
expansion of ¢, (x;xg) in terms of x* —x§ and 1/m
accurate to order O((x — x,)?) + O(1/m) only. In the ex-
pression (5) ¢ (x; xy) is the massless field induced by scalar
charge ¢, and x is a point near the charge’s world line
xo(7), defined as follows. At x, we construct a unit spatial
vector n*, which is perpendicular to the object’s world line
but is otherwise arbitrary (i.e. at x, we have n*n, =1,
n*u, = 0). In the direction of this vector we construct a
geodesic, which extends out an invariant length & to the
point x(x,, n*, 8); throughout this paper u* and a* denote
the object’s four-velocity and four-acceleration, at x,
respectively.

To construct the expansion of ¢,,(x; xy), let us consider
the equation for the three-dimensional Green’s function
Gg(x', xb)

10 ([ 4 9Ge(x, x))
- () ik ZTEM 707 &7
ax/ ( £78 axk )

g(3)

k 084 aGE(JC xo)
28, dx/ axk

8B (xl, xb)
)

— (m* + éR(x) G (¥, xp) = — (6)

8
and introduce the Riemann normal coordinates y’ in 3D

space with origin at the point x{) [23]. In these coordinates
one has

y
Rigjily—oy*y! + 0(—3) N

) 1
gij(yl) = 61] - 3

. . 1 ... 3
gWV)=5”+§Fﬂm=wWL+OG%) ®)
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g¥0G) =1- §Rij|y:0yly] + 0(3) ©)

where the coefficients here and below are evaluated at
y" =0 (i.e. at the point x{), and &;; denotes the metric of
a flat three-dimensional Euclidean spacetime. R;;;; and R;;
denote the components of Riemann and Ricci tensors of the
three-dimensional space-time with metric g;;

- 8t gn 8t
R,J = RJ > . ,
gtt 4gn (10)
R=F— 8 gn gn‘ ’
gtt 2gtt

where g, denotes the covariant derivative of a scalar
function g,,(y/) with respect to y in 3D space with metric
gi j(y ) (g,, is the covariant derivative of a vector g, at
point y* = O in 3D space, which coincides with the partial
derivative as T}, = 0 at y* =0 in the Riemann normal
coordinates). All indices are raised and lowered with J;;.

Defining G(y’) by

G(y') = /g Gy (11)

and retaining in (6) only the terms with coefficients involv-
ing two derivatives of the metric or fewer one finds that
G(y') satisfies the equation

Sii 3?6'_ Bl’gtt G 8l~j(gttv[k_gttv[g2ttvk) kaG
ay'ay’ 2gn ayj 28, 283 ay’
kol 2
_. Yy 9°G ( )
+R T — 4+ (== ¢R)G=-689(y). 12
Kl 3 FER 3 ()’) (12)

Let us present
GG = Go(y) + G + Gy + -+, (13)

where G,(y') has a geometrical coefficient involving a
derivatives of the metric at point y' = 0. Then these func-
tions satisfy the equations

. 9%Gy
g - 2G —5(3) , 14
aytay] 0 ()’) (14)
. 9%G G
1] _ l‘ _ G1 + 61} 0 O, (15)
ay'ay’ 2gt, ay/
. 9°G G, _..(8u _
S’Ji—?—m G, + 8124 Eu, il NS 5U<&_g”vfg’2’»k)
ay'ay’ 28y ay’ 284 284
aG, G R -
><y"—°+R’k’,y ! %Gy (——fR)Gozo. (16)
ay’ 3 aylay! \3

The function G, (y’) satisfies the condition
%Gy 5, . 0G
— .yl -

aytay’ oy

RiJyhy! =0, (17)
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since G(y') can be the function only of &,;y'y’/. Therefore
Eq. (16) may be rewritten
5,’j a2G_2(yl) _
ay'ay’

[1
+ | =
3
R
+(=— &R
(¢
Let us introduce the local momentum space associated

with the point y' =0 by making the 3-dimensional
Fourier transformation

8u, 9G,y
28, 9y’

gn’jgm)] X G,
- 2 ) P S
28 dy

m>G(y') + 8

81t

28

R+ o'

)GO —0. (18)
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- +oo [ dk,dk,dk o
G, () = f[ [ dhidkadks | iky)Go (k). (19)
—0o0 (27T)
It is not difficult to see that
Go(ki) = ! (20)
0 K+ m?
_ Siig. ki
Gy (k) = i St @1

lthr(kz + m2)2’

where k* = 8'k;k;. In momentum space Eq. (18) gives

_ Sgy ki _ Ri 8, 8, R -
— (K + )Gy (k) + i 281 G (ki) + [ik,.(—k oSt _ i L‘g;‘k)yk + (_ — §R)]G0(k’) = 0. (22)
it 3 284 284 3
Hence
‘Sijgrrv,-/- 5"jg,,v[g,,yj ikil2 B 8u; 5gttngrry
G_ (kl) = B 2gt1 2gn2 B §R klkja kajl(gle + g"l B 4grr2 ] (23)
: (k2 + m?)? (k2 + m?)?
Substituting (19)—(21) and (23) in (13) and integrating leads to
- - - exp(—my)[Z gu, y 1 ( Sijgtz,,» 35ijg"igm R)
GoO) + G,(Y) +G,()=——|-———=+—|— : L — ER+ —
o) + G(Y) + G (y) s7 Ly 22,y m Tg, 163, ¢R+ -
o 5g,.8, R.\viv
+ <_ Buy y 2BuiBu; J) &] (24)
48, 16g, 6 y
where
y = 48y'y. (25)
Using the definition of G(y’) (11), expansion (9), and expressions (10) one finds
i L i Y\ i
Gg(y') = [1 + gRijy ¥+ 0 F)]G()’)
— oyl Siig,  38Yg, g, R o 5gu 8y R.\yly
_ exp(—my) I:z 8w Yy +l(_ 8 n gttv,fn,, — R+ 5) n (_gtty,j gtty,gtztvj n J)yy
8 y 28,y m 48, 16g, 6 48, 16g, 6 y
1 y yz)]
+0|l——=|+ O0|—= )+ O|l=
(m2L3) (mL3) <L3
_ L{% _ & y_l _ 2 l[_ al.lg”’ij n 55l'lgtt,,§l”j _ <§ _ l)R] + mg”'iyl N mzy
8mly 284y m 12g, 48g4 6 81t
+ I:&jg”"'f - Saljg""'ftlrf + (f - 1>R:|y + (_ S, 7135’""%’4' + &) i 0( 21 3)
12g, 48g4 6 68, 488, 6 y m-L
2 3
y y my 3.2
+ 0(—mL3) + 0(?) + 0(?) + O(m’y )}. (26)
In the arbitrary coordinates of 3D space
vy — ul(xg)As = — o, (27)

where u/(x,) is the unit tangent vector to the shortest geodesic connecting points x, and x which is calculated at points x
and directed from x to x. As is the distance between these points along the considered geodesic. Therefore,
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S 1 2 81,0 1 gtt~;i 5gtt-gtt’i 1 gtt-o-i
Ge(x'; xt =—{—+ - —2m+—[— - . —( ——)Rx ]—m - +m2\/§
£l 0) 83720 2g,20 m 12g, 48&21 ¢ 6 (x0) 28
g, 58u.&n ( 1) 8n.,  138u.8n, Ri(xp)\ ool
+ L -+ €& ——)R(x )]\/é?c—' + (_ Ay SRR )
[ 12g, 488% 6 0 68 488t12 6 V20

1
+ 0
(m2L3

where g, denotes the covariant derivative of a scalar
function g,,(x,) with respect to x{, in 3D space with metric
8ij(x0) (8, is the covariant derivative of a vector g, at
point x in 3D space),

(o)
_ glj( 0) ool (29)
is one-half the square of the distance between the points xh
and x' along the shortest geodesic connecting them, and

(see, e.g., [24,25])

i i () — x)(xF — xf)

a J

. . 1
= —(d —x) =T
(x" — x{) 3
1 ariyN
- g(r;mrkm, + —alek)(x/ — x))(xk = xE)(xh = xb)
0

+0((x — xo)Y), (30)

where the Christoffel symbols F;k are calculated at the
point x.
Now we can use the expansion of

d)m(-xi;xé) = 47TQGE(XI,)C6) (31)

in the regularization procedure (5). But if we take the limits
before the partial differentiation in (5), then the last two
terms do not appear in the expression for f° iflf(xo). And in
the considered case of a charge at rest in a static spacetime
we can renormalize the self-potential as

d)ren(x) = xlolgk(d’(x’ )C()) - ¢DS(X; X())), (32)
where
ioyl) — 1 aglt(-xo) o' _
st = o ot e )
(33)

Gn(rirg) = 4mqG(r: ro)

) + 0(%) + 0(%) + 0(%?2) + 0(m2a)},

(28)

|

and ¢(x;x,) is the solution of (1) in the case of arbitrary
mass m (even m = 0). Finally the self-force acting on a
static scalar charge is

_ 49 a¢ren(x)
(0 ="3 "o -

self
"

(34)
III. THE SCHWARZSCHILD SPACE-TIME

Let us verify the above scheme for the well-known case
of a black hole space-time [26,27]

ds? = — f(rde* + d_r2 + r2(d6? + sin’6d ¢?),
f(r) (35)
7= (1-2%).
In the case x' — xi) = 8L(r — ry)
(. 1 df(”o) .
o' =—(r—ry + 1) dro (r — ro)?
1 3 df(ro)\2 f(ro)\,
8(4f<r0)2( dro ) 2f(ro)drg )(r &
_(r=r)* T, df(rg) ,
7" 27 [1 2y "
5 df(ro)\2 )\, _
" (16f(ro)2< dr ) 6f(ro)drg )(r ro) ]
(r— ”0)5
N o(T) (37

and the expansion of ¢(r;ry) for the massive field
(mL > 1) is

a1t =5, q M mM m? q q(r —rp)
— —gm+2(- + + —ry) + O(—L) + of L
|7 = rol m 2( 3r3 =21 rp(1— 2,—1:)/[) 1— 2_M)(r o) (mLz) ( mL? )
ro ro
(r — ro)? m(r — ro)?
+ 0<—q 5 ) + 0(gm?(r — rp)?) + 0(7" T ) (38)
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Therefore the renormalized counterterm for the massless
field is

dps(r;ro) :M-
[r = rol

(39)

This expression coincides with the unrenormalized poten-
tial @(x;x’) of a scalar point charge at rest in
Schwarzschild space-time in the case & = 0, m = 0 and
t=1,0=40 ¢ = ¢ [26]. Consequently the renormal-
ized expression for the self-potential is

bren(r) =0, and  f3(r) = 0. (40)

Note the derivative of (38) d¢(r;ry)/0r differs from
the corresponding expression in [14] by the term

—gM /(6131 —2M[ry).

IV. CONCLUSION

The considered approach gives the possibility to renor-
malize (32) the self-potential of scalar point charge ¢ at
rest in static space-time (2) and to calculate the self-force
(34) acting on this charge. Note that in the case in which
the Compton wavelength 1/m of the massive scalar field is
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much smaller than the characteristic scale L of curvature
of the background gravitational field at the considered
point x, we can obtain the approximated expression for
the renormalized self-potential

¢ren(x) = }()linm((bm(x’ XO) - ¢DS(X;XO))

.;i 5 ' N
_ &I:_ 8u, n 8u; 8" (5 _ E)R]
2ml 12g,  48g,’> 6

q
+ 0 .
<m2L3)

Of course the order of this expression in 1/(mL) is
less than the correspondent order of ¢,., for the massless
field (or field with mass m < 1/L). However, the expres-
sion (41) can be used for the verification of asymptotic
behavior of ¢, in the limit m — oo.

(41)
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