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We consider nonstationary spherically symmetric n-dimensional charged black holes with varying mass

mðvÞ and/or electric charge qðvÞ, described by generic charged Vaidya metrics with cosmological constant

� in double-null coordinates and perform a comprehensive numerical analysis of the fundamental

quasinormal modes (QNM) for minimally coupled scalar fields. We show that the instantaneous

quasinormal frequencies exhibit the same sort of nonstationary behavior reported previously for the

four-dimensional uncharged case with � ¼ 0. Such property seems to be very robust, independent of the

spacetime dimension and of the metric parameters, provided they be consistent with the existence of an

event horizon. The study of time-dependent Reissner-Nordström black holes allows us to go a step further

and quantify the deviation of the stationary regime for QNM with respect to charge variations as well. We

also look for signatures in the quasinormal frequencies from the creation of a Reissner-Nordström naked

spacetime singularity. Even though one should expect the breakdown of our approach in the presence of

naked singularities, we show that it is possible, in principle, to obtain some information about the naked

singularity from the QNM frequencies, in agreement with the previous results of Ishibashi and Hosoya

showing that it would be indeed possible to have regular scattering from naked singularities.
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I. INTRODUCTION

The quasinormal modes (QNM) analysis is a central
tool in the investigation of gravitational perturbations of
stars and black holes. (For recent comprehensive reviews
of the vast literature on the subject, see [1,2].) The QNM
analysis of black holes is particularly relevant due to the
possibility of observation of the ringdown signals in gravi-
tational wave detectors such as LISA; see [3] for instance.
Besides their relevance for future observations, the QNM
can also reveal important information about the structure
and behavior of solutions of the Einstein equations. Many
generalized solutions have been investigated, including
nonasymptotically flat [4–6], charged (see [7] for a com-
prehensive analysis) and time-dependent ones [8–14]. The
AdS/CFT conjecture, in particular, has motivated many
QNM analyses of generalized black hole solutions [15].
According to the conjecture, the QNM frequencies carry
information about the thermal properties of the associated
conformal field theory [1].

The Vaidya metric [16] was originally proposed to de-
scribe the spacetime outside a radiating star. It has also
been the usual starting point for the study of time-
dependent black holes QNM [9–13]. Namely, it corre-
sponds to a time-dependent solution of Einstein equations
for a spherically symmetric body immersed in a unidirec-
tional radial null-fluid flow. It has been also widely used in
the analysis of spherically symmetric collapse and the
formation of naked singularities for many years. (For

further references, see [17] and the extensive list of [18]).
It is also known that the Vaidya metric can be obtained
from the Tolman metric by taking appropriate limits in the
self-similar case [19]. This result has shed some light on
the nature of the so-called shell-focusing singularities [20],
as discussed in detail in [18–23]. The Vaidya metric has
also proved to be useful in the study of Hawking radiation
and the process of black hole evaporation [24–27], in the
stochastic gravity program [28], and in recent numerical
relativity investigations [29]. The charged version of the
metric is also an usual starting point to the study of many
aspects of charged black hole physics and naked singular-
ities [30–34].
The main purpose of the present paper is to consider the

QNM of time-dependent backgrounds corresponding to a
general Vaidya metric, with special emphasis on nonsta-
tionary effects, generalizing and further developing the
work done in [11,12]. This kind of QNM analysis is
certainly relevant from the physical point of view since,
for instance, it is quite natural to expect that a real black
hole be affected by processes that can change its mass such
as, for instance, mass accretion or even Hawking radiation,
which would indeed imply a decreasing mass. Any signal
coming from a black hole could, in principle, have some
nonstationary component.
As a secondary objective, we show that our numerical

setup can be used to investigate the QNM frequencies in
the case of a Vaidya metric evolving towards a Reisser-
Nordström naked singularity. One should expect the
breakdown of our approach in the presence of a naked
singularity, of course. However, we show that it is in
principle possible to obtain some information about the
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singularity from the QNM frequencies, in agreement with
the results of Ishibashi and Hosoya [35], who conclude that
it is indeed possible to have regular scattering from naked
singularities.

This paper has three more sections. In the next one we
present the main equations describing the most generic
Vaidya metric in double-null coordinates and write the
scalar wave equation in a canonical hyperbolic form, spe-
cially suitable for the numerical analysis presented in
Sec. III. In the last section, we present some concluding
remarks.

II. THE SCALAR WAVE EQUATION
IN THE VAIDYA SPACETIME

The n-dimensional Vaidya metric was first discussed in
[36]. It can be easily cast in n-dimensional radiation coor-
dinates ðv; r; �1; . . . ; �n�2Þ as done, for instance, in [37].
The n-dimensional charged Vaidya metric in radiation
coordinates, obtained originally in [31], reads

ds2 ¼ �
�
1� 2mðvÞ

ðn� 3Þrn�3
þ q2

ðn� 2Þðn� 3Þr2ðn�3Þ

�
dv2

þ 2cdrdvþ r2d�2
n�2; (1)

where n > 3, c ¼ �1, and d�2
n�2 stands for the metric of

the unit ðn� 2Þ-dimensional sphere, assumed here to be
spanned by the angular coordinates ð�1; �2; . . . ; �n�2Þ in
the usual way. For the case of an ingoing radial flow, c ¼ 1
and mðvÞ is a monotonically increasing mass function in
the advanced time v, while c ¼ �1 corresponds to an
outgoing radial flow, with mðvÞ being in this case a mono-
tonically decreasing mass function in the retarded time v.
The constant q corresponds to the total electric charge.
In principle, one can also consider time-dependent charges
q as done, for instance, in [32]. This situation will of course
require the presence of charged null fluids and currents,
whose realistic nature we do not address here. We have
already reported some preliminary results on QNM for this
case in [38].

We will now extend the approach proposed in [39,40]
and derive the double-null formulation for the most general
Vaidya metric: n-dimensional, in the presence of a cos-
mological constant, and with varying electric charge. Only
the main results are presented. The reader can get more
details on the employed semianalytical approach in [39,40]
and the references cited therein. We recall that the
n-dimensional spherically symmetric line element in
double-null coordinates ðu; v; �1; . . . ; �n�2Þ is given by

ds2 ¼ �2fðu; vÞdudvþ r2ðu; vÞd�2
n�2; (2)

where fðu; vÞ and rðu; vÞ are nonvanishing smooth func-
tions. The energy-momentum tensor of a unidirectional
radial null-fluid in the eikonal approximation in the pres-
ence of an electromagnetic field Fab is given by

Tab¼ 1

8�
hðu;vÞkakbþ 1

4�

�
FacFb

c�1

4
gabFcdF

cd

�
; (3)

where ka is a radial null vector and hðu; vÞ is a smooth
function characterizing the null-fluid radial flow. We will
consider here, without loss of generality, the case of a flow
along the v direction.
From the Einstein-Maxwell equations with metric (2)

and energy-momentum tensor (3) we obtain the following
equations for the functions f, h, and r:

f ¼ 2Br;u; (4)

h ¼ �2

�
n� 2

n� 3

�
B

rn�2

�
m;v � 1

n� 2

ðq2Þ;v
rn�3

�
; (5)

r;v ¼ �B

�
1� 2mðvÞ

ðn� 3Þrn�3
� 2�r2

ðn� 2Þðn� 1Þ

þ 2q2ðvÞ
ðn� 2Þðn� 3Þr2ðn�3Þ

�
; (6)

where BðvÞ, mðvÞ, and qðvÞ are arbitrary integration func-
tions. If we choose BðvÞ ¼ constant, we can interpretmðvÞ
and qðvÞ as the mass and charge of the solution, respec-
tively. These two functions must be monotonic and must be
chosen in a way that satisfies the null-energy condition
[32]. The details of the derivation of Eqs. (4)–(6) and the
full analysis of the charged Vaidya metric in duble null
coordinates will be presented in another paper currently
under preparation.
For our QNM analysis we will consider the evolution of

a massless scalar field governed by the Klein-Gordon
equation

1ffiffiffiffiffiffiffi�g
p ð ffiffiffiffiffiffiffi�g

p
gab�;bÞ;a ¼ 0; (7)

in the background (2). Taking advantage of the spherical
symmetry, we decompose the scalar field in terms of
higher-dimensional spherical harmonics

� ¼ X
‘;m

c ðu; vÞY‘mð�1; . . . ; �n�2Þ; (8)

for which

r2
�Y‘m ¼ �‘ð‘þ n� 3ÞY‘m; (9)

where r2
� stands for the Laplacian operator over the

ðn� 2Þ-dimensional unit sphere. Substituting the ansatz
(8) in (7), we obtain for the metric (2)

1

frn�2 ððrn�2c ;vÞ;uþðrn�2c ;uÞ;vÞþ‘ð‘þn�3Þ
r2

c : (10)

Using now the substitution c ¼ r�ðn�2=2Þ’, we get

’;uv þ Vðu; vÞ’ ¼ 0; (11)

where
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V ¼ ‘ð‘þ n� 3Þ
2r2

f� ðn� 2Þðn� 4Þ
4r2

r;ur;v � ðn� 2Þ
2r

r;uv:

(12)

The wave Eq. (11) is already written in a canonical
hyperbolic form and it will be the starting point for our
QNM analysis. Nevertheless, the potential (12) can still be
cast in a more convenient way. From Eqs. (4) and (6), we
find

ruv¼�f

�
m

rn�2
� 2�r

ðn�2Þðn�1Þ�
2q2

ðn�2Þr2n�5

�
; (13)

and

r;ur;v ¼ �f

�
1

2
� m

ðn� 3Þrn�3
� �r2

ðn� 2Þðn� 1Þ

þ q2

ðn� 2Þðn� 3Þr2ðn�3Þ

�
: (14)

Now we can finally write the potential Vðu; vÞ as

Vðu;vÞ¼f

2

�
‘ð‘þn�3Þ

r2
þðn�2Þðn�4Þ

4r2
þðn�2Þ2mðvÞ

2ðn�3Þrn�1

� n�

2ðn�1Þ�
ð3n�8Þq2ðvÞ
2ðn�3Þr2ðn�2Þ

�
: (15)

The conventions we adopted for the mass, electric charge,
and cosmological constant appearing in the potential (15)
and used in the derivations of this section are the standard
ones employed in the Vaidya metric literature. In particu-
lar, our expressions coincide, in the appropriate limits, with
the previous results for the � ¼ 0 [31] and for the q ¼ 0
[40] cases. However, the commonly employed conventions
in the QNM literature are slightly different; see, for in-
stance, [41].

III. NUMERICAL RESULTS

The wave Eq. (11) is already written in a canonical
hyperbolic form and it can be numerically integrated by
means of a characteristic scheme, i.e., one can evolve
’ðu; vÞ in v knowing ’ðu; v0Þ. In order to determine
Vðu; vÞ, one needs to know fðu; vÞ and rðu; vÞ and, con-
sequently, Eq. (6) must be solved in each evolution step.
Since only ’ðu; vÞ is required to determine ’ðu; vþ dvÞ,
one can implement the algorithm in an efficient way avoid-
ing unnecessary calculations. We use here the same nu-
merical scheme used in [11,12] to evolve the system and
read the QNM frequencies, which allows us to perform an
exhaustive numerical analysis with modest computational
resources.

All mass functions considered in this work are of the
form

2mðvÞ ¼ ðmf þmiÞ þ ðmf �miÞ tanh�mðv� vmÞ; (16)

where mi and mf stand for the initial and final mass,

respectively, and �m controls how fast the change is, with
the maximum rate of change at v ¼ vm. We use an analo-
gous expression for the time-dependent electric charge
qðvÞ. Our main results do not depend on the exact form
of the functions mðvÞ and qðvÞ. Choices such as (16),
however, are very convenient due to their smooth behavior
and the ‘‘asymptotically static’’ limits for v ! �1.
For the numerical calculation of the v-evolution, the

algorithm requires the evaluation of ’ðu; vÞ for all values
of u corresponding to the exterior region of the black hole,
let us say, for uh < u <1, with u ¼ uh corresponding to
the event horizon. Technically, it is easier to control the
approach to the regions near the horizon by introducing
an appropriated kind of tortoise coordinate U such that
the external region uh < u <1 will correspond to �1<
U<1.

A. Static case: Reissner-Nordström black hole

It is instructive to start by testing our code with the
standard Reissner-Nordström (RN) case, for which a vast
set of results is available in the literature [7]. The potential
(15) for n ¼ 4 and � ¼ 0 becomes simply

Vðu; vÞ ¼ f

2

�
‘ð‘þ 1Þ

r2
þ 2m

r3
� 2q2

r4

�
: (17)

In order to compare the QNM frequencies obtained from
the numerical integration of (11) for the potential (17) with
well-known results for the RN black hole, we perform the
following change of variables:

U¼ u� 2r2þ
rþ� r�

ln

�
�u

2
� rþ

�
� 2r2�
rþ� r�

ln

�
�u

2
� r�

�
;

(18)

where

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

q
; (19)

as usual for the RN black hole. This is necessary in order to
guarantee that the QNM frequencies be defined with re-
spect to the same scales. Moreover, the new tortoise coor-
dinate U given by (18) allows a better description of the
exterior region of the black hole, notably of the regions
very close to the horizon rþ. The numerical grid is, there-
fore, written in U� v coordinates, and u is obtained by
inverting the definition (18).
A comparison between the numerical results obtained

with our code and the values found in the literature is
shown in Fig. 1. We observe a very good agreement with
the known values for the RN QNM frequencies. This
simple example allows us to calibrate all the algorithm
parameters in order to attain a preestablished accuracy.
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B. Time-dependent case

We perform a comprehensive QNM analysis for the
wave Eq. (11) with the potential (15). We are mainly
interested in the nonstationary regimes like the one
described in [11], corresponding to the case q¼0, n ¼ 4,
and� ¼ 0 in the potential (15). As we show in this section,
the stationary and nonstationary regimes for QNM are also
present for the general situation corresponding to the po-
tential (15). Moreover, we verify appreciable deviations
from the stationary regime whenever jm00ðvÞj or jq00ðvÞj is
larger than j!Ij, where !I is the imaginary part of the first
QNM frequency. This behavior occurs irrespective of the
other parameters of the potential (15), provided they be
consistent with the existence of a black hole.

The case of an asymptotically flat (� ¼ 0) ‘‘time-
dependent RN black hole,’’ i.e., an RN black hole with
time-dependent massmðvÞ and/or charge qðvÞ functions, is
particularly interesting. The determination of the new tor-
toise variable U equivalent to (18) is quite more involved
for this case. The problem here is the definition, and the
numerical determination, of the event horizon. (See [40]
for a discussion of the implications of this problem in the
semianalytical approach used here.)

For our purposes here, the event horizon rþ is the
last null geodesic (up to the machine precision) escaping
towards infinity, requiring the full numerical solution
of (6) prior to the analysis of the wave Eq. (11). The
determination of the real Cauchy horizon r� is easier since
any null geodesic inside the event horizon tends to r�
along the v evolution.

In Fig. 2, we present the time variation for the real and
imaginary parts of the QNM of the scalar perturbations
with ‘ ¼ 2 for a four-dimensional RN black hole with
time-dependent mass and charge functions. The QNM
frequencies change in a similar way with the time variation
of the mass or the charge, but they are typically more
sensitive to the charge variations.

The results from the lower plot of Fig. 2 can also be seen
in Fig. 3, in the !r �!i plane, where we see how the
variation goes from one stationary state to another through
a nonstationary trajectory. In the right plot of Fig. 3, we use
the minimum value of the variation of !i in the nonsta-
tionary trajectories of the left plot to quantify the deviation
from the stationary trajectory. These values are plotted
against �, which can be related to a measure of how fast
the variations are. We can see that the behavior can be
described extremely well by a linear fit at first, deviating
from this fit for � * 0:1 (faster variations).
The case of asymptotically extremal ðqf ¼ mfÞ black

holes is specially notable in our approach due to numerical
technicalities. Our results for this case are presented in
Fig. 4. In the right plot we present a convergence test,
essential in this case, with the results obtained for different
resolutions, while in the left plot we show how the results
depend on the manner in which qðvÞ ! m. We remind the
reader here that an extremal RN black hole is, of course,
yet a regular black hole and not a naked singularity, and its
QNMs are well defined. It is only due to numerical limi-
tations that most works in the literature do not reach this
limit.
The left plot of Fig. 4 shows once again that the devia-

tion from the stationary behavior increases as we consider
faster variations of the background, which are quantified
by �. As this deviation becomes smaller, however, it is
possible to note a nontrivial trajectory of the complex
frequencies in the plane (more easily discernible in the
right plot), whose origin is still unclear.

C. Formation of a naked singularity

We can use our formalism and numerical setup to probe
the formation of a naked singularity in the spacetime. The
idea that it would be possible to have regular scattering
from naked singularities is rather old [42]. In fact, as it was
first noticed by Gibbons [43], minimally coupled scalar
fields have the remarkable property of being regular at the
origin of a Reissner-Nordström solution, where the space-
time manifold is irremediably singular. The nonsingular
behavior of scalar [44] and other [45] fields around a
Reissner-Nordström naked singularity has been investi-
gated since then. Despite being mathematically well posed,
the field dynamics near a naked singularity are typically
ambiguous from the physical point of view since it is not
clear which boundary condition one needs to impose for
the field at the singularity.
The main motivation of this part of our investigation is

the work of Ishibashi and Hosoya [35], which demon-
strated explicitly that it is indeed possible to have unam-
biguous and regular scattering from naked singularities.
After all, the presence of a naked singularity might be less
harmful than originally conceived. This has been explored
recently in a quantum field theory scenario in the series of
papers [46–49].
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FIG. 1 (color online). Frequencies of the quasinormal modes
of a scalar perturbation with ‘ ¼ 2 obtained for an RN black
hole with our code (smooth line) compared with values found in
the literature [41,50].
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We apply our numerical setup to simulate a charged

black hole losing mass while keeping its charge con-

stant, leading to a Reissner-Nordström naked singularity.

For a fixed charge value q, we set a mass function (16)

between two values mi and mf, and take the final mass to

bemf < q. At the point v� whenmðv�Þ ¼ q the evaluation

of ’ðu; v�Þ is problematic since for the case of a naked
singularity the full range of u must include the singularity
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FIG. 3 (color online). (Left)!r �!i plane, showing the transition between equilibrium states for a varying charge case according to
(16). The values of �q for these curves are 0.04, 0.06, 0.08, 0.1, and 0.2 (from top to bottom). (Right) Minima of !i obtained in the

transition shown in the left plot for different values of �q, to quantify the nonadiabatic behavior.
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FIG. 2 (color online). (Top) !r (left) and !i (right) as function of v for the ‘ ¼ 2 scalar perturbation of a black hole with constant
charge q ¼ 0:25 and mðvÞ given by (16) with mi ¼ 0:5, mf ¼ 0:65, vm ¼ 75 and different values of �m. (Bottom) !r (left) and !i

(right) as function of v for the ‘ ¼ 2 scalar perturbation of a black hole with constant mass m ¼ 0:5 and qðvÞ given by (16) with
qi ¼ 0:35, qf ¼ 0:4, vm ¼ 75 and different values of �q. In all graphics, the horizontal lines show the frequency values for static RN

black holes with the initial and final configurations. The fit for the frequencies is typically more sensitive for the values of !i.
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at r ¼ 0. Despite the fact that the scalar field can indeed

be finite at r ¼ 0 [44], our code cannot deal properly

with the terms like Vðu; vÞ’ðu; vÞ in the vicinity of

the singularity. This point is now under investigation,

and a better numerical code is being developed for this

case.
Our objective here is to investigate how the QNM be-

have until the very last moment before the formation of a
naked singularity. The results obtained for the !r part of
the QNMs are presented in Fig. 5. All simulations end
at the point when an extremal RN black hole is formed,
but the frequencies are all different. This is the result of the
different nonstationary trajectories followed by the QNM
in each case. We remark here that in the cases with a more
rapid variation m0ðv�Þ it seems there is not enough time
before the simulation stops to see the maximum deviation

of the frequency and the subsequent relaxation to a pos-
sible asymptotic value.

IV. FINAL REMARKS

Our results confirm, for the general Vaidya case, the
same nonstationary behavior corresponding to the inertia
of the QNM frequencies identified in [11]. In particular, for
situations with r00þðvÞ>!iðvÞ, the QNM frequencies will
not follow in the !r �!i plane a trajectory corresponding
to the instantaneous frequency associated with an RN black
hole of a given q=m ratio (see Figs. 3 and 4), and the
inertial behavior of the QNM can be identified. Moreover,
we see that the faster the change in mðvÞ or qðvÞ is, the
bigger the deviation from the stationary regime will be. We
could determine that the deviation from the stationary
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FIG. 4 (color online). (Left)!r �!i plane, showing the transition between equilibrium states for a varying charge case according to
(16). The final state is an extremal RN black hole ðq ¼ mÞ and the values of �q are the same as Fig. 3. (Right) Convergence test made

for a fixed value of �q ¼ 0:04 and three different resolutions obtained with varying values for the integration stepsize h.

 0.45

 0.5

 0.55

 0.6

 0.65

 0  20  40  60  80  100  120  140

m
(v

)

v

q = 0.5

m2 = 0.55
m2 = 0.50
m2 = 0.49
m2 = 0.47
m2 = 0.45

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 30  40  50  60  70  80  90  100

ω
r

v

m2 = 0.55
m2 = 0.50
m2 = 0.49
m2 = 0.47
m2 = 0.45

FIG. 5 (color online). (Left) Mass functions of the form (16) with mi ¼ 0:65, �m ¼ 0:1, vm ¼ 75 and different values of mj, used to
force the formation of a naked singularity while keeping q ¼ 0:5 constant. (Right)!r as function of v for the ‘ ¼ 2 scalar perturbation
of black holes with constant charge and varying masses as given in the left plot. The horizontal line shows the approximate frequency
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behavior is proportional to � for masses and charges vary-
ing according to (16), at least for values of � & 0:1; see
Fig. 3.

Similarly to the uncharged case [11], the imaginary parts

of the QNM frequencies are typically more sensitive to

mass and charge changes than the real parts. However, we

have identified a new behavior whose physical origin is

still unclear for us: the QNM frequencies are typically

more sensitive to charge than mass variations (compare

the upper and lower graphics in Fig. 2).
This leads to a curious fact and a further conclusion.

Consider two situations such that, in the first, electric

charge is constant and mass is increasing, let us say ac-

cording to (16). In the second, mass is constant and electric

charge is varying in a way that both cases have the same

quotient q=m as function of v. For these two situations, the
instantaneous QNM frequencies will evolve differently in

the !r �!i. According to our results, the case of varying

charge will typically show a bigger deviation from the

stationary curve q=m. This new behavior demonstrates

explicitly that the ratio q=m is not enough to characterize

a nonstationary black hole. (This does not represent any

challenge to the no-hair theorems, though, since they typi-
cally deal with stationary solutions.)
As for the q ¼ 0 case considered in [11], an interesting

extension of this work would be analysis of the highly
damped QNM. Since for such overtones the ratio j!i=!rj
is always larger than for the fundamental (n ¼ 0) QNM
considered here, including, for sufficient large n, cases for
which j!i=!rj> 1, it would be interesting to check if the
stationary behavior could be improved for n > 0. In par-
ticular, it would be very interesting to test the high sensi-
tivity of the instantaneous QNM overtones to electric
charge variations. We remark that the numerical analysis
presented here cannot be directly extended to the n > 0
case since one cannot identify the overtones numerically
with sufficient accuracy. We believe, however, this could
be attained by means of the WKB approximation.
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