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We study the radiation of gravitational waves by self-gravitating binary systems in the low-energy limit

of Hořava gravity. We find that the predictions for the energy-loss formula of general relativity are

modified already for Newtonian sources: the quadrupole contribution is altered, in part due to the different

speed of propagation of the tensor modes; furthermore, there is a monopole contribution stemming from

an extra scalar degree of freedom. A dipole contribution only appears at higher post-Newtonian order.

We use these findings to constrain the low-energy action of Hořava gravity by comparing them with the

radiation damping observed for binary pulsars. Even if this comparison is not completely appropriate—

since compact objects cannot be described within the post-Newtonian approximation—it represents an

order of magnitude estimate. In the limit where the post-Newtonian metric coincides with that of general

relativity, our energy-loss formula provides the strongest constraints for Hořava gravity at low-energies.
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I. INTRODUCTION

General relativity (GR) continues to stubbornly agree
with every observation related to gravity [1]. This would be
extremely desirable if the theory could be merged with
quantum mechanics in a straightforward way. Unfor-
tunately, the current situation is far from this: the search
for a consistent theory of quantum gravity remains elusive
and there is no experimental guidance to shed light on it.
Furthermore, the cosmological constant problem aside,1

the success of GR as a low-energy effective field theory
(EFT) points towards the Planck mass MP � 1019 GeV as
the physical frontier where one expects to learn anything
about quantum gravity. If the preceding arguments are
realized in Nature, experimental information about quan-
tum gravity will indeed be sparse in the foreseeable future.

More interesting for phenomenology are the proposals
for ultraviolet (UV) completions of GR where the previous
logic fails. These include models of gravitation with a low-
energy cutoff beyond which GR ceases to be valid [2,3]. If
this cutoff scale is as low as the TeV, these proposals may
have interesting phenomenology and may even be relevant
for the resolution of the hierarchy problem. Another recent
proposal in this category is Hořava gravity [4,5]. This
framework yields a concrete UV completion of GR, with
effects that may permeate basically any gravitational ex-
periment. It is on the implications of Hořava gravity for
gravitational radiation that we pursue in this paper.

Essentially, Hořava’s proposal consists of considering
the existence of a preferred time-foliation of spacetime.
Assuming the presence of this absolute structure, the GR

Lagrangian can be supplemented by operators which ren-
der it power-counting renormalizable without destroying
the unitarity of the theory [4]. The result is a nonrelativistic
theory of quantum gravity [5] (in the sense that it is
Lorentz-violating). The preferred foliation is in principle
detectable at any energy scale, and it is not surprising that
this approach (which is designed to cure the unsatisfactory
behavior of GR at distances of the orderM�1

P � 10�33cm)

generically also modifies the theory at large distances2 [5].
Among the different implementations of Hořava’s idea, we
consider the so-called ‘‘healthy extension’’ [7]. This ver-
sion possesses a stable Minkowski background where the
issues about strong coupling appearing in other approaches
are absent. Furthermore, variants of Hořava’s original pro-
posal can be retrieved for a particular limit of this (generic
and stable) case [7].
The low-energy (large-distance) sector of the theory is

encoded into a scalar field ’, called3 the ‘‘khronon,’’ that
characterizes the foliation structure and interacts with a
metric field. We refer to this low-energy scalar-tensor
theory as ‘‘khronometric’’ theory [5]. The extra scalar field
’ turns out to be massless, and its presence modifies most
of the predictions of GR, including the parametrized-post-
Newtonian (PPN) parameters [5,7,9] and cosmological
phenomena [10,11]. These modifications differ from those
of standard scalar-tensor theories [1,12]. They are close,
however, to the predictions of Einstein-aether theory (or æ-
theory for short) [13]. This is not surprising since both
theories incorporate a field whose expectation value vio-
lates Lorentz invariance (a unit timelike vector in the case

1One may argue that the cosmological constant problem is
a hint towards the actual theory of quantum gravity, and that a
successful framework of quantum gravity should provide a
mechanism to explain this phenomenological observation. We
do not address this particular issue here.

2A counterexample to this argument can be found in [6].
However, it is not clear how GR is recovered at large distances
in this proposal.

3From Greek ��o�o&–time. The khronon is also known as the
‘‘T-field’’ [8].
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of Einstein-aether, and ’ in our case), and are otherwise
generic. It can be shown that the khronon ’ corresponds to
the hypersurface-orthogonal mode of æ-theory, and many
of the predictions of both theories are indeed identical
[5,8]. The PPN parameters derived from æ-theory and
khronometric theory restrict the parameter space of those
theories but are otherwise in agreement with current ob-
servations. Thus, both (low-energy) models represent in-
teresting alternatives to GR, which, furthermore, have a
high energy cutoff. The further advantage of khronometric
theory is that beyond this energy cutoff there is a known
UV completion, in the form of Hořava gravity.

The aim of this paper is to further constrain khronomet-
ric theory based on the loss of energy due to the emission of
gravitational waves (GWs) from a binary self-gravitating
system. This is a relevant test for gravitational theories
given its sensitivity to the way gravity propagates (e.g. the
degrees of freedom and corresponding properties), and also
to the strong-field regime since known astrophysical
sources of GWs tend to have strong gravitational self-
energies [12,14,15]. The confirmation of GR’s famous
quadrupole formula in the damping of a binary pulsar’s
orbit is indeed one of its triumphs [16,17]. Radiation tests
have also been used in the past to constrain possible
modifications of GR [1,18,19]. A priori for both æ-theory
and khronometric theory, one expects this radiation for-
mula to be modified due to a different speed of propagation
of the tensor modes and the presence of new propagating
fields. These modifications imply new ways to constrain
the parameter space of the theory, independently of PPN
and cosmological considerations. While the above expec-
tations have been verified for æ-theory in the weak-field
regime in [20], the constraints obtained are not final since
the astrophysical systems for which radiation damping has
been observed are not in the weak-field regime [1]. The
incorporation of strong-field effects in the Einstein-aether
began in [21].

We focus on the radiation formula in the post-Newtonian
(weak field, slow-motion and weakly stressed [14]) regime
of khronometric theory. This restriction is interesting for
two reasons. First, we find deviations from GR’s quadru-
pole formula already at leading order. (This is similar to
what happens in æ-theory, as computed in [20].) Second,
and from a purely pragmatic point of view, many of the
formulas we present in this paper are useful for the phe-
nomenologically relevant situation of compact sources.
First results relevant for the study of gravitational radiation
from these systems include the black hole solutions derived
in [22,23], and those for neutron stars in æ-theory [24]. The
use of binary pulsar observations to constraint Hořava
gravity was suggested in [25].

To extract information about the damping of the orbit of
a binary self-gravitating system from the emission of GWs,
we take advantage of the fact that khronometric theory is
semiconservative (in the language of [12]). Then, for the

bound system there exists a conserved energy that de-
creases due to the emission of gravitational radiation. By
computing the energy flux at infinity, we can derive the flux
of energy lost by the binary. Under the assumption that this
energy is extracted entirely from the orbital motion of the
binary, the subsequent damping of the orbits can be com-
puted using Kepler’s third law. This assumption has been
tested to lowest order in GR [15], and is plausible for
khronometric theory.
This work is structured as follows. In Sec. II, we de-

fine the action for khronometric theory and the equations
of motion relevant for low-energy phenomenology.
Section III is devoted to the linearized equations for the
fields far away from the source (far-zone). In Sec. IV, we
study the conserved properties of the source relevant for
the post-Newtonian (PN) calculation. We derive the ex-
plicit expressions for the the different waveforms, up to
and including the first PN order corrections in Sec. V.
In Sec. VI, we determine the formula for the average power
loss in GWs. This formula is evaluated for a Newtonian
system of two point-masses in Sec. VII, where the Peters-
Mathews parameters for khronometric theory are derived.
We summarize our results and conclude in Sec. VIII.
Appendix A contains a derivation of the PPN parameters
for our model (whose full expressions appear here for the
first time). Appendix B compares the monopole contribu-
tion, or lack thereof, in both khronometric theory and æ-
theory for a particular choice of parameters. Finally,
Appendix C provides a summary of the notion of energy
relevant for our study.

Conventions

We use the ðþ ���Þ signature. For an arbitrary ex-
pression X, the overbar �X denotes the part of X linear in
perturbations. The superscript XNL is the nonlinear part of
X, i.e. XNL � X � �X. The dot _X denotes the derivative ofX
with respect to time. Greek indices refer to spacetime,
whereas Latin indices refer to space only. Repeated Latin
indices are to be summed, e.g. Xii � �ijXij. We define the

symmetrization of indexes as TðijÞ � 1
2 ðTij þ TjiÞ. We

choose units where c ¼ ℏ ¼ 1.

II. ACTION FOR KHRONOMETRIC THEORY
AT LOW ENERGIES

As outlined in the introduction, Hořava gravity is based
on the existence of an absolute time foliation of spacetime.
This allows for the GR Lagrangian to be supplemented
with higher dimensional operators that render the theory
power-counting renormalizable [4]. These operators are
suppressed by a scale M� whose magnitude is constrained
by various phenomenological tests. The most stringent
of these tests comes from absence of deviations from
Newton’s law at short distances [5] which implies that
M� * ð10�mÞ�1 � 1014 Hz [1,5]. Thus, these higher di-
mensional operators are irrelevant for the binary systems
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of interest4 and we neglect them in the following. The
presence of a preferred foliation also has consequences at
energy scales below M�. Indeed, at low-energies new
operators appear (compared to GR) that are compatible
with the group of gauge invariance preserving the preferred
foliation, i.e. the foliation-preserving diffeomorphism
[4,5]. Renormalization group arguments imply that these
relevant operators should be added to the GR action, which
has been done in the Stückelberg (or covariant) formula-
tion of the theory in [5,26]. In this formulation, the
preferred-time foliation corresponds to the expectation
value of a scalar field ’ called the khronon. This field is
such that the normal to the surfaces of constant field is
timelike,

@�’@
�’ > 0: (1)

The action of the theory is invariant under diffeomorphisms,
and Lorentz invariance is broken by condition (1) in a
spontaneous way. Also, the action must be endowed with
invariance under field reparametrizations

’ � fð’Þ; (2)

which follows from our requirement of a preferred time-
foliation as opposed to a preferred time. It corresponds to
the time reparametrization invariance of the theory in the
original formulation of [4]. The invariance under the trans-
formations (2) is readily implemented by making the action
depend on ’ through the combination

u� � @�’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�’@

�’
p : (3)

Clearly, u� is nonsingular whenever condition (1) is satis-

fied. Notice also that u� is a unit timelike vector.

The low-energy action for the healthy extension of
Hořava gravity corresponds to the most general action
describing the coupling of ’ with a metric field g�� at

low-energies and compatible with the aforementioned in-
variances [5]. It is given by

S ¼ �Mb
2

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ K��

��r�u
�r�u

�� þ Sm;

(4)

where Mb is an arbitrary mass parameter to be related to
the Planck mass,

K��
�� ¼ ��

�
���

� þ ��
�
���

� þ 	u�u�g��;

and 	, � and � are free dimensionless constants.5 We also
introduce a term Sm in Eq. (4) representing the matter

component of the theory. We assume that matter is univer-
sally coupled to the metric g��, which enforces the weak

equivalence principle [1]. This action defines what we call
‘‘khronometric theory’’. For later convenience, we intro-
duce

S� � �M2
b

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

K��
��r�u

�r�u
�

¼ �M2
b

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

K�
�r�u

�;

where

K�
� � K��

��r�u
� ¼ K��

��r�u
�

is used to compactify notation.
Khronometric theory can be considered on its own as an

alternative to GR with an extra scalar field, independently
of quantum gravity motivations. This approach is similar to
the way Einstein-æther theories are constructed. The only
difference is that the vector u� is taken to be a generic

timelike vector in æ-theory [13], meaning that it has more
degrees of freedom than in the khronometric case. It also
implies an extra term in the generic action with respect to
Eq. (4). This extra term can be absorbed by the ones in
action (4) for hypersurface orthogonal vectors, i.e. when-
ever u� satisfies Eq. (3). Khronometric theory and æ-

theory share the nice feature of having a high-energy cut-
off. The advantage of the former is that a UV completion in
the form of Hořava gravity is known.
Let the khronon and matter energy-momentum tensors

be, respectively,

T�
�� � 2ffiffiffiffiffiffiffi�g

p �S�

�g�� ; Tm
�� � 2ffiffiffiffiffiffiffi�g

p �Sm
�g�� :

The explicit expression for T
�
�� reads

M�2
b T�

�� ¼ �r�ðKð��Þu� þ K�
ð�u�Þ � Kð�

�u�ÞÞ

þ 1

2
g��K

�
�r�u

� þ 	a�a� þ 2r�K
�
6ð�u�Þ

� u�u�u
�r�K

�
� � 2	a�uð�r�Þu�

þ 	a�a�u�u�;

where we have introduced the notation

a� � u�r�u�:

The equations of motion derived from varying the action
with respect to the metric are

Q �� � G�� �M�2
b ðT�

�� þ Tm
��Þ ¼ 0: (5)

The equation of motion for the khronon field is

Q� � r�J
� � r�

�
1ffiffiffiffi
X

p P��½r�K
�
� � 	a�r�u

��
�

¼ 0; (6)

4As an example, the famous PSR 1913+16 binary pulsar has a
characteristic frequency of 102 Hz [1]. We assume that the speed
of propagation of all the modes is similar to the speed of light.
We comment on this assumption when we derive the energy-loss
formula in Sec. VI.

5Note that the parameter � corresponds to �0 in the notations
of [5]. It also differs from the � defined in [4].
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where

P �� � ðg�� � u�u�Þ: (7)

As usual, this equation follows from the covariant conser-
vation of the khronon energy-momentum tensor. That it
can be represented as the conservation of a current is a
consequence of the invariance of the theory under repar-
ametrizations of the khronon given by Eq. (2) [26].

III. EQUATIONS OF MOTION IN THE FAR-ZONE

The physical system of interest for radiation damping
consists of an isolated self-gravitating astrophysical
source. By this we mean that there is a region of spacetime
surrounding the source where the fields acquire their back-
ground values plus small perturbations. Thus, there exists a
coordinate frame where the metric in this region satisfies,6

g�� ¼ 
�� þ h��;

with jh��j � 1. For the khronon field, we fix the parame-

trization invariance (2) by working with a time coordinate
corresponding to the background of the field. Thus, we
expand it as

’ ¼ tþ �;

where j�j � t. It is easy to verify that the background
fields are indeed solutions of the equations of motion (5) in
the absence of matter. To derive the flux of energy lost by
this system, it is enough to understand the behavior of the
fields produced by the isolated source in this region where
they are weak. This is so because the energy carried by
GWs is radiated away and eventually permeates the
‘‘weak-field’’ zone. We can extract the power radiated by
integrating the flux of energy over a sphere surrounding the
source at a particular time after the emission. This calcu-
lation is further simplified in the region far away from the
source due to the applicability of the both the ‘‘weak-field’’
and ‘‘far-zone’’ approximations (see below).

To derive the equations governing the perturbations h��

and �, we split Eq. (5) and (6) into linear and nonlinear
parts as follows

�G�� �M�2
b

�T
�
�� ¼ M�2

b ���;
�Q� ¼ �QNL

� : (8)

The expression for ��� reads

��� ¼ Tm
�� þ ðT�

��ÞNL �M2
bG

NL
��: (9)

This separation into linear and nonlinear parts allows us to
solve for h�� and � perturbatively in M�2

b . The terms ���

and QNL
� can be interpreted to be source terms for the

linear equations at different orders in M�2
b . They include

contributions from both matter and nonlinear gravitational
fields of lower order. For this paper, we are interested in

matter sources that are weakly self-gravitating, slowly
moving7 and weakly stressed. These are known as post-
Newtonian (PN) sources [14]. For these systems, one has

v� jh1=200 j �
��������
Tm
0i

Tm
00

���������
��������
Tm
ij

Tm
00

��������
1=2� 1; (10)

where v is the typical velocity of the source. Thus, we can
introduce v as a new parameter of expansion and consider
the predictions of the theory at different orders in v, also
known as PN orders. We content ourselves with the first PN
corrections, which amounts to considering Eqs. (8) where
the source terms also include PN corrections. In particular,
the metric should be substituted by its first PN expression
(Appendix A) whenever it appears in the nonlinear source
terms.
This straightforward analysis is only suited for the first

PN corrections. Beyond that, the analysis becomes more
complicated due to the presence of tails and retardation
effects. The correct treatment of the problem in general
involves the separation into a near-zone and a wave-zone.
In the near-zone, one can find the metric to any PN order
including nonlinearities and minimizing retardation ef-
fects. This corresponds to an expansion in the small
parameter to desired order in v. In the wave zone, one
can solve the equations of motion perturbatively in the
fields and match the solution to the one found in the
near-zone in a region where both approximations are valid
[14,15,27,28]. For the first PN corrections considered in
this paper, this analysis reduces to the one outlined in the
previous paragraph. For higher order corrections the
matching is much less trivial [14,15,27,29].
The linearized khronon energy-momentum tensor satis-

fies the following conservations laws

@� �T�
�i ¼ 0; @� �T�

�0 ¼ M2
b
�Q�: (11)

It follows from the invariance of the linearized theory
under linear diffeomorphisms. Next, from the transverse
properties of the �G�� and when the equations of motion are

imposed, one finds

@�ðTm
�� þ T�

�� �M2
bG

NL
��Þ ¼ 0:

Together with Eq. (11), this yields the following conserva-
tion equations for the source tensor ���

@���� ¼ �@� �T�
�� ¼ �M2

b�
0
�
�Q� (12)

which is of particular importance in Sec. IV and beyond.

A. Wave equations

We decompose the gravitational perturbations into irre-
ducible representations of SOð3Þ,

6In this section, Greek indices are manipulated with the
Minkowski metric.

7For theories with modes propagating at different speeds, this
means that the typical velocity v of the source is small with
respect to all of them.
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h00 ¼ 2�; h0i ¼ � @iffiffiffiffi
�

p Bþ Vi;

hij ¼ tij þ 2@ðiFjÞ þ 2
@i@j
�

Eþ 2

�
�ij �

@i@j
�

�
c ; (13)

where tii ¼ @itij ¼ @iVi ¼ @jFj ¼ 0. We also define the

Laplacian by � � @i@i.

1. Tensors and vectors

To single out the tensorial part of the equations of
motion as written in Eq. (8), we introduce the transverse-
traceless projector Pij;kr and the transverse projector Pij

Pij;kr � PikPjr � 1

2
PijPkr; Pij � �ij �

@i@j
�

: (14)

A straightforward calculation yields

Pij;krQkr ¼ 1

2
Pij;kr½� €hkr � ð@20 � �Þhkr � 2M�2

b �kr�;

leading to the wave equation for the tensor modes

ðc�2
t @20 � �Þtij ¼ �2M�2

b Pij;ks�ks; (15)

with c2t ¼ 1=ð1� �Þ representing the speed of propaga-
tion of the tensor polarizations. This coincides with the
results of æ-theory [30].

Consider now the vectorial part of the equations.
Contrary to æ-theory [20,30] this sector does not contain
any propagating polarizations. Indeed, one finds

PijQ0j¼ð1��Þ
2

�ðVi� _FiÞ�M�2
b Pij�j0¼0;

Pik@jQkj¼ð1��Þ
2

�ð _Vi� €FiÞ�M�2
b Pik@j�kj¼0: (16)

The first equation represents a constraint and its time
derivative yields the second equation (which follows
from gauge invariance). For definiteness, we choose to
work in the gauge

Fi ¼ 0; (17)

which completely fixes the gauge freedom in the vector
sector.

2. Scalars

The scalar sector of the theory is different from GR. In
particular, it includes an extra degree of freedom. We
choose to work in the gauge

� ¼ B ¼ 0; (18)

which completely fixes the gauge in the scalar sector. The
choices (17) and (18) are referred to as the ‘‘unitary
gauge’’. In this gauge, the nonredundant equations of
motion derived from (5) and (6) are

	�� ¼ 2�c �M�2
b �00; (19a)

ð�þ �Þ� _E ¼ �2ð�þ 1Þ� _c þM�2
b @i�0i; (19b)

ðc�2
s @20 � �Þc ¼ 	M�2

b

2ð	� 2Þ
�
2

	
�00 þ �ii � ð2þ �þ 3�Þ

ð�þ �Þ
@i@j
�

�ij

�
: (19c)

The speed of propagation of the scalar perturbation is
given by

c2s ¼ ð	� 2Þð�þ �Þ
	ð�� 1Þð2þ �þ 3�Þ ; (20)

which coincides with the scalar mode of æ-theory [30].

B. Far-zone expressions and post-Newtonian
approximation

The equations of motion (15), (16), and (19), contain
two types of equations that we wish to solve, Poisson and
wave equations. The Poisson equation is of the form

�ðt; xÞ ¼ �4��ðt; xÞ;
whose solution for vanishing boundary conditions at infin-
ity is given by

ðt; xÞ ¼
Z

d3~x
�ðt; ~xÞ
jx� ~xj :

We assume that the isolated source of GWs can be confined
within a sphere of radius R. At distances far away from
the source, r � jxj � R, we can perform the expansion
(r̂i ¼ xi=r)

jx� ~xj ¼ r� r̂i~xi þ rOðR=rÞ2: (21)

We refer to this zone as the ‘‘far-zone’’. The leading
contribution of the solution to the Poisson equation at large
distances is then

fðt; xÞ ¼ 1

r

Z
d3~x�ðt; ~xÞ: (22)

The sourced wave equations are of the form

ðc�2
� @20 ��Þ�ðt; xÞ ¼ 4��ðt; xÞ; (23)

with speed of propagation c�. The solution to this equation
with radiation boundary conditions is given by (see,
e.g. [15])
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�ðt; xÞ ¼
Z

d3~x
�ðt� jx� ~xj=c�; ~xÞ

jx� ~xj : (24)

Besides adopting the far-zone approximation and using
(21), we also assume that r is such that r � !R2=c�,
where ! is the largest characteristic frequency of the
source. This allows us to write the leading contribution as

�fðt;xÞ¼1

r

Z
d3~x�ðt�r=c�þ r̂i~xi=c�;~xÞ

¼1

r

X1
n¼0

1

n!
@n0

Z
d3~x�ðt�r=c�;~xÞðr̂i~xi=c�Þn; (25)

where the last identity holds formally. This expression can
be simplified further for the PN sources of interest
[12,14,31]. As seen in the previous section, khronometric
theory involves two speeds of propagation, the tensor and
the scalar speeds ct and cs. We assume that the system is
slowly moving with respect to both speeds which are
considered to be of the same order, ct � cs � 1. Thus,
for a typical velocity v�!R of the source, the sum in
Eq. (25) represents a well-defined expansion in the small
parameter,

v � 1;

i.e. it is a PN expansion, cf. Equation (10). In other words,
every time derivative in the near zone represents an extra
OðvÞ.

IV. THE SOURCE: CONSERVATION PROPERTIES

The source terms for the Eqs. (15), (16), and (19) are
expressed in terms of the pseudotensor ���. In order to find

solutions to the Poisson and wave equations in the far-
zone, Eqs. (25) and (22) indicate that we need to evaluate
various integrals of ���. In what follows, we present results

that are relevant for simplifying those integrals (and there-
fore the wave forms that appear in Sec. V) and include
leading PN corrections. We refer the reader to Appendix A
for more details on the first order PN approximation and
the parametrized-post-Newtonian (PPN) formalism [12].

From Eq. (13), one can establish the useful integral
conservation laws,

Z
d3x�ij¼1

2

Z
d3x €�00x

ixj�1

2

Z
d3x@� _��0x

ixj: (26a)

Z
d3x _�0ix

j¼�
Z
d3x�ij: (26b)

Z
d3x _�00x

i¼�
Z
d3x�i0þ

Z
d3x@���0x

i: (26c)

In deriving the previous equations, we assume that all
the boundary integrals cancel (the corrections to this as-
sumption are negligible at large r). The difference with
respect to the GR integral conservation laws is the presence
of the terms proportional to @���0 coming from the

nonconservation of ���, Eq. (12). Remember that the

current �i0 is conserved for khronometric theory. Naively
one expects @���0 to contribute to order as low as Oðv3Þ.
To see that this is not the case, we notice that Eqs. (26) can
be simplified by writing the equation of motion (6) as an
equation for a conserved current (which corresponds to the
Noether current related to the invariance of the theory
under reparametrizations of ’, Eq. (2)),

@�ð ffiffiffiffiffiffiffi�g
p

J�Þ ¼ 0: (27)

Furthermore, in the unitary gauge, ’ ¼ t and J0 ¼ 0 (see
Appendix D of [5]). Since Ji is linear in perturbations, we
find that

�Q � ¼ �@ið ffiffiffiffiffiffiffi�g
p

JiÞNL: (28)

Thus,

@��0� ¼ M2
b@ið

ffiffiffiffiffiffiffi�g
p

JiÞNL �Oðv5Þ; (29)

and the dipolar corrections turn out to be large in PN order.
In particular, at order Oðv5Þ only the Eq. (26c) is modified
with respect to GR. A straightforward but tedious calcu-
lation using the PN metric displayed in Eq. (A3) yields

Z
d3x@��0�x

i ¼ 1

2

Z
dx�½ð	PPN

1 � 	PPN
2 ÞVPPN

i

þ 	PPN
2 WPPN

i � þOðv6Þ; (30)

where

	PPN
1 ¼4ð	�2�Þ

��1
;

	PPN
2 ¼ð	�2�Þð��½3þ�þ3����þ	½1þ�þ2��Þ

ð	�2Þð��1Þð�þ�Þ :

(31)

These constants are the PPN parameters related to
the violation of Lorentz invariance of the theory (see
Appendix A). In the limit of small parameters they coin-
cide with those found in [5]. The potentials VPPN

i andWPPN
i

are also defined in Appendix A. Finally, the form of the
Eq. (30) is identical to the one found for æ-theory [21].
The previous formulas (26) and (30) can also be derived

by relating the pseudotensor ��� to a conserved (but asym-

metric) object. Indeed, from Eqs. (12) and (6) and (7) it is
evident that

T �� � ��� þM2
b�

0
�
��

�J�

satisfies

@�T�� ¼ 0:

This object has a contribution linear in the fields. To build a
quadratic conserved pseudotensor it is enough to add the
conserved current found in (27) and consider the object
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T
q
�� � ��� þM2

b�
0
�
��ð �J� � ffiffiffiffiffiffiffi�g

p
J�Þ

¼ ��� �M2
b�

0
�
��ð ffiffiffiffiffiffiffi�g

p
J�ÞNL:

The resulting integral conservation laws for this object are
then identical to the ones found in [12,21]. The existence of
this conserved quadratic current is a generic consequence
of the theory being semiconservative in the language of
[12]. This conserved current satisfies

T
q
0i �T

q
i0 ¼ M2

bð
ffiffiffiffiffiffiffi�g

p
JiÞNL:

Then, one can use the Eq. (4.103) in [12] to compute (29).
Even if this method may save a lot of computations, it is
inconvenient since the result in [12] is derived in the PPN
gauge, whereas we are interested in the result in the unitary
gauge (30).

V. WAVE FORMS IN THE FAR-ZONE

We are now ready to compute the explicit form of the
wave solutions in the far-zone, which we do consistently
up to Oðv6Þ in the PN approximation. For the tensor and
vector modes, the solutions of Eqs. (15), (16), (25), and
(26), are (in the gauge Fi ¼ 0)

tijðt; xÞ ¼ � 1

4�M2
br

P̂ij;ks
€Qksðt� r=ctÞ � 1

2�M2
bctr

P̂ij;ksr̂
a _Sks;aðt� r=ctÞ þOðv6Þ; (32a)

Viðt; xÞ ¼ � c2t
2�M2

b

�
1

r

Z
d3~xPij�j0ðt; ~xÞ

�
; (32b)

where

QðtÞij � IðtÞij � 1

3
�ijIkkðtÞ;

IijðtÞ �
Z

d~x�00ðt; ~xÞ~xi~xj;

Sks;aðtÞ �
Z

d3~x�ksðt; ~xÞ~xa:

The quantity Qij represents the quadrupole of �00.
Note that in the far-zone, the longitudinal projector Pij of
Eq. (14) can be substituted by the longitudinal part of the
algebraic projector,

P̂ ij � �ij � r̂ir̂j:

This substitution is valid up to OðR=rÞ terms. The object
P̂ij;ks is defined as

P̂ ij;kr � P̂ikP̂jr � 1

2
P̂ijP̂kr:

Anticipating the results of Sec. VI, we notice that the
energy-loss formula depends on the time derivative of the
fields. For the vector part, the previous expression yields

_h 0i ¼ _Vi ¼ � c2t
2�M2

b

�
1

r

Z
d3~xPij _�j0ðt; ~xÞ

�
: (33)

From the conservation law (12), this term can be expressed
as the integration over the boundary of the transverse
component of the source, which cancels away from the
source, and we can neglect the vector perturbations
altogether.
Concerning the scalar field, from the wave Eq. (19c) one

finds

c ¼ 	

8�ð	� 2ÞM2
br

�
3

2
½Z� 1�r̂ir̂j €Qijðt� r=csÞ þ 1

2
Z €Ikkðt� r=csÞ þ 2

cs	
r̂i
Z

d3~x _�00ðt� r=cs; ~xÞ~xi

þ 1

3c3s	
r̂ir̂jr̂k

Z
d3~x�

:::
00ðt� r=cs; ~xÞ~xi~xj~xk þ 1

cs
r̂a _Skk;aðt� r=csÞ � ð2þ �þ 3�Þ

csð�þ �Þ r̂ir̂jr̂k _Sij;kðt� r=csÞ
�
þOðv6Þ;

(34)

where

Z � ð�� 1Þð	PPN
1 � 2	PPN

2 Þ
3ð	� 2�Þ : (35)

Notice that the conservation law _�00 ¼ @ið�0i þ �JiÞ has
been used to show that the first moment of �00 is constant
in time and therefore ignored in (34). From the results in
the previous section, we see that the modification to the GR
results appear at order Oðv4Þ. Notice also that it follows

from (30) and the constancy of the integral of �i0 that the
dipolar contribution in (34) is Oðv5Þ and suppressed by the
PPN parameters. Finally, the quadrupole terms in the ten-
sor and scalar sectors differ slightly, as they depend on
different retarded times. For the remaining scalar fields �
and E, from Eqs. (19) one finds

�¼ 2

	
c þ 1

4�M2
b	r

Z
d3~x�00; _E¼�2ð�þ1Þ

�þ�
_c : (36)
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VI. ENERGY-LOSS FORMULAS FOR
POST-NEWTONIAN SYSTEMS

The definition of the energy carried by gravity waves is
nontrivial (see [32] for a review on the concepts of energy
and momentum in GR). For the problem at hand, we follow
the procedure of [21] (see also [33]) and use the notion of
energy for asymptotically flat spacetimes derived in [34].
Given an isolated source, we can compute the time varia-
tion of this notion of energy by performing an integral of
the flux in the far-zone, which we idealize as being infi-
nitely far away from the source. We associate this energy
loss to the energy carried away by gravitational radiation.
As shown in [34,35], this alternative approach is equivalent
to the one based on pseudotensors used in standard com-
putations of energy loss due to gravitational radiation
[12,15,31]. We give a brief review on this method in
Appendix C,.

In deriving the energy-loss formula, we make the fol-
lowing assumptions. We start by assuming that our system
consists of an asymptotically Minkowski spacetime at
early times, with the following falloff properties in the
unitary gauge,

g��¼
��þOð1=rÞ; @	g��¼Oð1=r2Þ; �¼0: (37)

As for the matter fields, we assume that they vanish asym-
ptotically to ensure that there are no boundary integral
contributions. The previous conditions allow us to define
a convenient notion of conserved energy E, Eq. (C11), as
the conserved charge associated to the invariance of the
asymptotic solution under asymptotic time translations.8

To compute the flux of gravitational radiation, we consider
the moment of time when the emitted GWs are already at
spatial infinity, which means that the falloff properties of
the fields change to

hw�Oð1=rÞ; _hw�!Oð1=rÞ; @rhw�!=csOð1=rÞ:
(38)

The quantity E with these boundary conditions is in general
divergent. Nevertheless, its change due to the radiation
emitted during a finite interval of time is well-defined [36].
We focus on computing the time variation of E, Eq. (C14).
As shown in Appendix C, _E is finite for conditions (38) and
only has contributions that are quadratic in the fields.

We also consider the time average of the quantity _E over

several periods of the source, h _Ei. The final averaged
energy-loss formula is a standard observable in GWexperi-
ments (including the binary system of interest, where the
observed damping of the orbits occurs after several peri-
ods) and the final expression is simplified since total time
derivatives vanish when integrated.

The final expression is further simplified after one takes
into account the following considerations. From the form
of the solution of the tensor modes, Eq. (32a), and of the
field c , Eq. (34), then in the far-zone these fields satisfy the
equation

c�@i� ¼ �r̂i _�; (39)

for the corresponding speeds of propagation. Remember
also that in the far-zone, the tensor modes tij are transverse

with respect to the algebraic projector r̂itij ¼ 0. For the

vector part, we already showed that it does not contribute

to h _Ei, as its time derivative cancels, cf. Equation (33).
Similarly, the fields E and� always appear under a time or
a space derivative. Thus, we notice that the dependence on
the source appearing in Eq. (36) will be either higher order
in R=r for the space derivatives (and therefore negligible),
or of the form

Z
d3~x _�00 ¼ �M2

b

Z
d3~x �Q� ¼ M2

b

Z
d3~x@ið ffiffiffiffiffiffiffi�g

p
JiÞNL

¼ 0:

So, only the c contribution for E and � is nonzero, and
therefore these fields satisfy relation (39). In fact, the latter
relation is also satisfied by the scalar part of hij.

The previous considerations (and some algebra pre-
sented in the Appendix C) yield the final result for the
rate of energy loss of the system,

h _Ei ¼ �M2
b

4

I
S21

d�r2
�
1

ct
_tij _tij � 8ð	� 2Þ

	cs
_c _c

�
: (40)

Whereas the radiation emitted in the tensor modes always
decreases the energy of the system, the behavior of the emit-
ted scalar modes depends on the parameter 	. We see that
the emitted energy is positive for the range 0<	< 2, as
expected since thesevalues are also required for the stability
of the Minkowski background (absence of ghosts) [7].
Up to this point, we have consistently worked to first PN

order (which corresponds to and includes Oðv5Þ in the
waveforms). Given the time derivatives in Eq. (40), sub-
stitution of the waveforms (32a) and (34) yields the energy
loss of the system from gravitational radiation up to and
including Oðv12Þ, although corrections already appear at
leading order, Oðv10Þ. To simplify what follows, we there-
fore focus on Newtonian sources and the corrections at this
order. Substituting the waveforms to lowest PN order in the
previous expressions and performing the angular integrals,
we find the energy-loss formula9

8Even if this symmetry is broken by the background for the
field ’, it is still a symmetry due to the reparametrization
invariance of the theory (2).

9In this final formula, we compute the quadrupole and mono-
pole terms at a time when radiation from both the tensor and
scalar modes simultaneously reaches the boundary of the iso-
lated system. For different speeds of propagation ct and cs, the
discrepancy in emission time is irrelevant for stationary produc-
tion of GWs.
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h _Ei ¼ � 1

8�M2
b

�
A
5

Q
:::
ijQ
:::
ij þBI

:::
I
:::
�
; (41)

where (recall Eq. (35))

A � 1

ct
� 3	ðZ� 1Þ2

2csð	� 2Þ ; B ¼ � 	Z2

4csð	� 2Þ :

The final expression, Eq. (41), differs from the GR result in
two ways: the coefficient corresponding to the quadrupole
depends on the parameters of the model; there is a mono-
pole contribution already at this first Newtonian order. This
is similar to the formula derived for æ-theory10 [21]. Let us
note something quite remarkable in the context of the
khronometric theory that we are studying. All of the
Solar System tests are passed in the limit j	PPN

1 j � 1,
j	2jPPN � 1, which can be achieved by the single require-
ment j	� 2�j � 1, cf. (31). In this limit, Z ¼ 1, the
dipole term (30) cancels and the monopole contribution
in Eq. (41) is still present. This last result contrasts with the
æ-theory case for which there is only a modified quadru-
pole (in the equivalent limit). This discontinuity between
the two theories is discussed in Appendix B.

VII. ENERGY LOSS BYA NEWTONIAN
BINARY SYSTEM

To complete the calculation, the power-loss formula
(A3) must be supplemented by the equations of motion
of the system to desired post-Newtonian (PN) order. We
content ourselves with a 2-body Newtonian system com-
posed of point-massesm1 andm2. The matter action is then
given by

Sm ¼ � X2
A¼1

Z
mAdsA; (42)

where dsA represents the proper time of the A-th particle. A
priori, mA depends on the khronon field. Since we are only
interested in the Newtonian system, it is enough to Taylor
expand the mass around its background value and use only
the leading order contribution, hence mA is taken to be
constant. Using the preferred time as the affine parameter,
the energy-momentum tensor derived from (42) is

Tm
�� ¼ 1ffiffiffiffiffiffiffi�g

p
X2
A¼1

mAuA�uA�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��u

�
Au

�
A

q �ð3Þðxk � xkAðtÞÞ;

where the A-th body follows the trajectory xkAðtÞ with four-
velocity u�A . At Newtonian order this yields

€I ijðt� r=c�Þ ¼ @20
X2
A¼1

mAx
i
Aðt� r=c�ÞxjAðt� r=c�Þ:

We evaluate this at very late times as explained in the
previous section. Next, from the geodesic equation derived
from (42), we find Newton’s law

€x i
1 ¼ �GN

m2

r212
r̂i12; €xi2 ¼ GN

m1

r212
r̂i12;

where we introduce (also see Appendix A)

GN � 1

4�M2
bð2� 	Þ ; ri12 � xi1 � xi2: (43)

As usual in binary systems, it is convenient to define the
problem in terms of the relative distances and the position

of the center of mass xCM � m1x1þm2x2
m1þm2

. Finally, assuming11

that the system is at rest with respect to the preferred frame
(so that _xCM ¼ 0) we get

I
:::
ijðt� r=cÞ ¼ � 2GN�M

r212
ð4r̂ði12vjÞ � 3r̂i12r̂

j
12 _r12Þ

with� � m1m2=M,M � m1 þm2 and v
i � _ri12 is related

to the expansion parameter v. Thus, the loss of energy in
gravitational radiation for a Newtonian binary system is
given by

h _Ei¼� 1

�M2
b

�
GNM�

r212

�
2
�
1

15
Að12v2�11 _r212Þþ

B
2
_r212

�
;

(44)

from which we deduce the ‘‘Peters-Mathews’’ (PM) pa-
rameters [12,37] (�D ¼ 0),

�1 ¼ 12ð1� 	=2ÞA; �2 ¼ ð1� 	=2Þ
�
11A� 15

2
B
�
:

Once the energy loss for the binary system is known, one
can use Kepler’s third law to relate it to the damping of the
orbit. The expression for the change of the orbit’s period
for generic PM parameters in terms of other orbital pa-
rameters of the system can be found in [38].
In GR, the previous analysis suffices to predict the

radiation damping of binary systems for compact (rel-
ativistic) sources, like the PSR1913þ 16 [12]. This is
because the structure of the compact stars of the binary
does not influence the orbit in GR (this is called the
‘‘effacing principle’’ which is a consequence of the strong
equivalence principle). This is certainly not true for most
alternative theories of gravity. Thus, to yield concrete
predictions about the radiation damping of systems with
highly relativistic sources (sources with large self-
energies), one must first understand the behavior of the
fields beyond the PN approximation. One can then use

10For the monopole and quadrupole contributions, the defini-
tion of Z in [21] differs from Eq. (35) by a factor of 2. We
attribute this difference to a typo in the final formula for c in
[21].

11Corrections to this assumption are considered as higher order
in the PN expansion.
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Eq. (41) to derive the energy loss resulting in a change of
the orbit (at corresponding PN order). For scalar-tensor
theories, the final result is a test of the strong-field regime
[39–41]. For æ-theory, the first steps were performed in
[21] based on the stellar solutions of [24] and using the
effective field theory methods of [42–45]

It is beyond the scope of our article to derive the radia-
tion damping of these realistic systems (including relativ-
istic self-gravitating objects) for khronometric theory. In
any case, we do not expect the new corrections to cancel
the ones we have already derived for the Newtonian source,
and thus we find it appropriate to use Eq. (44) to set order
of magnitude bounds on the free parameters of the khrono-
metric action (4). Current data on the radiation damping of
the Hulse-Taylor binary system agrees with GR up to a
level slightly better than one part in 100 [1,17]. This means
that the formula (44) should agree with GR to Oð10�2Þ,
which finally implies the bound (for the case where 	, �
and � are of the same order)

	� �� � & 10�2: (45)

The previous bound is less stringent than the bounds
coming from the PPN analysis [5,12],

j	PPN
1 j & 10�4; j	PPN

2 j & 10�7:

As can be directly seen from Eq. (31), the PPN bounds are
automatically satisfied in the limit 	 ¼ 2�. In this limit,
Z ¼ 1, and our expression (45) yields the most stringent
bound for the theory. Notice, in particular, that it constrains
the propagation speeds to be close to c ¼ 1. Another
constraint in this limit comes from the difference between
GN as derived in (43) and the value for Newton’s constant
appearing in Friedmann’s equation,Gc [7]. The value ofGc

is constrained by nucleosynthesis and satisfies j GN

Gc
� 1j 	

0:13 [46], which, in terms of the parameters in the action
(4), implies the estimate	,�, � & 0:1 [7]. Also, we should
ensure the absence of gravitational Cherenkov radiation,
which implies c2t 
 1 and c2s 
 1 (this means that a parti-
cle moving through the aether does not radiate12) Notice
that the speeds are superluminal, which does not pose a
threat to Lorentz-violating theories as long as causality is
maintained.

VIII. DISCUSSION

Our aim has been to study the radiation loss from an
isolated source in the PN approximation for khronometric
theory. This theory is an interesting alternative to GR with
a high-energy cutoff and for which a UV completion is

known in the form of Hořava gravity. It is also very similar
to æ-theory, as in both cases there is a preferred time
coordinate. The difference is that khronometric theory
has only one extra scalar degree of freedom, the khronon,
whereas æ-theory relies on a timelike unit dynamical vec-
tor leading to three extra degrees of freedom, consisting of
one scalar and one vector field.
For arbitrary parameters, we have shown in Eq. (41) that

the formula controlling the power loss of the system
(which may be related to the change of the orbital period
of a binary source) is modified with respect to GR already
at lowest, Newtonian, order. In particular, the quadrupole
contribution differs from GR, partly due to the different
speeds of propagation of the tensor modes in both theories.
Furthermore, there is also an extra monopole contribution
at this order. The monopole at leading order in khrono-
metric theory contrasts with the usual situation in other
scalar-tensor theories [18]. At higher order, there are
other modifications, including the dipole term (30).
Quite remarkably, in the phenomenologically interesting
limit where all PPN parameters coincide with GR (which
corresponds to the limit 	 ¼ 2� for our parameters),
the monopole is still present, and its strength is propor-
tional to the parameters appearing in the action of the
theory, Eq. (4). These results for khronometric theory are
similar to those of æ-theory, modulo vector propagating
degrees of freedom that are absent for the khronometric
case. There is a key difference, however, since æ-theory
only has a modified quadrupole to lowest order in the
equivalent limit.
This work has been devoted to PN sources. These types

of sources do not correspond to the ones found in the
binary systems of interest, which are compact and charac-
terized by strong gravitational fields. Despite this, we have
evaluated the energy-loss formula for the simplest possible
system: a Newtonian binary. Doing so provides an order of
magnitude estimate on the parameters of the theory (as we
do not expect corrections due to strong-fields to cancel the
modifications apparent in the power-loss formula). Thus,
our results are relevant for constraining the case 	 ¼ 2�.
In this case, requiring the rate of radiation damping to be
close to GR sets constraints on this parameters of order
Oð10�2Þ. These constraints represent the strongest phe-
nomenological bounds for this particular choice of parame-
ters and are relevant for the cosmological implications of
the theory, including the recently suggested model of dark-
energy [47].
Sources with strong self-energies are left for future

research and can be treated in our theory in the same
way as scalar-tensor theories [39–41]: a phenomenon of
‘‘scalarization’’ modifies the orbit of these sources as
compared with the post-Newtonian ones. It would also be
interesting to consider our results in the parametrized post-
Einsteinian framework introduced in [48] (see also [49] for
the binary pulsar constraints for this framework). Finally,

12We thank D. Levkov and S. Sibiryakov for pointing this out
to us.
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the consequences of alternatives theories of gravity for
experiments of direct detection of GWs have been recently
discussed, see e.g. [1,50]. We hope to extend these works
to khronometric theories in the future.
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APPENDIX A: POST-NEWTONIAN
EXPRESSIONS

The PPN formalism is a valuable tool for com-
paring theories of gravitation with each other and with
experiment in the weak, nonrelativistic limit [12]. In this
section, we briefly present the steps involved in the PPN
calculation for khronometric theory (see also [5]). The final
result are the parameters (all the other PPN parameters
cancel)

�PPN¼�PPN¼1;

	PPN
1 ¼4ð	�2�Þ

��1
;

	PPN
2 ¼ð	�2�Þð��ð3þ�þ3�Þ��þ	½1þ�þ2��Þ

ð	�2Þð��1Þð�þ�Þ :

(A1)

Notice that the PPN parameters for khronometric theory
for arbitrary values of the parameters in (4) appear
here for the first time. They coincide with results in [5]
in the limit of small parameters. The nonzero parameters
	PPN
1 and 	PPN

2 indicate that khronometric theory violates
Lorentz invariance. These same two parameters are
nonvanishing for æ-theory, although the dependence on
the parameters 	, � and � is different. In both theories,
however, the relationship between 	PPN

1 and 	PPN
2 is the

same

	PPN
2 ¼ 	PPN

1

2
� ð2�� 	Þð3�þ �þ 	Þ

ð�þ �Þð2� 	Þ :

To compute the previous results we closely follow
[12,51] to which we refer the reader for further details.
The source is assumed to be a fluid with a covariantly
conserved energy-momentum tensor

T�� ¼ ð�þ ��þ pÞv�v� � pg��;

where v� is the four-velocity of the source, � the rest mass
energy density, � the internal energy density and p the
isotropic pressure of the fluid. The source is assumed to
satisfy (10).
In what follows, recall that the different fields have the

following expansion,

g00 ¼ 1þOðv2Þ þOðv4Þ; g0i ¼ Oðv3Þ;
gij ¼ ��ij þOðv2Þ; � ¼ Oðv2Þ þOðv3Þ:

(A2)

Also, we use the following potentials

FðxÞ ¼ GN

Z
d3y

�ðyÞf
jx� yj ;

where GN is defined in Eq. (43) and the correspondence
F � f is given by

U�1; �1�vivi; �2�U; �3��; �4�p=�;

VPPN
i �vi; WPPN

i �
vjðxj�yjÞðxi�yiÞ

jx�yj2 :

The steps to take are:
(1) Solve g00 to order Oðv2Þ. For this we use the 00

component of Eq. (5) to Oðv2Þ, which yields13

�h
2

00 ¼ 8�GN�:

(2) Solve gij to Oðv2Þ. Following [51], we choose the

gauge conditions

@ih
2

ij2hij ¼ � 1

2
ð@ih

2

00 � @ih
2

kkÞ: @ih
3

0i ¼ �@0h
2

00:

The arbitrary constant � will be chosen to write the
result in the PPN gauge. Then from the ij compo-
nent of Eq. (5) to Oðv2Þ, we find

�h
2

ij ¼ 8�GN��ij:

(3) Solve � to Oðv3Þ. The khronon equation of motion
(6) to leading order is given by

ð��3 � �@0h
2

00Þ ¼ � ð3�þ 	þ �Þ
2ð�þ �Þ @0h

2

00:

(4) Solve g0i to Oðv3Þ. In our gauge, the 0i component
of Eq. (5) to Oðv3Þ yields

13We use a number over the field to keep track of the order in v.
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�h
3

0i¼ 8�GN�við	� 2Þ � ½�2þ 	þ �ð1� �Þ�@0@ih
2

00

�� 1
:

(5) Solve g00 to Oðv4Þ. From the 00 component of Eq. (5) to Oðv4Þ, we find

�h
4

00 ¼ @ih
2

00@ih
2

00 � h
2

00�h
2

00 � 4��1 þ 4��2 � 2��3 � 6��4

þ ð�	2 þ 2�ð3þ �� 2�Þ þ 2ð3þ 3�� 2�Þ�þ 2	ð�ð�� 1Þ þ ð�� 3Þ�ÞÞ
ð	� 2Þð�þ �Þ �@20H;

where H ¼ �GN

R
d3y�jx� yj is known as the

superpotential.
(6) To go to the PPN gauge, we choose � that cancels

the term depending on H in the previous equation
[12].

Putting everything together, we have (to desired order)

gPPN00 ¼ 1� 2Uþ 2U2 � 4�1 � 4�2 � 2�3 � 6�4

¼ 1þ�H;

gPPNij ¼ �ð1þ 2UÞ�ij ¼ �ijð�1þ �HÞ;
gPPN0i ¼ 1

2
ð7þ 	PPN

1 � 	PPN
2 ÞVPPN

i þ 1

2
ð1þ 	PPN

2 ÞWPPN
i ;

�PPN ¼ ð	� 2�Þð2þ �þ 3�Þ _H

2ð	� 2Þð�þ �Þ ;

which, compared to the generic PPN metric (see, for
example, Eq. (A.11) of [51]) implies that all the PPN
parameters vanish except for the ones cited in (A1).

The PN metric in the unitary gauge of Eqs. (17) and (18)
is easily derived from these PPN expressions. It suffices to
go from the PPN gauge to the unitary gauge via a diffeo-
morphism �x� ¼ � satisfying

0 ¼ �ð	� 2�Þð2þ �þ 3�Þ _H

2ð	� 2Þð�þ �Þ ;

i ¼ ð	þ �þ 3�Þ@iH
2ð�þ �Þ :

This leads to the following PN metric in the unitary gauge

g00 ¼ 1þ �H þOðv4Þ;

gij ¼ �ijð�1þ �HÞ � ð	þ �þ 3�Þ
�þ �

@j@iH þOðv4Þ;

g0i ¼ 1

4
ð8þ 	PPN

1 ÞðVPPN
i þWPPN

i Þ þOðv4Þ;
� ¼ Oðv4Þ: (A3)

APPENDIX B: THE EINSTEIN-AETHER
AND THE MONOPOLE

In both khronometric and Einstein-aether theories, we
compare the monopole contribution to the energy-loss

formula in the limit for which the PPN parameters are
identical to GR. The free parameters of khronometric
theory are 	, � and � and those of the Einstein-aether
[13] are ci for i ¼ 1; . . . ; 4. We have the correspondence14

c1 ¼ 0, c2 ¼ �, c3 ¼ � and c4 ¼ 	. Notice that one less
parameter is needed to define khronometric theory. This is
because the action of a hypersurface-orthogonal aether
(which is equivalent to khronometric theory [5]) contains
a term that can be absorbed by the others, reducing the
number of independent terms from four down to three.
Comparing the results of this paper and the work pre-

sented in [20], we see that the waveforms for the spin-0 and
spin-2 modes are essentially identical. The main difference
comes from the expression for Z of Eq. (35). Let ~Z be the
equivalent expression in æ-theory,

~Z � ðc13 � 1Þð~	PPN
1 � 2~	PPN

2 Þ
3ðc14 � 2c13Þ ; (B1)

where ~	PPN
1 , ~	PPN

2 are the Lorentz-violating PPN parame-
ters in æ-theory and cij ¼ ci þ cj. Then the khronometric

expression for Z is precisely ~Z, but with c1 ¼ 0.
The limit 	PPN

1 ¼ 	PPN
2 ¼ 0 in khronometric theory can

be achieved by setting 	 ¼ 2� and leads to Z ¼ 1. By
inspection of the energy-loss formula (41), we see that the
monopole is proportional to Z and therefore persists in this
limit. In generic æ-theory, the equivalent limit that sets the
PPN parameters to GR is given by

c2 ¼ �2c21 � c1c3 þ c23
3c1

; c4 ¼ � c23
c1

(B2)

and leads to ~Z ¼ 0. The corresponding monopole is pro-
portional to ~Z and subsequently vanishes in this limit.
Therefore, the values of Z and ~Z explain the presence or
absence of the monopole in the limit when the PPN pa-
rameters are identical to those of GR.
It is natural to ask if ~Z can be tweaked so that æ-theory

has a monopole when ~	PPN
1 ¼ ~	PPN

2 ¼ 0. A first possibility
would be to consider the limit that ressembles khronomet-
ric theory, namely c1 ¼ 0 and c4 ¼ 2c3. This leads to

14Recall that we are using the mostly minus signature. The
mostly plus signature is used in [20] and leads to a different
correspondence between the parameters.
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~Z ¼ 1, like in khronometric theory, indicating that a mono-
pole may be possible. However, requiring only c1 ¼ 0
implies that 	PPN

1 ¼ 8. One could try to set c1 ¼ 0 and
c3 ¼ 0 to get	PPN

1 ¼ 0, but this case of æ-theory has yet to
be studied [13]. Alternatively, one may try to make the
denominator in (B1) vanish to retrieve a finite limit. Setting
c14 ¼ 2c13 yields ~Z ¼ 1. However, the second condition
in (B2) implies c1 ¼ c3 ¼ c4 ¼ 0, which is a singular limit
for æ-theory.

APPENDIX C: NOTION OF ENERGY FOR AN
ASYMPTOTICALLY FLAT SPACETIME

To characterize the energy carried away from a system
by GWs, we use a method different from the standard
technique defined in terms of the Landau-Lifshitz or re-
lated pseudotensors [12,15,31,32]. Here, instead of com-
puting the energy carried by GWs, we derive the loss of
energy of the isolated system during the process of gravi-
tational radiation. This resembles the definition of energy
loss by the time variation of the Bondi-Sachs mass [28,32].
However, we will use a different notion of conserved
energy that, to our knowledge, was first used in the context
of GWs in [20]. This energy is well-defined for asymptoti-
cally flat spacetimes satisfying the boundary conditions
(37), which we use to define isolated sources. Its conser-
vation follows from the invariance of the asymptotic solu-
tion under time translations and it reduces to the standard
notion of energy for flat spacetime [34] (see also [36,52]).
Since the method is not standard, this Appendix is devoted
to presenting a succinct summary. We encourage the reader
to consult the original literature to complement it.

Given a Lagrangian density Lð�Þ depending on some
dynamical fields �, we define its associated 4-form (we
present the 3þ 1 case) as

L ð�Þ ¼ Lð�Þd4x:
After integration by parts, the first variation of the previous
form following from the variation �� can be expressed as,

�Lð�Þ ¼ E���þ d�Lð�; ��Þ;
where E� ¼ 0 are the equations of motion of the theory. If
the variation �� is a diffeomorphism generated by a vector
field , the previous variation should correspond to the
action of this transformation over Lð�Þ,

�Lð�Þ ¼ dðiLÞ;
where iL refers to the contraction of the form L with the

vector field . Define the Noether current 3-form associ-
ated to  and Lð�Þ as

J L � �Lð�; ��Þ � iL: (C1)

This form is clearly closed when the equations of motion
are satisfied. In practice, to find the components of the
3-form�L, notice that it is dual to a 1-form. In components

� L��� ¼ �	����
	
L;

where the index of �	
L is risen with the metric g�� and

�	��� are the components of the Levi-Civita 3-form de-

fined for the metric g��. From this definition it follows that

d�L ¼ ffiffiffiffiffiffiffi�g
p r��

�
Ld

4x ¼ @�ð ffiffiffiffiffiffiffi�g
p

��
L Þd4x; (C2)

from which one can easily identify the components of �L.
To associate the flux generated by  to a Hamiltonian

evolution from an initial hypersurface �, one must assume
[34,52] that in the boundary of the initial hypersurface,
denoted by @�, it is possible to find a 3-form BL such that

�
Z
@�

iBL ¼
Z
@�

i�L:

If such a current exists, the flux generated by  corresponds
to the orbits generated by of the Hamiltonian

H �
Z
�
JL �

Z
@�

iBL: (C3)

Finally, since JL is closed when the equations of motion are
satisfied, it follows that locally JL ¼ dQL. Thus, when the
equations of motion hold, H can be written as a pure

boundary term,

H ¼
Z
@�
ðQL � iBLÞ: (C4)

To define a canonical notion of energy, we shall now
assume that  is an asymptotic time translation, with
components � ! �

�
0 and that the asymptotic conditions

on the dynamical fields have been specified in such a way
that the surface integrals appearing in Eq. (C4) approach a
finite limit. The Hamiltonian then corresponds to the gen-
erator of time evolution. We define the canonical energy at
a hypersurface slice of constant time �t to be [34]

E L ¼
Z
S2t

ðQL � i��
0
BLÞ; (C55)

where S2t represents the boundary sphere at the boundary of
�t. Whenever EL is well-defined, it is a conserved quantity,
and we can remove the t label in S2t .
We now apply the previous formalism to our action (4).

The hypersurface of constant time corresponds to a sheet of
the preferred foliation. Even if not necessary, it is conve-
nient to work with an action for which

Z
S2
i�L ¼ 0: (C6)

This equation is not satisfied for the Einstein-Hilbert action
part of (4) (see e.g. Eq. (87) in [34]). As explained in [34],
the existence of a background metric
�� makes it possible

to build a covariant action (which is required to get a
conserved current (C1)) equivalent to Einstein-Hilbert and
satisfying (C6). Indeed, let us write g�� ¼ 
�� þ h�� and

consider h�� and 
�� as independent dynamical fields.
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We can then add a boundary term invariant under diffeo-
morphisms to the action (4) to yield

S0 � SþM2
0

2

Z
d4xð ffiffiffiffiffiffiffi�g

p ðð�	
�� � ��	

��Þg��

� ð��
�� � ���

��Þg�	ÞÞ;	
�

Z
d4xL0; (C7)

where ��
�
�� refers to the connection compatible with the

background metric 
��. The part corresponding to GR

reads

S0�� ¼ �M2
0

2

Z
d4x½ ffiffiffiffiffiffiffi�g

p
g��ð�	

���
�
	� � ��

	��
	
��Þ

þ ð ffiffiffiffiffiffiffi�g
p ð ��	

��g
�� � ���

��g�	ÞÞ;	 �: (C8)

The equations of motion derived from varying the previous
action with respect to h�� and 
�� are the same, as these

fields appear only in the combination g��, except in the

boundary term. As a consequence, 
�� can be considered

to be Minkowski, and we can assume that the equations of
motion fix h��.

For the computation of J�� corresponding to the action
(C8) and the vector field @t, with components ��

0 , we first

notice that @t is a Killing vector of 
��,

�@t
�� ¼ 2 �rð�
�Þ	�	
0 ¼ 0;

and the boundary term in Eq. (C8) does not contribute to
J��. For the first term one finds the corresponding current

��
�� ¼ M2

0

4
ð��

�	ðg�	g���g�� � 2g��g	��g��Þ
þ g�	ð2��

��g
���g�	 � ��

	�g
���g��ÞÞ: (C9)

This term is linear in the connection and does not depend
on the derivative of �g��. To construct the conserved

current, we use

�@tg�� ¼ 2rð�g�Þ	�	
0 ¼ 2g	ð��	

�Þ0;

Thus, under the assumption that the fields fall-off at large
distances as (37), the current (C9) vanishes asymptotically
as Oðr�4Þ, which means that its contribution to (C6) can-
cels. Indeed the cancellation of the contribution to (C6)
holds in the more general situation where one considers
variations �g�� which do not change the asymptotic be-

havior (37). Finally, the energy E�� derived from Eq. (C8)
coincides with the ADM mass which also agrees with the
energy derived from the Landau-Lifshitz pseudotensor
[34,35].

The term S� in the action (4) yields a current

��
� ¼ �M2

b½ð	a�r�u
� �r�K

�
�ÞP

��ffiffiffiffi
X

p ��

þ K��
P 	

�ffiffiffiffi
X

p @	��� 1

2
ð½K�	 þ K	��u�

� K	�u� � u	u�u�K
��Þ�g	��: (C10)

Remember that the invariance under diffeomorphisms is
nonlinearly realized15 on �

�� ¼ 0 þ �@��:

From Eq. (37) this means that �@t��Oð1Þ. Similarly

u	 ¼ �	0ffiffiffiffiffi
g00

p � �	0 þOð1=rÞ. Thus, ��
� �Oðr�3Þ, which

means that the contribution of this term to (C6) cancels.
Finally, we find that the conserved energy (C3) for

the action (C7) inside a constant time hypersurface �t is
given by

E ¼
Z
�t

d3x
ffiffiffiffiffiffiffi�g

p
J 0

S0 ; (C11)

with J 0
S0 representing the coordinates of the 1-form dual to

the corresponding 3-form, Eq. (C1),

J �
S0 � ð��

�� þ��
�Þ � ��

0L
0: (C12)

The contribution from the khronon action is simplified
once one considers the equation of motion for �. Indeed,
��

� in Eq. (C10) includes a term

ð	a�r�u
� �r�K

�
�ÞP

��ffiffiffiffi
X

p ¼ J�; (C13)

where J� is defined in (6). In the unitary gauge, this current
is purely spatial, which means that this term does not
contribute to (C11).
We are eventually interested in the flux of energy-loss

through GWs, so we want to compute the quantity,

_E ¼
Z
�
d3x

ffiffiffiffiffiffiffi�g
p _J 0

S0 ¼ �
I
S21

d�
ffiffiffiffiffiffiffi�g

p
r2r̂iJ i

S0 ; (C14)

where we have used the fact that the current J �
S0 is con-

served on-shell, which is a consequence of J being closed
and (C2). The final ingredient is to evaluate J i

S0 . From

Eq. (C9),

�i
�� ¼ M2

b

4
_h	�½
	�ð@�hi� � @ih��Þ

� 2@	h�i þ @ih	� þ 
�i@	h��� þOðh3Þ: (C15)

For the khronon terms, we find that at quadratic order in the
unitary gauge

15We could also work with the field ’ for which �’ ¼
�@�’.
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�i
� ¼ M2

b½ �Kð	iÞð ��0
	0 þ 
	�

���
00Þ � �Ki0 ��0

00�: (C16)

From this expression it is clear that the notion of energy
(C11) is not well defined for spacetimes with radiation at
infinity satisfying conditions (38). This is an unphysical
divergence, which is regularized for a flux of energy of
finite duration [36]. For our purposes, it is enough to notice

that the time variation (C14) (and hence the flux) is well
defined for these boundary conditions. Also, only the part
of the integral quadratic in perturbations does not vanish,
which implies that the previous expressions are enough to
compute the flux of energy at infinity. The steps to go from
the previous formula to the final result (40) are explained in
Sec. VI.
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