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Higher-order curvature corrections involving the conformally invariant Weyl-squared action have

played a role in two recent investigations of four-dimensional gravity: in critical gravity, where they

are added to the standard cosmological Einstein-Hilbert action with a coefficient tuned to make the

massive ghostlike spin-2 excitations massless, and in a pure Weyl-squared action considered by

Maldacena, where the massive spin-2 modes are removed by the imposition of boundary conditions.

We exhibit the connections between the two approaches, and we also generalize critical gravity to a wider

class of Weyl-squared modifications to cosmological Einstein gravity where one can eliminate the massive

ghostlike spin-2 modes by means of boundary conditions. The cosmological constant plays a crucial role

in the discussion, since there is then a ‘‘window’’ of negative mass-squared spin-2 modes around AdS4
that are not tachyonic. We also construct analogous conformal and nonconformal gravities in six

dimensions.
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I. INTRODUCTION

Although string theory may provide the most promising
candidate for a quantum theory of gravity, there remains a
tantalizing question as to whether four-dimensional gravity
can be quantized in its own right. A natural approach, and
one of the simplest, is to consider extending Einstein
gravity by adding quadratic curvature terms, thus rendering
the theory perturbatively renormalizable [1,2]. However, as
is typical in a theory with more than second-order time
derivatives, it contains ghostlike modes, in the form of
massive spin-2 excitations. There is a way to circumvent
this problem if one considers three dimensions rather than
four, and so the usual massless graviton is trivial. Hence the
ghostlike massive modes can become acceptable upon
reversing the sign of the Einstein-Hilbert action, without
creating a ghostlike physical massless graviton in the
process. Examples include the well-studied topologically
massive gravity [3], and the more recently discovered
new massive gravity [4]. It was observed that when a
cosmological constant is included, there exists some criti-
cal point [5] in the parameter space such that the massive
modes disappear and are replaced by modes with logarith-
mic coordinate dependence [6]. The theory can be made
ghost-free while retaining the standard sign for the
Einstein-Hilbert action, by truncating out the log modes
using standard Brown-Henneaux AdS3 boundary condi-
tions [7]. The theory has subsequently been generalized
to a large class of three-dimensional off-shell supergrav-
ities [8–12].

Analogous critical gravities in four dimensions were
subsequently proposed [13]. The Lagrangian consists of
the Einstein-Hilbert term, a cosmological constant�, and a
term constructed from the square of the Weyl tensor, with a
coupling constant 12�.

1 It was shown that there is a critical

relationship between � and � such that the massive spin-2
modes disappear by coalescing with the massless modes,
resulting again in the appearance of logarithmic modes
[15]. (See also [16,17].) These log modes are ghostlike in
nature [18,19], but their falloff behavior at infinity is
slower than the standard massless modes, and so they can
be truncated out by imposing appropriate AdS4 boundary
conditions. The resulting theory appears, however, to be
somewhat empty, in that the remaining massless graviton
has zero on-shell energy. Furthermore, the mass and en-
tropy of black holes in the critical theory both vanish. This
critical phenomenon arises also in higher-dimensional
gravities extended by adding curvature-squared terms
[20], and also if certain cubic curvature terms are added
[21]. (See also [22] for the D ¼ 3 case.)
Recently, four-dimensional purely conformal gravity

[23], where there is only a Weyl-squared term, has been
revisited in [24]. It was shown that if an appropriate
boundary condition is imposed, then for spherically
symmetric configurations only the Schwarzschild–
anti-de Sitter AdS (Schwarzschild-AdS) metric arises as

1Actions with a Weyl-squared term have also been considered
in the context of noncommutative geometry in [14].
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a black-hole solution in conformal gravity. Furthermore, its
Euclidean action calculated in conformal gravity modified
by a purely topological contribution from a Gauss-Bonnet
term turns out to match exactly with the action of the same
black hole in Einstein gravity with a cosmological con-
stant, for an appropriate choice of the coefficient � of the
Weyl-squared term in conformal gravity. The black-hole
entropy calculated for the conformal gravity and for the
usual Einstein gravity then precisely matches also. This
leads to the possibility that the two theories at long wave-
lengths are in fact equivalent.

The Lagrangian for critical gravity, modulo a total de-
rivative that does not affect the equations of motion, is
given by [13]

L crit ¼ ffiffiffiffiffiffiffi�g
p ðR� 2�þ 1

2�C
����C����Þ; (1.1)

where C���� is the Weyl tensor. It turns out that the value

for � required for criticality, namely, � ¼ 3=ð2�Þ, is of
precisely the same magnitude as that for the Weyl-squared
coupling coefficient obtained in [24] for conformal gravity
by imposing the Euclidean action matching condition de-
scribed above. Thus the essentially vacuous nature of
critical gravity is a reflection of the equivalence of the
cosmological Einstein-Hilbert and the conformal theories.

In Sec. II, we review both critical gravity and the
Einstein/conformal gravity duality conjecture. In confor-
mal gravity, there exist ghostlike massive spin-2 modes in
the AdS4 background satisfying ðh� 2

3 ��M2Þh�� ¼ 0,

in addition to the massless spin-2 modes satisfying
ðh� 2

3�Þh�� ¼ 0. Spin-2 representations in AdS4 are

characterized by their lowest-energy E0, which is given by

E0 ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
� 3

�
M2

s
: (1.2)

The representation is unitary if E0 � 3, and henceM2 � 0
[25]. The time dependence of the modes is proportional to
e�iE0t, and so by analogy with the situation in Minkowski
spacetime, modes may be defined to be tachyonic if E0

becomes complex, thus leading to exponential growth in
time. From (1.2), the absence of tachyons therefore
requires2

M2 � 3
4�: (1.3)

Interestingly, although the massive modes in conformal
gravity have M2 < 0, the ‘‘mass’’ squared is not suffi-
ciently negative to violate the bound (1.3), and so, although
they are not unitary representations, they are not tachyonic.
However, the radial falloff of these modes is slower than
that for modes with M2 � 0. In fact, they fall off more
slowly than even the logarithmic modes. Thus these
nonunitary modes can be truncated out by imposing ap-
propriate boundary conditions, leaving only the massless

graviton. The vanishing on-shell energy of the massless
graviton in critical gravity implies that its energy in con-
formal gravity is exactly the same as it is in cosmological
Einstein gravity.
In Sec. III, we obtain new unitary four-dimensional

gravities, by generalizing the parameter choices made for
critical gravity in [13]. For critical gravity, the unitarity
requirement M2 � 0 was imposed for the spin-2 modes.
However, as noted above, the absence of tachyonic modes
in D ¼ 4 is less restrictive than this, and M2 can be
negative provided that (1.3) is still satisfied. This implies
we can choose the coupling � for the Weyl-squared
term in (1.1) so that the massive spin-2 modes have
3�=4 � M2 < 0. These ghostlike modes are classically
stable, but can be truncated out by imposing appropriate
boundary conditions, just as was done for conformal grav-
ity in [24], leaving only the unitary massless graviton
modes. Within this broader class of cosmological gravity
plus Weyl-squared theories, critical gravity’s specific prob-
lem of becoming vacuous after truncating the ghostlike
modes is circumvented. Furthermore, since the broader
class of theories has a range of allowable values for the
parameter �, rather than a single critical choice, the pos-
sibility of finding a stable fixed point under the renormal-
ization group flow becomes less demanding.
In Sec. IV, we generalize these results to six dimensions.

There are three conformally invariant structures in D ¼ 6.
Two of these are the two independent invariants built from
the cube of the Weyl tensor. The third is essentially built
from second derivatives of the square of the Riemann
curvature. In order to obtain a conformal equivalence to
Einstein gravity, it is, in particular, necessary that Einstein
metrics should also be solutions of the conformal gravity.
Indeed, it was already observed that there exists a specific
linear combination of the three conformal structures such
that Riemann curvature-squared and cubed terms all vanish
[27]. As in D ¼ 4, we find that the conditions on the
coefficients required for critical gravity are exactly the
same as those implied by requiring Einstein/conformal
gravity duality. We then observe that we can again con-
struct a more general family of six-dimensional gravities
for which the massive spin-2 modes can be eliminated by
boundary conditions.
The paper ends with conclusions in Sec. V. In the

Appendix, we collect some of the detailed calculations
for the six-dimensional theories.

II. CRITICALVS CONFORMAL GRAVITY IN
FOUR DIMENSIONS

The Lagrangian of four-dimensional critical gravity
discussed in [13],

L ¼ L0 þL1; (2.1)

contains two parts. The first is the usual Einstein-Hilbert
term with a cosmological constant,

2For scalar fields, the analogous requirement that E0 be real is
equivalent to the Breitenlohner-Freedman bound [26].
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L 0 ¼ ffiffiffiffiffiffiffi�g
p ðR� 2�Þ: (2.2)

The second term is quadratic in curvature, namely, the
square of the Weyl tensor together with a Gauss-Bonnet
term which is a total derivative:

L 1 ¼ �1
3�

ffiffiffiffiffiffiffi�g
p ðR2 � 3R��R��Þ

¼ 1
2�

ffiffiffiffiffiffiffi�g
p ðC����C���� � E4Þ; (2.3)

where

E4 ¼ R����R���� � 4R��R�� þ R2 (2.4)

is the Gauss-Bonnet invariant whose integral is propor-
tional to the Euler number. Being a total derivative in four
dimensions, E4 does not contribute to the equations of
motion.

The Lagrangian L1 is proportional to the one for con-
formal gravity discussed in [23]. Defining Lconfð�Þ �
�L1, we have

L ¼ L0 �Lconfð�Þ: (2.5)

The Lagrangian admits Einstein metrics as solutions, with
a cosmological constant equal to �. Included amongst
these is the AdS4 vacuum solution, whose curvature is
given by

R�� ¼ �g��; R ¼ 4�;

R���� ¼ �

3
ðg��g�� � g��g��Þ:

(2.6)

Writing the varied metric as g�� ! g�� þ h��, and so

�g�� ¼ h��, the linearized equations of motion were

given in [13]. Choosing the gauge condition

r�h�� ¼ r�h; (2.7)

it was shown that the trace part h vanishes by virtue of the
equations of motion. The transverse and traceless spin-2
modes satisfy

� �ðh� 2
3�Þðh� 2

3��M2Þh�� ¼ 0; (2.8)

where

M2 ¼ 2

3
�� 1

�
: (2.9)

The spectrum contains massless graviton modes hðmÞ
��

and also massive spin-2 modes hðMÞ
�� . Their on-shell ener-

gies are given by [13]

Emassless ¼ � 1

2�2T

�
1� 2

3
��

�Z ffiffiffiffiffiffiffi�g
p

d4xr0h��
ðmÞ _h

ðmÞ
�� ;

(2.10)

Emassive ¼ 1

2�2T

�
1� 2

3
��

�Z ffiffiffiffiffiffiffi�g
p

d4xr0h
��
ðMÞ _h

ðMÞ
�� ;

(2.11)

where the integration over the time coordinate is taken over
an interval T, which one could take to be the natural time
periodicity ofAdS4, or else just send it to infinity. Since the
integrals themselves both give negative quantities, it fol-
lows that ghost modes are unavoidable, in general. In [13],
the parameter � was chosen to have the critical value
given by

� ¼ �crit � 3

2�
; (2.12)

implying that M2 ¼ 0. In this case, because the massive
modes coalesce with the massless ones, one obtains new
solutions to (2.8) that are annihilated by neither second-
order factor. These modes have logarithmic dependence on
the AdS4 radial coordinate, and they can be truncated out
by imposing an appropriate AdS boundary condition. The
resulting critical gravity is, however, rendered essentially
trivial, since the energy (2.10) for the surviving massless
mode vanishes. Furthermore, the mass and the entropy of
the Schwarzschild black hole vanish also. The mass for-
mulas for black holes in extended gravity can be found in
[28–30].
In a new development in higher-derivative gravity, four-

dimensional conformal gravity [23] was revisited in [24].
It was observed that the Euclidean action for the
Schwarzschild-AdS black hole computed from Lconf is
identical to that calculated from the pure cosmological
Einstein-Hilbert LagrangianL0, provided that the parame-
ter� is chosen to take the critical value given in (2.12). The
black-hole entropy matches also. We have checked that the
actions also match for the Kerr-AdS black hole. It was
proposed in [24] that, subject to the imposition of appro-
priate boundary conditions, the Lagrangians L0 and Lconf

are equivalent at the critical point, in the long-wavelength
regime. From this point of view, the ‘‘triviality’’ of critical
gravity can be easily understood, since critical gravity (2.1)
is given by

L crit ¼ L0 �Lconfð�critÞ; (2.13)

and so one is subtracting two Lagrangians that describe the
same IR physics. The vanishing of the graviton energy and
also the black-hole mass and entropy in critical gravity
further establish the equivalence of L0 and Lconf at the
critical point.
It should be remarked that there is an issue of ghost

modes in conformal gravity. The linearized equation of
motion following from Lconf is given by

�ðh� 2
3�Þðh� 4

3�Þh�� ¼ 0: (2.14)

This implies that

M2 ¼ 2
3�; (2.15)

which is negative since �< 0 for AdS4. The energies of
the on-shell massless and massive spin-2 modes are
given by
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Econf
massless ¼ � ��

�2T

Z ffiffiffiffiffiffiffi�g
p

d4xr0h
��
ðmÞ _h

ðmÞ
�� ; (2.16)

Econf
massive ¼

��

�2T

Z ffiffiffiffiffiffiffi�g
p

d4xr0h
��
ðMÞ _h

ðMÞ
�� : (2.17)

Thus we see that � has to be negative for the massless
graviton to have positive energy; meanwhile, the massive
graviton has negative energy.

The mass squared M2 of the massive graviton (2.15) in
conformal gravity is negative, suggesting the possibility
that these modes might be tachyonic. As we mentioned in
the Introduction, the SOð2; 3Þ representations for massive
spin-2 modes in AdS4 are characterized by their lowest-
energy E0, which is given in terms of M2 by (1.2). From
now on, we shall, for convenience, take

� ¼ �3; (2.18)

so that the AdS4 has ‘‘unit radius.’’ The reality of E0 ¼
3
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4 þM2

q
therefore requires that

M2 � M2
min � �9

4: (2.19)

As can be seen from the explicit expressions for the mas-
sive spin-2 modes obtained in [15], which have time de-
pendence of the form e�iE0t, the condition that E0 be real
ensures that the modes do not grow exponentially in time.
This is essentially the statement of the absence of tachyons.
The massive spin-2 modes in conformal gravity, which
have M2 ¼ �2, lie within the bound (2.19), and so they
are not tachyonic.

The radial dependence of the modes withM2
min�M2<0

exhibits a slower falloff at large distances than that for
modes withM2 � 0. In fact, they fall off more slowly than
even the log modes. They can therefore be truncated out by
imposing an appropriate asymptotic boundary condition,
as was described in [24]. This is essentially the same
boundary condition that can be used to truncate out the
logarithmic modes in critical gravity.

III. NEW UNITARY GRAVITIES IN
FOUR DIMENSIONS

After the truncation of the massive modes, the confor-
mal gravity described by Lconfð�critÞ can be viewed as
being equivalent, at the classical level, to cosmological
Einstein gravity L0 [24]. It should, however, be empha-
sized that conformal gravity admits Einstein metrics with
an arbitrary cosmological constant as solutions, and so for
a given value of � the equivalence to Einstein gravity holds
only for the specific value � ¼ 3=ð2�Þ appearing in L0.

It is natural to consider the more restrictive case where
the theory has a unique scale for the AdS vacuum deter-
mined by the cosmological constant in the theory. We then
need to consider the Lagrangian (2.1). As discussed earlier,
the mass of the massive spin-2 modes in this theory is given

by (2.9). In [13], it was required that M2 � 0, so that
these modes will correspond to unitary representations of
SOð2; 3Þ. ForM2 > 0, they fall off faster than the massless
modes, and so they could not be truncated out by imposing
boundary conditions at infinity. Thus one would be stuck
with having nontruncatable ghostlike modes, except in the
critical case where M ¼ 0, for which the resulting loga-
rithmic modes can be truncated out on account of their
slower falloff.
An alternative choice is to choose the � parameter so

that M2 lies in the range

� 9
4 � M2 < 0: (3.1)

Within this range, the massive modes are nontachyonic and
classically stable in the sense that there is no exponential
growth in time. Since, however, they fall off more slowly
than those with M2 � 0, one can impose boundary con-
ditions that eliminate them from the spectrum while retain-
ing the massless modes.3 The condition (3.1) is satisfied
by either � � 4 or �<� 1

2 . It follows from (2.10) that the

choice �<� 1
2 implies that the massless graviton has

negative energy. On the other hand, for the choice of
� � 4, the energy of the massless graviton remains posi-
tive. Of course, in this case, the massive modes would have
negative energy. However, as we discussed, these modes
can be eliminated by imposing appropriate boundary con-
ditions, leaving just the nontrivial positive-energy massless
graviton.
As we have seen, by allowing the possibility of having

nontachyonic but negative-M2 massive modes, which can
then be eliminated by boundary conditions, we have now
arrived at a one-parameter family (� � 4) of extended
gravity theories that describe just unitary massless spin-2
fields. At the quantum level, having such a family broadens
the chances for finding an ultraviolet fixed point of the
renormalization group flow that lands within the class of
acceptable theories. This may improve the prospects for
obtaining a consistent theory of quantum gravity.

IV. GENERALIZATIONS TO SIX DIMENSIONS

We now turn our attention to six dimensions. Conformal
gravities in D ¼ 6 have been previously studied (see, for
example, [31–33]). Three independent structures can arise
in the Lagrangian. Their explicit forms are (see [34], and
also [35,36])

I1¼C����C
����C�

��
�; I2¼C����C

����C��
��;

I3¼C���	ð��
�hþ4R�

�� 6
5R�

�
� ÞC���	þr�J

�; (4.1)

wherer�J
�, which does not contribute to the equations of

motion, can be found in [34]. In general, a Lagrangian of
the form

ffiffiffiffiffiffiffi�g
p

ciIi will give equations of motion that are not

3Note that the E0 ¼ 0 branch of the massless solution from
(1.2) is truncated out for the same reason.
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satisfied by arbitrary Einstein metrics. However, for a
specific choice of the ci (unique up to overall scaling),
the equations of motion will be satisfied by any Einstein
metric. This same linear combination has the feature that,
modulo total derivatives, all terms of cubic and quadratic
order in the Riemann tensor are absent [27]. In this form,
the Lagrangian is given by

e�1Lconf ¼ �

�
4I1 þ I2 � 1

3
~I3 � 1

24
E6 þr�

~J�
�

¼ �

�
RR��R�� � 3

25
R3 � 2R��R��R����

� R��hR�� þ 3

10
RhR

�
; (4.2)

where ~I3 ¼ I3 �r�J
�, and the total derivative r�

~J� can

be derived from [27]. Note that E6 is the Euler integrand,
given by

E6 ¼ 
�1�1�2�2�3�3

�1�1�2�2�3�3

� R�1�1
�1�1

R�2�2
�2�2

R�3�3
�3�3

: (4.3)

Any Einstein metric (or, in fact, any metric conformal
to Einstein metric) will be a solution to the theory
following from (4.2). In particular, we may consider the
Schwarzschild-AdS black hole, satisfying R�� ¼ �5g��,

with the metric

ds2 ¼ �fdt2 þ f�1dr2 þ r2d�2
4; f ¼ 1þ r2 � �

r3
:

(4.4)

This is also a solution to Einstein gravity with a cosmo-
logical constant, described by the Lagrangian

e�1L0 ¼ Rþ 20: (4.5)

Note that we have chosen the cosmological constant so that
the AdS6 vacuum is of unit radius. The thermodynamic
quantities for the black hole (4.4) are given by

T ¼ 3þ 5r2þ
4�rþ

; S ¼ 2

3
�2r4þ; M ¼ 2

3
�r3þð1þ r2þÞ;

(4.6)

where rþ is the horizon radius. The Euclidean action is
given by

IEin6 ¼ 2�2r4þð1� r2þÞ
3ð3þ 5r2þÞ

: (4.7)

Substituting the Euclideanized solution (4.4) into the
action Iconf6 ¼ R

d6xLconf , we find that the contribution

from (4I1 þ I2 � 1
3
~I3) converges. The contribution from

the r�
~J� term vanishes. The integral of E6 itself diverges,

but if, following the same strategy as in [24], one adds in
the associated boundary term that arises in the definition of
the Euler number for manifolds with boundary, it contrib-
utes a pure topological number. The Euclidean action Iconf6

then turns out to be proportional to IEin6 . To be specific,

we have

IEin6 ¼ Iconf6 j�¼�ð1=24Þ: (4.8)

We have also checked this equality for the Kerr-AdS
black hole [37,38], using also results from [39], in the
case that the two angular momenta are equal. It is straight-
forward to check, using the Wald formula [40], that the
Schwarzschild-AdS black-hole entropy matches exactly
also. This suggests, therefore, that as in D ¼ 4, Einstein
gravity emerges from conformal gravity.
Let us now consider the linearization of conformal

gravity around the AdS6 background. For Einstein gravity
(4.5), the spin-2 graviton is massless, satisfying

� ðhþ 2ÞhðmÞ
�� ¼ 0: (4.9)

(Recall that we have set � ¼ �5.) For conformal gravity
(4.2), the full set of equations of motion and linearization
around the AdS6 vacuum are given in the Appendix. It
turns out the spin-2 modes satisfy

�ðhþ 2Þðhþ 6Þðhþ 8Þh�� ¼ 0: (4.10)

Thus in the six-dimensional conformal gravity, there are
two massive spin-2 modes, with negative mass squared, in
addition to the massless graviton. The masses are given by

M2
1 ¼ �4 and M2

2 ¼ �6: (4.11)

The condition for the absence of tachyon modes is that the
lowest-energy E0 of the SOð2; 5Þ representations should be
real, where E0 is given by

E0ðE0 � 5Þ ¼ M2: (4.12)

This implies that

M2 � � 25

4
: (4.13)

Thus bothM1 andM2 satisfy this bound, even though both
these massive modes violate the bound E0 � 5 for unitary
representations. Since they have M2 < 0, their falloff at
large distances is slower than the modes withM2 � 0, and
hence they can be truncated out by imposing an appropriate
AdS boundary condition while the massless graviton is
retained.
Using standard Ostrogradsky or Noether techniques, we

find that the on-shell energy of the massless graviton in the
conformal gravity is given by

E¼ 1

4�2
ð24�Þ lim

T!1
1

T

Z T

0
dt
Z ffiffiffiffiffiffiffi�g
p

d5x _h��r0h��: (4.14)

For � ¼ �1=24, this is precisely the on-shell energy of the
Einstein gravity (4.5), further establishing the equivalence
of Einstein gravity and conformal gravity at the classical
level.
We may also interpret the above discussion from

the point of view of critical gravity, whose Lagrangian is
given by
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L 6 ¼ L0
6 �Lconf

6 : (4.15)

It is clear that the theory admits a unique AdS6 vacuum.
Furthermore, any Einstein metrics with� ¼ �5, including
the Schwarzschild black hole (4.4), are also solutions.
Linearizing the theory around the AdS6 vacuum, it is
easy to verify that the trace mode is trivial and the remain-
ing spin-2 modes satisfy the equation

� ðhþ 2Þð1þ �ðhþ 6Þðhþ 8ÞÞh�� ¼ 0: (4.16)

Thus in addition to the massless graviton, there are two
massive modes with

M2� ¼ �5�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�

s
: (4.17)

The on-shell energy for the massless graviton is given by

E ¼ � 1

4�2
ð1þ 24�Þ lim

T!1
1

T

Z T

0
dt

Z ffiffiffiffiffiffiffi�g
p

d5x _h��r0h��:

(4.18)

The criticality condition is � ¼ �1=24, for which the
massless graviton therefore has zero energy. Furthermore,
one of the two massive gravitons becomes massless. The
remaining massive mode has M2 ¼ �10, which violates
the no-tachyon bound (4.13).

As in the case of D ¼ 4, we can consider alternative
parameter choices such that the massive spin-2 modes both
satisfy the bound

� 25

4
� M2� < 0: (4.19)

These modes, with nonunitary representations, can never-
theless be truncated out by imposing appropriate AdS6
boundary conditions. Furthermore, we would like the re-
maining massless graviton to have positive energy, as given
by (4.18). These requirements can all be met by choosing

� � 1: (4.20)

Note that � ¼ 1 corresponds to another critical point,
where the two massive spin-2 modes have the same
mass, M2� ¼ �5. Restoring the general cosmological con-
stant �, defined by R�� ¼ �g��, the condition (4.20)

becomes �ð��Þ � 5.
Finally, we remark that at the � ¼ �1=24 critical point

in theD ¼ 6 theory, there are still surviving massive spin-2
modes, since we have only the one parameter � to adjust.
We may also add a Weyl-squared term 1

2�
ffiffiffiffiffiffiffi�g

p
C2 to the

Lagrangian. The linearized equation for the spin-2 modes
is now given by

�ðhþ 2Þð1� 1
3�ðhþ 6Þ þ �ðhþ 6Þðhþ 8ÞÞh�� ¼ 0:

(4.21)

A tricritical point is then achieved with � ¼ 15=8 and
� ¼ 1=16, at which the linearized equation becomes

� ðhþ 2Þ3h�� ¼ 0: (4.22)

V. CONCLUSIONS

In this paper we have developed some new ideas for
constructing higher-derivative theories of gravity that
avoid the difficulties with massive spin-2 ghost modes
that typically plague such theories. In four dimensions, it
was observed in [13] that if a term proportional to the
square of the Weyl tensor is added to the usual Einstein-
Hilbert Lagrangian with a cosmological constant, then
although generically one finds that the fluctuations around
the AdS4 background describe the usual massless spin-2
graviton and also ghostlike massive spin-2 modes, it is
possible to tune the coefficient of the Weyl-squared term
so as to make the massive modes massless also. In fact, the
energies of the massless modes then vanish in this critical
theory. There are, however, now also modes with a loga-
rithmic coordinate dependence, which can have negative
energies. Since their falloff at infinity is slower than that of
the massless modes, they can be removed by imposing
appropriate boundary conditions. However, since the mass-
less modes that remain have zero energy, the resulting
theory is somewhat trivial.
Recently, purely conformal gravity where there is only a

Weyl-squared term was revisited [24]. In this case there are
again massless and massive spin-2 modes around an AdS4
background, and again the massive modes are ghostlike.
However, their mass squared is actually negative, although
not sufficiently negative to be tachyonic. This means that
they fall off more slowly at infinity than do the massless
modes, and so they can be eliminated by imposing appro-
priate boundary conditions. In [24], it was shown that by
tuning the coefficient of the Weyl-squared action appro-
priately, it could be matched for Euclideanized solutions
with the Euclidean cosmological Einstein action for the
same configuration. It was argued that conformal gravity is
then really equivalent to cosmological Einstein gravity. In
fact, the value needed for the Weyl-squared coefficient is
exactly the same as the one required in [13] for critical
gravity. This provides a new insight into the trivial nature
of critical gravity once the logarithmic modes are elimi-
nated, in that its action is essentially just the difference
between two actions that provide equivalent descriptions of
long-wavelength physics.
The main purpose of this paper was to construct a new

one-parameter family of higher-derivative gravities for
which the ghostlike massive spin-2 modes can be elimi-
nated. We did this by relaxing the assumption that was
made in [13] that the mass squared of the massive spin-2
modes should be non-negative. This condition is needed if
one wants the massive modes to carry unitary representa-
tions under SOð2; 3Þ, but since they are in any case ghost-
like and need to be truncated, this is not really a crucial
requirement. The key point is that because the background
is AdS4 rather than Minkowski spacetime, there is a win-
dow of allowed negative values of mass squared for which
the modes are nontachyonic, and thus classically stable.
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Furthermore, precisely because the mass squared is nega-
tive, the falloff of these modes is slower than the falloff of
the massless modes. Thus one can impose boundary con-
ditions to eliminate the undesired massive modes while
retaining the massless modes. The massive modes lie in the
desired negative mass-squared range if the parameter � in
(1.1) satisfies

�ð��Þ> 12; (5.1)

i.e. �> 4 if we normalize the cosmological constant of
AdS4 canonically to � ¼ �3. (Although our primary con-
cern in this paper is for a negative cosmological constant,
we expect the above inequality to hold for a positive
cosmological constant also.)

We then extended our discussion to consider gravities in
six dimensions. By taking a suitable linear combination of
the three possible conformally invariant terms, one can
construct a conformal gravity in six dimensions that admits
all Einstein metrics as solutions. One can again tune the
overall coefficient so that the action of Euclideanized AdS
black holes matches with that calculated for the cosmo-
logical Einstein-Hilbert action. There are now two sets of
massive spin-2 modes in addition to the massless ones, and
both have mass-squared values that are negative but not
tachyonic. Thus, as in the four-dimensional case studied in
[24], one can eliminate the ghostlike massive modes by
imposing appropriate boundary conditions, suggesting the
equivalence of Einstein and conformal gravity in six
dimensions too.

An essential idea underlying the proposal for conformal
gravity in [24] is that one may be able to ‘‘have one’s cake
and eat it too’’ by reaping the renormalizability benefits
of the higher-derivative theory in the ultraviolet regime
while still having an equivalence to conventional Einstein
gravity in the infrared. One motivation for seeking families
of potentially acceptable theories of gravity as we have
done in this paper, rather than isolated examples, comes

from quantum considerations. If one does have a renorma-
lizable theory, then the question arises as to how it behaves
in the high-energy limit under the renormalization group
flow. One possibility is that the family of theories we have
considered (� � 4 in four dimensions; � � 1 in six di-
mensions) might start from a finite � or � and flow to a
fixed point at the conformally invariant limit (� ¼ 1 or
� ¼ 1), as possibly suggested by the results in [41]. An
advantage of starting from a finite � or� at lower energies,
rather than just using the conformally invariant theory at all
energy scales, would be that one would, in general, have
the more tightly restricted solution space of Einstein grav-
ity plus quadratic corrections, flowing to the less restrictive
scale invariance of conformal gravity only in the high-
energy limit. Thus the extensions of critical gravity we
have considered here may be of relevance for a quantum
theory of gravity.
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APPENDIX: EQUATIONS AND LINEARIZATION
OF D ¼ 6 CONFORMAL GRAVITY

Equations of motion
The Lagrangian for the D ¼ 6 conformal gravity we

study in this paper is given by (4.2). There are five terms.

The contributions EðiÞ
�� to Einstein equations of motion

from each term are summarized as follows:

1Þ: RR��R�� )
Eð1Þ
�� ¼

�
hðR	�R

	�Þ þ r	r�ðRR	�Þ � 1

2
RR	�R

	�

�
g�� þ R	�R

	�R�� þ 2RR	�R
	
�

þhðRR��Þ � r�r�ðR	�R
	�Þ � r	r�ðRR	

�Þ � r	r�ðRR	
�Þ;

2Þ: R3 )
Eð2Þ
�� ¼

�
3hR2 � 1

2
R3

�
g�� þ 3R2R�� � 3r�r�R

2;

3Þ: R��R	�R�	�� )
Eð3Þ
�� ¼ � 1

2
R��R	�R�	��g�� þ 3

2
R��R���	R

	
� þ 3

2
R��R���	R

	
�

þhðR��R����Þ þ r�r�ðR	�R	���Þg�� �r	r�ðR��R�	��Þ
� r	r�ðR��R�	��Þ � rð�r	ÞðR�

�R�
	Þ þ r�r	ðR��R

�	Þ
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4Þ: R��hR�� ¼ �g��r�R
	�r�R	� )

Eð4Þ
�� ¼ 1

2
g��ðg��r�R

	�r�R	�Þ � ð2r�R�	r�R�
	 þr�R�	r�R

�	Þ
þ 2r	ðR�ð�r�ÞR	�Þ þ 2r	ðr	R�

ð�R�Þ�Þ � 2r�ðrð�R�Þ	R�	Þ
þh2R�� þr�r	hR�	g�� �r	r�ðhR	

�Þ � r	r�ðhR	
�Þ

5Þ: RhR ¼ �g��r�Rr�R )
Eð5Þ
�� ¼ 1

2
g��ðg�	r�Rr	RÞ � r�Rr�Rþ 2ðhRÞR�� þ 2ðh2RÞg�� � 2r�r�hR: (A1)

The complete equation of motion following from (4.2) is
then

Eð1Þ
�� � 3

25
Eð2Þ
�� � 2Eð3Þ

�� � Eð4Þ
�� þ 3

10
Eð5Þ
�� ¼ 0: (A2)

Linearization
The theory admits Einstein metrics with R�� ¼ �g��,

with arbitrary �. We consider the linearization around
the AdS6 background, namely, R���� ¼ 1

5 �ðg��g�� �
g��g��Þ. Writing the varied metric as g�� ! g�� þ h��,

and so �g�� ¼ h��, the linearized Einstein tensor is

given by

G L
�� ¼ RL

�� � 1
2R

Lg�� ��h��; GL � g��GL
��;

(A3)

RL
�� ¼ r	rð�h�Þ	 � 1

2hh�� � 1
2r�r�h; (A4)

RL ¼ r�r�h�� �hh��h: (A5)

(We have also defined RL
��, the linearization of R��, and

introduced h ¼ g��h��.) With these preliminaries, we find

that the five linearized contributions of the equations of
motion listed above are given by

1Þ: ð2�hGL þ 6�r	r�GL
	� � 4�2GLÞg�� þ 30�2GL

�� þ 6�hGL
��

� 2�r�r�GL � 6�r�r�GL
�� � 6�r�r�GL

�� þ 14�g��hRL

þ 2�2g��R
L � 14�r�r�R

L;

2Þ: 108�2GL
�� þ 36�g��hRL þ 36�2g��R

L � 36r�r�R
L;

3Þ: 3�R�
	
�
�GL

	� þ 6�2GL
�� þ�hGL

�� þhðR�
	
�
�GL

	�Þ þ g��r�r�ðR�
	
�
�GL

	�Þ

� r	r�ðR	
�
�
�GL

��Þ � r	r�ðR	
�
�
�GL

��Þ �
3

2
�r�r�GL

�� � 3

2
�r�r�GL

��

þ�hGL
�� þ 3�2g��R

L þ 3�g��hRL � 3�r�r�R
L;

4Þ: 2�hGL
�� þh2GL

�� þ g��r	r�hGL
	� �r	r�hGL

	� �r	r�hGL
	�

þ g���hRL þ g��h
2RL �r�r�hRL;

5Þ: 2ð�g��hRL þ g��h
2RL �r�r�hRLÞ: (A6)

Thus for the traceless and transverse spin-2 modes h��, the
linearized Einstein tensor is GL

�� ¼ � 1
2 ðhþ 2Þh�� and

the Ricci scalar is RL ¼ 0. It follows that the linearized
equation of motion is given by (4.10).

Hamiltonian
The quadratic fluctuations S2 for the following action S

are given by

S ¼ 1

2�2

Z ffiffiffiffiffiffiffi�g
p

d6x

�
R� �

�
RR��R�� � 3

25
R3

� 2R��R	�R�	�� � R��hR�� þ 3

10
RhR

��
; (A7)

S2 ¼ � 1

8�2

Z ffiffiffiffiffiffiffi�g
p

d6x½r	h��r	h�� � 2h��h
��

þ �ðr	hh��r	hh�� � 16hh��hh��

þ 76r	h��r	h�� � 96h��h��Þ�: (A8)

The Hamiltonian is

H ¼ lim
T!1

1

T

Z T

0
dt

Z
d5xð _h���

ð1Þ�� þ @tðr0h��Þ�ð2Þ��

þ @tðhh��Þ�ð3Þ�� � LÞ; (A9)

where
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�ð1Þ�� ¼ �
ffiffiffiffiffiffiffi�g

p
4�2

½r0h�� þ �ð76r0h�� þ 16r0hh�� þr0h2h��Þ�;

�ð2Þ�� ¼ ��
ffiffiffiffiffiffiffi�g

p
4�2

½�16g00hh�� � g00h2h���;

�ð3Þ�� ¼ ��
ffiffiffiffiffiffiffi�g

p
4�2

½r0hh���:
(A10)

Then one can obtain the energy of massless gravitons as

E ¼ � 1

4�2
ð1þ 24�Þ lim

T!1
1

T

Z T

0
dt

Z ffiffiffiffiffiffiffi�g
p

d5x _h��r0h��: (A11)

In our case, the Wald formula is

S ¼ � 1

8G

Z
H

ab
cd

�
@L

@Rabcd

þrðmnÞ
@L

@rðmnÞRabcd

�
d�; (A12)

where 
ab is the bi-normal vector of the horizon normalized to satisfy 
ab

ab ¼ �2.
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