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By setting some special boundary conditions in the variational principle we obtain junction conditions

for the five-dimensional fðRÞ gravity that in the Einstein limit fðRÞ ! R transform into the standard

Randall-Sundrum junction conditions. We apply these junction conditions to a particular model of a

Friedmann universe on the brane and show explicitly that the limit gives the standard Randall-Sundrum

model Friedmann equation.

DOI: 10.1103/PhysRevD.84.063529 PACS numbers: 98.80.Jk, 04.50.Kd, 11.25.�w, 98.80.�k

I. INTRODUCTION

Brane universes are now one of the most interesting
option for unifying gauge interactions with gravity at the
TeV scale [1]. They were nicely introduced by Randall
and Sundrum [2] and further developed cosmologically
[3]. However, it is not trivial to combine brane theories
with higher-order gravity theories such as fðRÞ or
fðR;RabR

ab; RabcdR
abcdÞ gravities [4–6], which are theo-

ries with Lagrangians dependent on the curvature invari-
ants. The obstacles are the ambiguities of the quadratic
delta function contributions to the field equations. The only
cases that naturally avoid these ambiguities are curvature
invariants combinations that form Lovelock densities [7,8].
However, due to some new approaches (improvement of
the continuity properties of the metric on the brane or
reduction to a second-order theory), the obstacles were
challenged successfully in Ref. [9] and the Israel junction
conditions [10] were obtained following earlier discussion
of Refs. [11–14]. The method of reduction fðRÞ theory to a
second-order theory is possible by the introduction of an
extra scalar field–the scalaron. In this approach fðRÞ theory
becomes the scalar-tensor Brans-Dicke gravity [15] with a
Brans-Dicke parameter ! ¼ 0, and the induced scalaron
potential with the scalaron playing the role of the Brans-
Dicke field. The junction conditions obtained in Ref. [9]
generalized both the junction conditions obtained in
Refs. [16,17] for the Brans-Dicke field without a scalar
field potential, and also the conditions derived in
Refs. [12,18,19] for fðRÞ brane gravity. In Refs. [20,21]
previously derived junction conditions in [9] were applied
to cosmology.

It is important to say that the junction conditions for
fðRÞ gravity given in [9,20] were obtained by using the
boundary conditions that assumed unrestricted variation
of the metric and the scalaron on the brane. In fact, the
freedom of the variation of the scalaron on the brane
leads to the continuity of trace of the extrinsic curvature

on it (see Eq. (2.7) in [20]). This property makes it
impossible to obtain the standard Israel junction condi-
tions in the Einstein limit fðRÞ ! R. However, the
boundary conditions used in Refs. [9,20] are not unique
and can be replaced by some different ones–those which
allow the Einstein limit; and this is the task of the present
paper.
In Sec. II we discuss the variational principle for fðRÞ

brane models reduced to second-order Brans-Dicke mod-
els, and we derive the junction conditions that allow the
Einstein limit. In Sec. III we apply these junction condi-
tions to the Friedmann geometry on the brane. In Sec. IV
we solve for the bulk anti–de Sitter geometry, and in Sec. V
we explicitly show how the proposed junction conditions
work in the Einstein-Randall-Sundrum limit. In Sec. VI we
give our conclusions.

II. BOUNDARY CONDITIONS AND
JUNCTION CONDITIONS WITH AN

RANDALL-SUNDRUM LIMIT

We start with the action of the fðRÞ theory [4] in five
dimensions which reads as

Sp ¼ 1

2�2
5

Z
Mp

d5x
ffiffiffiffiffiffiffi�g

p
fðRÞ þ Sbulk;p; (2.1)

where R is the Ricci scalar, �2
5 is a five-dimensional

Einstein constant, Sbulk;p is the bulk matter action, and

Mp (p ¼ 1, 2) is the spacetime volume. Since the action

(2.1) gives fourth-order field equations, then it is advisable
to use an equivalent action

�S p ¼
Z
Mp

d5x
ffiffiffiffiffiffiffi�g

p ff0ðQÞðR�QÞ þ fðQÞg; (2.2)

where Q is an extra field that plays the role of a Lagrange
multiplier, and f0ðQÞ � dfðQÞ=dQ. Varying the action
(2.2) with respect to gab and Q we obtain the equations
of motion

1
2g

abfðQÞ � f0ðQÞRab � gabhf0ðQÞ þ f0ðQÞ;ab ¼ 0;

(2.3)
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Q ¼ R; (2.4)

with the condition that f00ðQÞ � 0, and we interpret f0ðQÞ
as an extra scalar field—the scalaron:

� ¼ f0ðQÞ ¼ f0ðRÞ: (2.5)

Using the scalaron, the action (2.2) can be rewritten in the
form of a Brans-Dicke action with a Brans-Dicke parame-
ter ! ¼ 0, i.e.,

�S p ¼
Z
Mp

d5x
ffiffiffiffiffiffiffi�g

p f�R� Vð�Þg þ Sbulk;p; (2.6)

where Vð�Þ ¼ ��Rð�Þ þ fðRð�ÞÞ [9].
In our previous papers [9,20] we derived junction con-

ditions for brane-world model action (2.1), but none of
them possessed a standard Randall-Sundrum limit. Here
we suggest an approach that allows one to do so at the
expense of choosing some special boundary conditions
while varying the brane-world action with an appropriate
Hawking-Lutrell boundary term that for the action (2.6)
is [22]

SHLp
¼ �2ð�1Þp�

Z
@Mp

ffiffiffiffiffiffiffi�h
p

�Kd4x; (2.7)

where K is the trace of the extrinsic curvature tensorKab, h
is the determinant of the induced metric hab ¼
gab � �nanb, n

a is a unit normal vector to a boundary
@Mp, and � ¼ 1 (� ¼ �1) for a timelike (a spacelike)

brane, respectively. The total action of the theory is then

�S totp ¼ �Sp þ SHLp
: (2.8)

The variation of the action (2.8) leads to

�Stotp ¼�
Z
@Mp

d4x
ffiffiffiffiffiffiffi�h

p ð�1Þpf�½ðgabþ�nanbÞð�;en
eÞ

þ2nbhea�;eþ�Khab��Kab�2nða�;bÞ��gab
�2ð�1Þp�

Z
@Mp

d4x
ffiffiffiffiffiffiffi�h

p
K��; (2.9)

where the bulk parts have been omitted. Full variation
over the bulk space, separated by a brane, requires the
variation of both of these parts separately (i.e. first for
p ¼ 1, and then for p ¼ 2). This means that the full
action is

�S tot ¼ Stot1 þ Stot2 þ Sbrane; (2.10)

where

�Sbrane ¼ �2
5

Z
@Mp

d4x
ffiffiffiffiffiffiffi�h

p
Sab�gab; (2.11)

and Sab is an energy-momentum tensor of the matter on the
brane.

Now, there is a crucial point that allows one to obtain the
Randall-Sundrum limit of the fðRÞ brane junction condi-
tions. Namely, we vary the total action (2.10) in such a way
that we set boundary conditions as follows:

�� ! 0 for w ! 0; (2.12)

where w is a coordinate normal to the brane. The physical
meaning of (2.12) is that we impose the variation of the
scalaron to vanish on the brane but not in the bulk. In fact,
such a choice allows one to kill the last term in the variation
(2.9) leaving the other terms untouched (since we did not
assume that �gab ¼ 0 on the brane) and also leaving the
freedom of a choice for the trace of the extrinsic curvature
that not necessarily has to be continuous on the brane. Such
a choice of the boundary conditions allows one to obtain
the following junction conditions [20]:

� ðgab þ �nanbÞ½�;cn
c� � 2nðahebÞ½�;e� � ½�K�hab

þ ½�Kab� þ 2nða½�;bÞ� ¼ ��2
5S

ab; (2.13)

where ½A� � Aþ � A� for any quantity A with its values
Aþ and A� right and left of the brane, respectively.
Projecting Eq. (2.13) onto the directions tangent to the

brane by multiplying it by hachbd, we obtain:

� hab

�
@�

@w

�
� ½�K�hab þ ½�Kab� ¼ ��2

5Sab: (2.14)

Next, assuming that a brane is timelike (� ¼ 1), and that
the scalaron is continuous on it, i.e. that

½�� ¼ 0; (2.15)

and combining (2.14) with its contraction, we obtain the
final junction conditions in a more convenient form

½Kab� ¼
�2
5ðSab � 1

3habSÞ � hab
3 ½@�@w�

�
: (2.16)

Finally, we can see that these fðRÞ theory junction con-
ditions (2.16) transform in the Einstein (or Randall-
Sundrum) limit fðRÞ ! R, i.e., for [cf. (2.5)]

� ! 1; @�=@w ! 0 (2.17)

into the standard Israel junction conditions for a five-
dimensional spacetime [3]:

½Kab� ¼ �5

�
Sab � 1

3
habS

�
: (2.18)

In Ref. [20] we derived different types of junction con-
ditions. Since the condition (2.12) was not imposed, then
the scalar field part of the brane boundary term (2.9)
vanished provided that ½K� ¼ 0, i.e., the trace of the ex-
trinsic curvature was assumed to be continuous on the
brane (Eqs. (2.7)–(2.10) of Ref. [20]). After imposing a
mirror symmetry the trace of the extrinsic curvature had
additionally to vanish K ¼ 0 (Eqs. (2.11)–(2.13) of
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Ref. [20]), which further under the requirement of vanish-
ing the curvature scalar R ¼ 0 gave the special junction
conditions obtained in Ref. [18], for example.

However, the junction conditions (2.16) are different
and they allow the Randall-Sundrum limit that is
quite beneficial for developing fðRÞ cosmology on the
brane.

III. fðRÞ FRIEDMANN COSMOLOGY
ON THE BRANE

In order to discuss Friedmann cosmology on the brane
we start with a five-dimensional spherically symmetric
bulk metric given in the form [23]

ds2 ¼ �hðrÞdT2 þ dr2

hðrÞ þ r2d�2
3; (3.1)

where

d�2
3 ¼ d�2 þ sin2�ðd�2 þ sin2�d�2Þ

is the metric of a three-dimensional unit sphere (which
means that we assume the Friedmann curvature index
k ¼ þ1 here). After making a coordinate transformation
T ¼ Tðw; �Þ, r ¼ rðw; �Þ, the metric reads as

ds2 ¼
�
�hðrÞT02 þ r02

hðrÞ
�
dw2 þ

�
�hðrÞ _T2 þ _r2

hðrÞ
�
d�2

þ
�
�2hðrÞT0 _T þ 2

hðrÞ r
0 _r
�
dwd�þ r2d�2

3: (3.2)

Now, we transform the metric (3.2) into the form that
defines the Gaussian normal coordinates [23]

ds2 ¼ dw2 � d�2 þ r2d�2
3;

by taking

� hðrÞT02 þ r02

hðrÞ ¼ 1; (3.3)

h2ðrÞT0 _T ¼ r0 _r (3.4)

(the prime is the derivative with respect to w and the dot
with respect to �) and further assuming that � is a proper
time on the brane i.e.

� hðrÞ _T2 þ _r2

hðrÞ ¼ �1: (3.5)

In order to calculate junction conditions (2.16) we need to
calculate the components of the extrinsic curvature for the
metric (3.2), i.e.,

Kab ¼ ��w
ab ¼ 1

2

@hab
@w

; (3.6)

which after specifying the components of the induced
metric hab

hab ¼

��������������������

�1 0 0 0

0 r2 0 0

0 0 r2sin2� 0

0 0 0 r2sin2�sin2�

��������������������
(3.7)

allows the only nonvanishing term

K22 ¼ r
@r

@w
¼ �rhðrÞ _T ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ hðrÞ

q
: (3.8)

After assuming that there is a mirror symmetry
(Aþ ¼ �A� ¼ A, i.e. ½A� ¼ 2A for any quantity A) and
that the matter on the brane is in the form of a perfect fluid,
the junction conditions (2.16) read as

� 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ hðrÞ

q
¼ �2

5r
2�� ½@�@w�r2

3�
: (3.9)

In order to proceed further and specify the function hðrÞ
we need to solve field equations in the bulk.

IV. THE SOLUTION OFAVACUUM
FIVE-DIMENSIONAL FIELD EQUATION

FOR fðRÞ THEORY

The action (2.2) with Sbulk;p ¼ 0 for the spherically

symmetric metric (3.1) can be expressed as

Z
r3sin2� cos�ffðQÞ � f0ðQÞðQþ h00ðrÞ þ 6

h0ðrÞ
r

þ 6
hðrÞ
r2

� 6

r2
Þgd5x; (4.1)

where for this metric [24]

R ¼ �h00ðrÞ � 6
h0ðrÞ
r

� 6
hðrÞ
r2

þ 6

r2
: (4.2)

Varying the action (4.1) with respect to hðrÞ, one obtains
[cf. Ref. [24]-Eq. (15)] for the scalaron that

f0ðQÞ ¼ arþ b; (4.3)

where a and b are constants. Now, substituting (4.3) to the
field Eqs. (2.3) we obtain the differential equation for hðrÞ
as follows:

ðarþ bÞðr2h00ðrÞ þ 4Þ þ rðbþ 2arÞh0ðrÞ
� 2ð2bþ 3arÞhðrÞ ¼ 0: (4.4)

The most general solution of (4.4) is
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hðrÞ¼�a2B

2b3
� B

4br2
þ aB

3b2r
þa3Br

b4
þAr2þa4Br2 lnðrÞ

b5
�a4Br2 lnðarþbÞ

b5

�
�
2br2þ4ar3

3

��
� a2

2b3
� 1

4br2
þ a

3b2r
þa3r

b4
þa4r2 lnðrÞ

b5
�a4r2 lnðarþbÞ

b5

�

þbð3b4�2ab3rþ8a3br3þ8a4r4Þþ4a2r2ðarþbÞ2ð2ar�bÞ lnðrÞ�4a2r2ðarþbÞ2ð2ar�bÞlnðarþbÞ
6b5

; (4.5)

which in the case of a constant Ricci curvature R ¼ const
[i.e., a ¼ 0 and f0ðQÞ ¼ b] gives the solution for a five-
dimensional anti–de Sitter space in the form [23]

hðrÞ ¼ 1� C

4r2
þ Ar2; (4.6)

with A, B, and C ¼ B=b being constants.

V. RANDALL-SUNDRUM LIMIT OF THE VACUUM
fðRÞ THEORY ON THE BRANE

In order to discuss a practical transition from the fðRÞ
junction conditions (2.16) to the Randall-Sundrum junction
conditions (2.18) we first calculate a jump of the scalaron
(4.3) as follows:

�
@�

@w

�
¼ ½ðarðjwj; �Þ þ bÞ;w � ¼ a

@r

@jwj
�
@jwj
@w

�
¼ 2ar0

¼ 2ahðrÞ _T ¼ �2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ hðrÞ

q
: (5.1)

Substituting (5.1) into (3.9), we obtain the cosmological
equation on the brane as

�
_r2 þ hðrÞ

r2

�
ð4arþ 3bÞ2 ¼

�
�2
5

2

�
2
�2: (5.2)

Finally, by taking the limit a ! 0 and b ! 1 [which is
equivalent to the limit � ! 1, @�=@w ! 0 for (2.16)], the
Eq. (5.2) takes the form

_r2

r2
¼ �2

5

36
�2 � Aþ B

4r4
� 1

r2
; (5.3)

which further by assuming A ¼ ��5=6 and B ¼ 4U be-
comes the cosmological equation of the well-known
Randall-Sundrum-Friedmann brane-world model [3]

_r2

r2
¼ �2

5

36
�2 þ�5

6
� 1

r2
þ U

r4
; (5.4)

where �5 is the five-dimensional bulk cosmological con-
stant, and U is the integration constant that refers to the
dark radiation (note that the spatial curvature index is
k ¼ þ1 here). In fact, the bulk cosmological constant is
induced by geometry of fðRÞmodels despite that Sbulk;p¼0

in the action (2.1).

VI. CONCLUSIONS

We have proposed new types of brane models that are
based on some special boundary conditions in the varia-
tional principle. Namely, while varying the Gibbons-
Lutrell boundary term, we imposed the condition that the
variation of the scalaron should vanish on the brane (but
not in the bulk). This allowed us to have less restrictive
requirements related to the continuity of the trace of ex-
trinsic curvature on the brane. Because of that we obtained
junction conditions for the five-dimensional fðRÞ gravity
that in the Einstein limit fðRÞ ! R transform into the
standard Randall-Sundrum junction conditions. Further,
we applied these junction conditions for a particular model
of a Friedmann universe on the brane and show explicitly
that the limit gives the standard Randall-Sundrum-
Friedmann equation. The result is quite beneficial for
developing fðRÞ cosmology on the brane.
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