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In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be

naturally implemented from this new perspective in a very straightforward way when compared to

conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we

investigate how the inflaton evolves and how inflation typically ends both with and without volume

weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck

approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The

reward for this excursion into the complex plane is an insight into how volume-weighted inflation both

loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain

‘‘Youngness Paradox’’-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to

rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting

cosmological questions.
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I. INTRODUCTION

Inflation driven by the potential energy of some effective
scalar field [1–3] has become a common explanation of the
starting state of the radiation-dominated hot big bang
model. A key reason for its acceptance is that small quan-
tum fluctuations during the last 60 or so efolds of inflation
can develop into almost scale invariant curvature perturba-
tions [4–6] like those that we see today in the cosmic
microwave background fluctuations [7]. Couplings in the
inflaton’s potential have to be chosen to be very small in
order to get the amplitude of the fluctuations suitably low.
However, fluctuations in the scalar field increase as the
background energy density increases, so in certain circum-
stances the fluctuations might have a significant effect on
the evolution of large patches, leading to ‘‘stochastic in-
flation’’ [8]. Such fluctuations might lead to a situation in
which part or even in some sense the majority of the
universe continues to inflate for all time, i.e. ‘‘chaotic
eternal inflation’’ [9].

The advent of the ‘‘string landscape’’ [10,11] with its
complicated vacuum structure has reinvigorated the search
for a suitable measure on inflationary histories in situations
where more than one possible history can be conceived of.
Much of the debate revolves around the extent to which
predictions should be conditioned on observations and, if
more inflation leads to more observers, whether and how
any ‘‘volume weighting’’ should be implemented. For
technical reasons much of this recent work has focussed
on models where the inflaton is expected to ‘‘tunnel’’ from
one vacuum state to another via bubble nucleation [12–20].
[21] is an exception, considering random initial conditions
in random potentials, and the ‘‘reheating-volume’’

approach has been applied to both stochastic and bubble
nucleation models [22–24]. Quantum cosmological studies
[25–34] provide complementary perspectives.
The approach discussed in this paper illuminates and

expands the approach to stochastic inflation and volume
weighting presented in [35], in which one follows the
evolution of the inflaton in a ��4 potential in proper
time with a Langevin noise term approximating the quan-
tum fluctuations. There expectation values were calculated
for the field history and perturbatively corrected for the
effects of volume weighting. By allowing for final-time
constraints on the field value and considering weighting
field values at some time by either the volume at that time
or the volume at the final time, [35] began to directly attack
the two issues in the debate mentioned above. The current
paper addresses more general inflationary models than
��4 and in some sense corrects the perturbative conclu-
sions of [35] via a nonperturbative treatment of volume
weighting by way of a path integral. The change in view-
point is similar to that in going from the Heisenberg
approach to the Feynman approach in quantum mechanics
when trying to address a question about the history of the
system. (Notably Wyman and Tolley [36] also look at
stochastic inflation from multiple viewpoints.) An early
approach to a Langevin model of stochastic inflation was
presented by Hodges in [37]; more recent work includes
[38,39]. Refs. [40,41] also address eternal inflation in a
related manner. In contrast, much of the early work on
stochastic eternal inflation [42–46] attempted to follow in
time the evolution of a probability distribution for the
inflaton with a Fokker-Planck equation (analogous to the
Schrödinger approach to quantum mechanics). Such ap-
proaches typically broke down after a finite time, when the
probability became un-normalizable rising rapidly with
field value, leading to the suspicion that Planck-scale*stg20@cam.ac.uk
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effects might be vital in controlling the theory and restor-
ing predictivity. This led in part to proper-time volume
weighting falling out of favor as a measure on eternal
inflation. In addition, puzzles such as the Youngness
Paradox [47] (if a fraction more inflation produces expo-
nentially more volume, are not the most common observers
at a given time the youngest ones conceivable?) seem
particularly acute with proper-time volume weighting.
We will see the surprising way in which a constrained
path integral approach mitigates all these issues and so it
may be suggested that proper-time volume weighting
should be reinstalled as a useful measure for at least
some calculations in stochatic inflation.

In order to be able to follow the changes in the expansion
rate driven by changes in the inflaton potential, spatial
gradients do not explicitly feature in the approach pre-
sented here. Stochastic techniques have been successfully
applied to understand the effects of interaction terms on
correlation functions [48], where both the temporal and
spatial behavior of the fluctuations are explicitly consid-
ered. However, such work focused on fixed-background
inflationary-type spacetimes, unlike the dynamic ones con-
sidered here.

This paper is organized as follows. First, a measure
on slow-roll inflationary histories is presented. Saddle
points of histories, constrained by the final field value at
a later time, are discussed. By investigating the behavior of
‘‘unconstrained’’ saddle points (the finite subset of con-
strained saddle points corresponding to extrema of the
probability distribution with respect to final field value)
as a function of time we are able to see how inflation is
proceeding on the average. Volume weighting is intro-
duced, and its consequences for constrained and uncon-
strained histories are discussed. The ��4 model is studied
in depth. The way inflation typically ends is investigated by
looking at histories constrained to small field values at late
final times. Finally, there is a discussion and conclusions.

II. A MEASURE ON SLOW-ROLL HISTORIES

In this section we derive a measure on slow-roll infla-
tionary histories. We start from the appropriate Langevin
equation for slow-roll inflation (see e.g. [35]; note that for
comparison with other works a 3=ð2�Þ factor omitted there
has been restored here),

_�þ V;�

3H
¼ 1

2�
H3=2nðtÞ; (1)

where nðtÞ is a Gaussian-normalized white noise term and

H ¼ Hð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�Þ=ð3M2Þ

q
; (2)

with M being the reduced Planck mass (henceforth
assumed to be unity). One might think of Eq. (1) as
describing the evolution of a member of an ensemble of
physical-Hubble-volume sized regions forward in time.

Note that (2) determines H as a function of � and thus
the scale factor a at a time t as a function of the history of�
up to time t.
Now consider an arbitrary history �ðtÞ. After a short

time �t, the field will be at �ðtÞ þ _�ðtÞ�t, a change of

�� ¼ _�ðtÞ�t. From (1), the change of the field should be
centered on�V;��t=ð3HÞ with a variance ofH3�t=ð4�2Þ.
So the probability of this segment of history occurring is

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

H3�t

s

e�2�2ð _�þV;�
3H Þ2�t=H3

: (3)

Multiplying to obtain the joint probability for the entire
history, and taking the limit �t ! 0, we obtain

P½�ðtÞ�D�� e�
R

T

0
L0ð�ÞdtD� (4)

with a ‘‘Euclidean Lagrangian’’

L0 ¼
2�2

�
_�þ V;�

3H

�
2

H3
: (5)

Furthermore, inspection of (3) suggests a change of vari-
able that both renders the prefactor in (4) independent of
field and makes the kinetic term in (5) canonical (up to a
surface term):

q �
Z 2�

H3=2
d� (6)

leading to

P½qðtÞ�Dq ¼ e�
R

T

0
L0ðqÞdtDq (7)

up to a numerical factor. Here

L0ðqÞ ¼ 1

2
ð _qþ fðqÞÞ2 (8)

with

f � 2�V;�

3H5=2
(9)

expressed in terms of q.1

III. THE PATH INTEGRAL
AND ITS SADDLE POINTS

Given a general measure e�S½qðtÞ�Dq on histories qðtÞ
along with a specification of the class of histories to
integrate over, one may calculate the expectation value of
some quantity of interest, A say, with a path integral:

1An alternate derivation following the lines of [49] can yield a
determinant correction to the measure coming from the change
of variables from noise realizations to field realizations. For the q
variable for a ��4 potential, this determinant is independent of
field so both derivations agree precisely. Given the already
heuristic nature of our starting point, Eq. (1), we do not consider
such corrections further in this work.
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hAi ¼
R
DqAe�S½qðtÞ�
R
Dqe�S½qðtÞ� : (10)

Note that A can be of a very general nature, either local or
nonlocal in time for example.

As in the Feynman path integral approach to quantum
mechanics, it is often useful to look for saddle points in
approximating (10). Corresponding to (7) for example we
would take S½qðtÞ� ¼ S0½qðtÞ� �

R
T
0 L0ðqÞdt, and, cer-

tainly in this case, finding saddle points is very simple,
since the Lagrangian is equivalent to that for a point mass
moving in some potential. There even exists a conserved
energy. Furthermore, we can work with either q or �, the
saddle points in either variable being equivalent.

Once we have the saddle point solution for given initial
and final data, we can use it to approximate the probability
density for that final data given the initial data by integrating
(7) in aGaussian approximation. The leading term is simply
the exponential of minus the action evaluated for the saddle
point. By varying the field value at the final-time T and
recalculating the saddle point solution and the (approxi-
mate) probability density, we can build up a picture of the
probability distribution function at the final time. By repeat-
ing the procedure for different final times, we can build up a
picture of the evolution of the probability distribution func-
tion in time. For (7), we thus find an approximate solution to
the Fokker-Planck equation corresponding to (1).

We can also calculate the expectation value of A in the
saddle point approximation. For a fixed final field value, we
just evaluate the quantity for the related saddle point
solution. To relax the final field value constraint, we com-
pute the average of A calculated for all final field values,
weighted by the exponential of minus the action (possibly
multiplied by the Gaussian prefactor for higher accuracy)
for the corresponding final field value.

Let us quickly derive some useful results. Assuming the
action S is expressible as an integral over a local-in-time
Lagrangian L, then we can introduce a momentum

pq � @L

@ _q
(11)

and Hamiltonian H0 ¼ pq _q� L (primed to avoid confu-

sion with the Hubble parameter H) and corresponding
energy E. Just as in classical mechanics (see e.g. [50]),
evaluating the action as a function of end point and end
time, we have �S ¼ pq�q�H0�t. So, at a fixed final-time

T, the action is extremized for a solution which both obeys
the equations of motion and has pqðTÞ ¼ 0. This, neglect-

ing prefactor corrections, gives the extremum in the proba-
bility distribution function for q at time T.2 Such a solution

may be termed unconstrained, being stationary even with
respect to variation of q at the end point. As long as L� L0

does not involve _q, pqðTÞ ¼ 0 implies _� ¼ �V;�=3H at

time T, i.e. a trajectory corresponding to an extremum in
the probability distribution at time T is slow rolling as T is
approached. This does not necessarily imply that the tra-
jectory slow rolls all the way from 0 to T nor that extrema
of the probability distribution evolve according to slow roll
as T is varied. However, in the simple case when L is just
L0, both of these statements do in fact hold. A helpful way
to verify such statements is to look at the (conserved)
energy associated with each saddle point solution. For
L0, this is just

E0 ¼ 1

2
_q2 � 1

2
q2; (12)

and for a solution that slow rolls at the end time T, we see
E0 ¼ 0. As E0 is conserved along the saddle point, we see
that _q must equal q back along the entire trajectory to q ¼
qð�0Þ at t ¼ 0, i.e. the saddle point is just the slow-roll
solution evolved from the initial condition to the time T.
Hence as T changes the position of the peak also follows
the slow-roll solution in this case.

IV. THE VOLUME-WEIGHTED PATH INTEGRAL

Now we volume-weight. We do this by ‘‘reweighting’’

the e�S0½qðtÞ�Dq measure from above by an appropriate
term, and then renormalizing. We might imagine the
physical-Hubble-volume sized regions followed above as
being ‘‘probes’’ of much larger volumes of space that are
inflating and so expanding in time. Thus the term is typi-
cally just the ‘‘final’’ volume3

a3ðTÞ ¼ e
R

T

0
3HðqðtÞÞdt: (13)

Because of the local-in-time nature of the exponent, we see
that such volume weighting can be incorporated very sim-
ply by thinking of S as an integral over t of a more general
Euclidean Lagrangian

LV ¼ L0 � 3H: (14)

We have only had to add a local-in-time term to the
potential for q. This extra term alters the constrained
histories relative to the non-volume-weighted ones with
the same boundary conditions.
The volume-weighting term, only involving the field and

not its derivative, will not affect the expression for the
momentum in terms of the field and its derivative. So, as
for the non-volume-weighted case discussed above, the
most probable trajectory will obey the slow-roll condition
at the very end.

2Note that here, unlike in most classical mechanics applica-
tions, one does have to be careful not to discard total integrals,
which, while not altering the saddle point solution, affect the
total value for the action and so the probability for a history.

3One could also, for example, consider weighting by the
volume at an intermediate time for calculating a final-field-
value-constrained ‘‘rolling’’ volume average.
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However, unlike before, this trajectory will not have
slow rolled all the way from the initial condition; there
are two additional effects that cannot generally cancel.
First, the equation of motion now has an extra field-
dependent term. Second, the expression for the energy E
has an additional þ3Hð�Þ term, so, evaluating this at the
end of the trajectory, the energy of the solution is moved
from zero to E ¼ 3Hð�ðTÞÞ. Thinking momentarily of T
as a function of q at time T for the most probable solution,
we have

T ¼
Z q

qð0Þ
dq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEðqÞ � Vðq0ÞÞ

q
: (15)

Changing E and V as discussed to incorporate volume
weighting will change TðqÞ and so q considered as a
function of T: the peak of the probability distribution
function does not now follow slow roll.

We can now ask whether or not inflation ends in the
rolling-volume-weighted average. If it does, the peak of the
probability distribution function should pass through a
field value corresponding to a small value of H, i.e. the
conserved energy should be able to have a small value.
Evaluating the energy, expressed in terms of �, at the
initial condition thus leads to the condition

2�2 _�2ð0Þ
H3

� 2�2

H3

V2
;�

9H2
þ 3H � 0 (16)

for inflation to end in the volume-weighted average. Now,

whatever the value of _�, if the potential term contribution
to the left hand side is positive then inflation cannot end.
So if

H6 >
2�2V2

;�

27
; (17)

then inflation cannot end in the volume-weighted average
(c.f. [40]). This precise constraint is consistent with the
qualitative arguments of e.g. Guth [47] comparing the
classical movement of the field to the quantum fluctuations
in the field over a Hubble time. We may say that inflation is
indeed ‘‘eternal’’ if the field starts at a value such that

(17) is satisfied. Note that for ��4 this requires �>

ð32�2=�Þ1=6.
Let us assume that the field starts above the eternal

inflation threshold and ask what happens. Does the
volume-weighted field asymptote to some constant value,
and if so can this value be above or below the starting
value? Or does the field average run away to a place of
infinite energy density, in either finite or infinite time? We
are minded here of the early results looking at volume-
weighted eternal inflation by solving the Fokker-Planck
equation for say a ��4 potential; there it seemed that the
probability distribution lost its extrema after a finite
amount of time, becoming un-normalizably peaked at an
infinite field value. This led to the imposition of arbitrary
boundary conditions at the Planck density and the view that

the volume-weighted field would quickly tend to its largest
possible value and stay there inflating at the maximum
possible rate. We indeed find, investigating ��4 as a
specific example as discussed in the following section,
that the average can stop existing after a finite time.
Above we showed that the paths corresponding to extrema
of the probability distribution must end in slow roll. This
applies to both maxima and minima, and a minimum in the
probability distribution will delimit a formal unbounded
rise in probability towards very high energy from a physi-
cal region of field values with its own maximum. As time
goes on, the maximum and minimum merge; the probabil-
ity distribution steadily increases with field energy. To see
whether trajectories with Planckian energy densities are
important or not for the disappearance of the average, we
now though can look at the critical saddle point history and
see whether or not it approaches the Planck density at any
stage. For small coupling it turns out it does not and so we
conclude that Planck-scale effects will not affect the dis-
appearance of volume-weighted average.
One may be concerned that the disappearance of the

average is indicating a failure with the whole approach.
However, we can continue to find constrained paths to
lower field values, at least for a finite window of larger
time intervals. So perhaps the correct interpretation is
simply that answering the question ‘‘what is the field
average on a surface of constant proper time?’’ is becom-
ing problematical. But because we can still answer other
questions, about constrained paths say, proper-time volume
weighting itself is not obviously failing at this stage.
Pushing to larger time intervals still, we find for ��4 at

least that real histories connecting the inflationary initial
conditions to low field values cease to exist. Surely even
constrained proper-time volume weighting is failing now?
This is not necessarily the case because complex histories
now emerge that link the initial and final conditions.
Further, as we will see below, these complex paths are
very close to being real towards the end of inflation, and
indeed basically become ‘‘classical’’ slow-roll trajectories,
insensitive to the initial field value or indeed the time
interval between the initial and final conditions.

V. ��4 IN DEPTH: COMPLEX HISTORIES,
INITIAL CONDITIONS, AND
THE END OF INFLATION

For ��4, q is proportional to 1=�2, which is in turn
proportional to the Hubble radius which we denote here by
R and work with in order to allow for easy comparison with
[35]. The coupling constant � must be very small, of order
10�14, for conventional density perturbations (generated as
small fluctuations about 60 efolds before the end of a
classical period of inflation) to have the right magnitude
to match observations. Introducing the (dimensionless)

constants � ¼ 8
ffiffiffiffiffiffiffiffiffi
�=3

p
and � ¼ ffiffiffiffiffiffiffiffiffi

�=34
p

=�, we find
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LV ¼ ð _R� �RÞ2
2�2

� 3

R
: (18)

Saddle-point histories satisfy

€R ¼ �2Rþ 3�2

R2
(19)

with a conserved energy

E ¼ 1

2�2
_R2 � �2

2�2
R2 þ 3

R
: (20)

See Fig. 1 for the associated effective potential that the R
variable feels. (Note that in all plots R and t have been

rescaled to absorb � and � via t ! �t, R ! ð�=�Þð2=3ÞR.)
As discussed in Sec. IV, the momentum

pR ¼ 1

�2
ð _R� �RÞ (21)

has to be zero at the end of a history that finishes at an
extremum of the probability distribution function at time
T. Hence, from (20), the energy of such a path is 3=RðTÞ,
which is small for weak coupling (of order ��1=2) if RðTÞ
corresponds to �� 1 for which inflation would classically
be ending. Eternal inflation is inevitable if R ever becomes

less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�2=�23

p
(the zero of the effective potential in

Fig. 1).
Figure 1 is very helpful for understanding the nature of

the (real) saddle point solutions, illustrating the discussion
of Sec. IV. Let us look for solutions connecting R ¼ ri to
R ¼ rf (‘‘i’’ for initial, ‘‘f’’ for final). If rf > ri, there are
two classes of solutions differentiated by the sign of the
initial velocity. One rolls up the potential, turns round, and
rolls back down past ri on the way to rf; the other rolls
straight down the potential from ri to rf . If rf < ri, there are
again two classes of solution, now differentiated by the
sign of the final velocity. In one, R rolls straight up the
potential from ri to rf , in the other, R rolls up the potential
passing through rf , then rolls back down to rf . If rf ¼ ri,

there is only one class of solution, R rolling up the potential
and then back down. In all cases, varying the initial speed,
or equivalently the energy E, changes the time T needed to
go from ri to rf .
Scanning over rf , E, and the velocity sign and recording

the time T each solution takes gives us complete informa-
tion about the behavior of the probability distribution
function for R as a function of T. Note though that there
is no guarantee that arbitrarily large values of T will be
obtained in the scan, and indeed T turns out to be bounded
when volume weighting is switched on.
To help us understand how the field behaves in the

(volume-weighted) average, let us temporarily focus on
the unconstrained subset of histories with zero final mo-
mentum (and so with energy E ¼ 3=rf with volume
weighting, or with E ¼ 0 without) corresponding to the
extrema of the probability distribution function. rf can here
be thought of as a label of where a history happens to end
as opposed to as a constraint applied to the history. We can
build up a sketch of the loci of the maxima and minima of
the probability distribution function as a function of time as
in Fig. 2. Without volume weighting, a solution exists for
any T (the field spending longer and longer at small R as T
increases), with rf always greater than ri, and the distribu-
tion moves (exponentially in time) to larger R as time
passes. Switching on volume weighting corresponds to
adding a repulsive force, requiring R to start with a more
negative velocity than for the nonweighted case with the
same rf and T. Thus R gets smaller more rapidly as
expected; volume weighting favors higher field values.
Starting well below the eternal inflation threshold, the
picture is qualitatively similar to the nonvolume-weighted
case. Starting above the eternal inflation threshold, the
picture changes significantly however. The steep, ‘‘brick-
wall’’, nature of the repulse volume-weighting term in the

1 2 3 4 5
R

10

5

5

10
V eff

FIG. 1. Plot of the effective potential that the R variable
moves in.

R

t

r_0

max

min

R

t

r_0

max

min

FIG. 2. Sketch of the loci of the minima and maxima of the
volume-weighted probability distribution function for R as a
function of time. The left panel is for starting below the eternal
inflation threshold, while the right panel is for starting above the
eternal inflation threshold. (Without volume weighting the plot
would be qualitatively similar to the ‘‘max’’ branch of the left
hand panel).
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effective potential means that there is in fact an upper limit
on how much T can be increased by increasing the initial
speed of R.4 After this time there are no extrema; the
probability density increases monotonically towards small
R. The largest value of rf attained can be deduced by
equating the effective potential at R ¼ ri to the energy E ¼
3=rf evaluated at the end. We are able to conclude that at
some intermediate time, at some R> ri, the peak of the
probability distribution turns around; the inflaton begins to
climb back up its potential in the volume-weighted aver-
age. We may infer that highly fluctuating paths are begin-
ning to dominate over classical ones.

Returning to the general case of constrained histories, it
may seem strange that constrained saddle point solutions
linking ri to rf fail to exist for too large of a time difference.
As mentioned above, the paradox is resolved by realizing
that there is no necessity for the saddle point histories to be
real. Just as in contour integration, where one may deform
real contours into the complex plane to pass through a
saddle point in order to apply the method of steepest
descents (a common example being the study of Airy
functions), changing an integral over a rapidly-varying
integrand along the real axis to a study of behavior in a
calmer region of the complex plane, we can do likewise
here at each time step in the path integral. Indeed, the use
of complex histories has a precedent in the Euclidean ‘‘No-
Boundary’’ approach to quantum cosmology [25]. There
one obtains an amplitude for a Euclidean three geometry
by evaluating a path integral over all Euclidean four ge-
ometries bounded by the three geometry in question. For
small three geometries a Euclidean saddle point exists and
so obtaining (a saddle-point approximation to) the wave
function is straightforward. For large three geometries,
however, no Euclidean saddle point exists. Hartle and
Hawking then proceed into the complex plane and find a
saddle point that has both a real and an imaginary part,
which they go on to use to approximate the amplitude. In
fact, the imaginary part of the saddle point corresponds to a
Lorentzian universe and so they exploit the complexity of
the saddle point to ‘‘explain’’ why a large universe appears
to have a temporal dimension as well as spatial ones even
in the no-boundary proposal. Returning to our application,
we need only preserve our boundary conditions, namely,
that Rð0Þ ¼ ri and that RðTÞ ¼ rf . We see straight away
that the imaginary component of R has to be zero at both
ends but that there is no such constraint on the imaginary

component of _R at the ends.5 Decomposing (19) into real
and imaginary parts, we can visualize R as a point moving
in a two-dimensional force field as heuristically plotted in
Fig. 3. We note the (unstable) zero-force locations specified
by R3 ¼ �3�2=�2. By tuning the solution so that it ap-
proaches one of these points with near zero speed, it is
possible for R to ‘‘loiter’’ there for as long as is needed.
Solutions with a long loitering period must have a complex
energy very close to that of the effective potential eval-
uated at the loitering point in question. This complex
energy determines solutions that asymptotically reach the
loitering point in the future from ri or from the past from rf .
Appropriate deviations in the initial velocities will ‘‘con-
nect up’’ the two asymptotic solutions and make the total
solution last for the desired finite time T.
For solutions linking inflaton values corresponding to

starting above the eternal-inflationary threshold (� *

��1=6 or ri & ��1=6) to field values towards the end of

conventional inflation (�� 1 or rf � ��1=2 � 1), the ap-
propriate loitering points are the ones with a positive real
component and nonzero imaginary component of R. These
will provide a conjugate pair of histories. Each history will

4 2 0 2 4 6

4

2

0

2

4

Re R

Im
R

FIG. 3. Heuristic plot of the force field determining the motion
of R in the complex R plane. Note the zero-force ‘‘loitering
points’’ at the solutions of R3 ¼ �3. Planckian energy density,
��4 � 1, corresponds to the rescaled R shown being small, of
order �1=6 for weak coupling. An eternal-inflationary starting
point would be along the real axis between 0 and

ffiffiffi
63

p
. The end of

inflation, �� 1, corresponds to the rescaled R shown becoming
large and positive, of order ��1=3.

4As an analogy, imagine trying to throw a ball up in the air in
such a way as to catch it coming down at some given later time.
The harder one throws it up the longer the ball stays in the air
and so it is always possible to find an appropriate classical
solution satisfying the desired conditions. However, in a room
with a ceiling, there is an upper bound on how long that time can
be, given by the solution that just grazes the ceiling; if the ball is
thrown any harder, the ball bounces off the ceiling and comes
back more quickly.

5Note that unconstrained saddle points, ending with pR ¼ 0 at
some real R, have _R real at the end and hence must be real
for all t.
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approach its respective loitering point and then roll back
towards the real axis out to large positive values of R.

Focusing on a single member of a conjugate pair for
clarity, the way the solution reaches rf will become almost
independent of how large T is, as long as T is sufficiently
large. We thus see in a precise way how eternal inflation
‘‘loses memory’’ of initial conditions, in that, at suffi-
ciently late times, the way inflation typically ends is very
insensitive to the initial field value.

Note that for weak coupling the history need not go
particularly close to R & 1 and the Planckian energy den-
sities there. Rather, the amplitude of the loitering points

corresponds to �� ��1=6, of order the eternal inflation
threshold. Hence conclusions drawn from the history may
hope to be insensitive to any Planck-scale corrections to
the model.

The imaginary part of a trajectory corresponding to the
late-time end of eternal inflation for weak coupling is very
small, and the real part of the field basically slow rolls, as
illustrated in Fig. 4. These statements can be made quanti-
tative by rearranging (20) to express _R in terms of R and E,

_R ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E� 6�2

R

�2R2

s

: (22)

The fractional correction over the slow-roll result ( _R ¼
�R) is small if the term under the square root is close to
unity. E may be evaluated at the loitering point to be

9ð�3�2=�2Þ�1=3=2 and hence have an amplitude of order

�1=6. Inflation ends at �� 1 or R� ��1=2 and so the
correction is small. (Note that using similar reasoning
one can see that even for a real history that peaks at a
Planckian energy density, for which E� 1, for suitably
small � the correction is still small for the observationally-
relevant range of efolds before the end of inflation.

Histories corresponding to solutions that peak at suffi-
ciently super-Planckian energy densities do see significant
corrections).
We have just seen that where stochastic eternal inflation

ends, it basically ends classically. This might appear coun-
terintuitive, given the Youngness Paradox arguments about
proper-time volume weighting. Consider looking for re-
gions where the inflaton, if it slow rolled, would have either
one or two efolds say left to go. The Youngness Paradox
would suggest that there are exponentially many more
regions with one efold left than regions with two efolds
left, the latter histories being ‘‘younger’’ and so having had
more inflation in their past. One might have also thought
that to the past of any of these regions the field would be
much higher up its potential than slow roll would suggest,
perhaps even up at Planck-density values, since such his-
tories would have exponentially more volume. Our result is
not inconsistent with the first conclusion but suggests that
volume weighting does not sufficiently dominate over
classical motion for the second conclusion to apply also.
Thus standard calculations of inflationary density pertur-
bations are probably safe even in eternal inflation as long as
the coupling is weak.

VI. DISCUSSION AND CONCLUSIONS

We can assemble what we have learned above into a
somewhat cogent picture of volume-weighted stochastic
eternal inflation. The field must start off above the eternal-
inflationary threshold, and then we soon see the volume-
averaged field stop decreasing and turn around and begin
increasing, indicating that volume effects are outweighing
classical drift. From this we may hope that a late-time
‘‘steady-state’’ situation will arise with late-time results
dominating any averaging. After a finite proper time, the
volume-averaged field ceases to exist; the system is domi-
nated by strong fluctuations and a ‘‘global’’ picture breaks
down. Nontheless, we may choose to focus on the obser-
vationally relevant but rare regions of the universe where
inflation happens to end. Only for up to a small time after
the disappearance of the volume-weighted field average
can inflation end via a real saddle point. These solutions
have the inflaton approaching arbitrarily high energy den-
sities and inflation ending in a manner deviating from slow
roll (though not too significantly for histories that nowhere
exceed Planckian energy densities for observationally-
relevant couplings). Further on in time we find that infla-
tion ends in practically the same slow-roll manner on all
proper-time slices and hence some level of predictability is
restored and steady-state behavior is reached. These saddle
point histories deviate into the complex plane rather than
continuing to values far above the eternal inflation thresh-
old, indicating that the conventional view of the inflaton as
jumping up and down on its potential in the eternal infla-
tion regime might be too simplistic. Because when infla-
tion does end it basically ends in slow-roll, conventional
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FIG. 4. Plot of the loitering solution (solid line) departing from
the slow-roll solution (dashed line) to the past of a region where
inflation ends. The difference only becomes significant when the
field approaches the eternal-inflationary regime; the end of
inflation is classical.
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density perturbation calculations should still apply, pre-
serving the successful predictions of conventional treat-
ments of inflation.

The general techniques and insights of this paper should
apply to many models of inflation. It would be interesting
to investigate potentials with multiple vacua. Indeed, for
‘‘Mexican-hat’’ type potentials, V ¼ �ð�2 ��2

0Þ2, one

can analytically obtain an expression for q in terms of �
and so obtain an explicit formula for the effective potential
for q. Thus one could investigate volume weighting for
small-field models of inflation where would might expect
its effect to be less pronounced than for the large-field case
studied here. (Note that an early work [51] discusses an
approximate path integral treatment of the behavior of the
inflaton in a ‘‘new’’ inflationary potential, and see also the
path-integral-type treatment of thermally-activated tunnel-
ing in [36,52].) Numerical investigation of the determinant
prefactor would be helpful in getting an idea in how
classical the histories really are. The author has checked
numerically that there are no negative modes satisfying the
relevant boundary conditions for a sample of representative
(real) histories, as one would hope. It would also be pos-
sible to go beyond slow roll, obtaining fourth-order equa-
tions for the saddle point histories, though the precise way
in which the quantum fluctuations are modeled might need
to be thought through more carefully.

As in quantum mechanics, we have seen that a path
integral approach is particularly useful when asking
time-dependent questions and looking for semiclassical
histories. It has given us a technique for calculating in
volume-weighted eternal inflation that is relevant for
observations. We have been able to demonstrate how
inflation typically ends normally even with volume
weighting in a manner insensitive to the precise initial
conditions. By retreating from demanding a global pic-
ture of the universe at all times and rather adopting a

more ‘‘top-down’’ observationally-relevant approach
[28,29,35] the path integral has allowed us to push
much further than in the Fokker-Planck approach without
having to worry about Planck-density issues. We have
also obtained a different result about the behavior of the
volume-weighted average than in the Langevin treatment
of [35]. This is possibly because that work only pertur-
batively expanded around the classical solution, implic-
itly forcing one to consider only the subset of histories in
which inflation has to end.
Finally, let us return to the question of proper-time

volume weighting itself. Rather than any intrinsic flaw in
the scheme, perhaps it was the gauge-dependence of the
questions that proper-time volume weighting encouraged
one to ask that led to the weighting getting a bad reputation
(a canonical example of such a gauge dependent question
being ‘‘which value of the inflaton is most likely at a given
time?’’). A question that we have addressed in this paper is
‘‘how does inflation end at a given proper time?’’ Seeing
that the answer only depends very weakly on what that
time actually is, we have been able to obtain a satisfactory
answer to the more general reasonable question ‘‘how does
inflation end?’’ even using proper-time volume weighting.
So for at least some physically relevant questions perhaps
proper-time volume weighting is not so bad after all.
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