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(Received 29 March 2011; published 20 September 2011)

If the dark matter in the universe is a self-gravitating Bose-Einstein condensate (BEC) with quartic self-

interaction described by the stochastic Gross-Pitaevskii-Poisson system, the adhesion model, the Burgers

equation and the cosmological Kardar-Parisi-Zhang (KPZ) equation that have been introduced heuristi-

cally to solve the problems inherent to cold dark matter (CDM) models find a natural justification and an

interesting generalization.
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I. INTRODUCTION

The large-scale structure of the universe can be rela-
tively well-explained by the cold dark matter (�CDM)
model with a cosmological constant. In this model, the
dark matter is represented by a collisionless gas without
pressure (dust) interacting via Newtonian gravity only.
It can be described by the Vlasov-Poisson system or,
under additional approximations, by the pressureless
Euler-Poisson system, in an expanding background [1].
However, this model faces several problems at the scale
of galactic or subgalactic structures (�1 kpc). For ex-
ample, CDM simulations lead to dark matter halos with
density cusps [2] while observations of rotation curves
favor flat density profiles [3]. In addition, it predicts an
abundance of satellite galaxies around each galactic halo
that is far beyond what we see around the Milky Way [4].
At the cosmological level, nonlinear gravitational cluster-
ing is often studied by resorting to the Zeldovich ap-
proximation [5]. This approximation leads to the inviscid
Burgers equation which describes the free motion of fluid
particles [6]. However, this equation develops shocks and
formal singularities known as caustics (having the form of
pancakes), so that it becomes invalid after particle-
crossing. If we accept multistream solutions, the particles
just cross each other after the caustic and pass through the
pancakes instead of clustering into smaller objects like
groups of galaxies. Therefore, a small-scale regularization
must be introduced to overcome this problem and model
the effects of ‘‘punctuated’’ gravitational attraction and
pressure gradients that are not captured by the Zeldovich
approximation. Gurbatov et al. [7] introduced the so-called
‘‘adhesion model’’ in which particles move according to
the Zeldovich approximation until they fall into pancakes
when their trajectories intersect, then ‘‘stick’’ to each other.
This sticking can be modeled by introducing a viscosity in
the Burgers equation in order to represent the effect of
strong gravitational forces or pressure effects in the vicin-
ity of a caustic. Of course, the viscosity must be small in
order to provide a smoothing effect at small scales only
(where particle-crossing occurs) but the limit � ! 0 is
different from taking � ¼ 0. This model gives very good

results in the nonlinear regime and can reproduce the
skeleton of the ‘‘cosmic web’’ of large-scale structures
(sheets, filaments, nodes) in N-body numerical simulations
(see, e.g., Ref. [8]). A completely different approach was
developed by Widrow & Kaiser [9] who proposed to
describe a classical collisionless self-gravitating gas by
the Schrödinger-Poisson (SP) system. In this approach,
the constant ℏ is not the Planck constant, but rather an
adjustable parameter that controls the spatial resolution
�deB through a de Broglie relation �deB ¼ ℏ=mv. It is
argued that when ℏ ! 0, the Vlasov-Poisson system is
recovered and that a finite value of ℏ provides a small-
scale regularization of the dynamics. In that case, the
Schrödinger-Poisson system has nothing to do with quan-
tum mechanics since it aims at describing the evolution of
classical collisionless matter under the influence of gravity
(in static or expanding universes). This model was further
developed by Short & Coles [10] who introduced a free-
particle approximation. They showed that the dynamics
of the particles before crossing is relatively close to the
Zeldovich approximation but when crossing occurs the
‘‘quantum’’ pressure prevents the formation of singular-
ities. Therefore, the quantum pressure replaces the role of
the viscosity in the adhesion model. Although these models
have given interesting results and can be very useful in
practice, one can argue, however, that their justification
remains relatively ad hoc.
Recently, Böhmer & Harko [11] have proposed that dark

matter could be a self-gravitating Bose-Einstein conden-
sate (BEC) with quartic self-interaction described by the
Gross-Pitaevskii-Poisson (GPP) system. This idea takes its
origin in the concept of boson stars introduced by Kaup
[12] and Ruffini & Bonazzola [13]. It is well-known
that the Gross-Pitaevskii equation (or the nonlinear
Schrödinger equation) can be reduced to hydrodynamic
equations by means of the Madelung [14] transformation.
This yields the Euler-Poisson system with a ‘‘classical’’
isotropic pressure due to self-interaction and a quantum
anisotropic pressure arising from the Heisenberg uncer-
tainty principle. For a quartic self-interaction, the baro-
tropic equation of state is that of a polytrope of index
n ¼ 1. At large scales, the pressure terms are negligible
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and one recovers the CDM model which has proven very
successful. However, at small-scales, the classical and
quantum pressures can play a crucial role and regularize
the dynamics by preventing the formation of singularities
(caustics). BEC dark matter has very interesting properties:
(i) the pressure can stabilize the system against gravita-
tional collapse and lead to dark matter halos with flat
central density profiles. For very light bosons without
self-interaction, the stabilization is due to the quantum
pressure. For more massive bosons with self-interaction,
the stabilization is due to repulsive scattering. Therefore, a
BEC dark matter can solve the cusp problem and the
missing satellite problem [11,15]. (ii) BEC dark matter
halos can reproduce the rotation curves of several low
surface brightness galaxies [11,16]. (iii) At a cosmological
level, a BEC dark matter can accelerate the formation of
structures with respect to ordinary CDMmodels [17,18]. In
this paper, we make the additional remark that if dark
matter is a self-gravitating BEC with quartic self-
interaction, the adhesion approximation, the Burgers equa-
tion and the cosmological KPZ equation that have been
introduced phenomenologically to solve the problems in-
herent to CDM models find a natural justification and an
interesting generalization.

II. STOCHASTIC GROSS-PITAEVSKII-POISSON
SYSTEM

We assume that dark matter is a self-gravitating BEC
with quartic self-interaction described by the stochastic
Gross-Pitaevskii-Poisson (GPP) system

iℏ
@c

@t
¼ � ℏ2

2m
�c þmð�þ gNmjc j2 þ �Þc ; (1)

�� ¼ 4�GNmjc j2 ��; (2)

where c ðr; tÞ is the wave function, �ðr; tÞ ¼ Nmjc j2 the
density, �ðr; tÞ the gravitational potential, g ¼
4�asℏ2=m3 the pseudopotential accounting for short-
range interactions (as is the s-scattering length) [19] and
�ðr; tÞ a stochastic potential (noise). We write the wave

function in the form c ðr; tÞ ¼ Aðr; tÞeiSðr;tÞ=ℏ where A and
S are real, and make the Madelung [14] transformation
� ¼ Nmjc j2 ¼ NmA2 and u ¼ rS=m, where �ðr; tÞ is
the density field and uðr; tÞ the velocity field. We note
that the flow is irrotational since r� u ¼ 0. With this
transformation, the stochastic GP Eq. (1) is equivalent to
the stochastic barotropic Euler equations with an additional
term Q ¼ �ðℏ2=2mÞ� ffiffiffiffi

�
p

=
ffiffiffiffi
�

p
called the quantum poten-

tial (or quantum pressure). Indeed, one obtains the set of
equations

@�

@t
þr � ð�uÞ ¼ 0; �� ¼ 4�G���; (3)

@u

@t
þ ðu � rÞu ¼ �gr��r�þ ℏ2

2m2
r
�
�

ffiffiffiffi
�

p
ffiffiffiffi
�

p
�
�r�:

(4)

The first term on the r.h.s. of the Euler Eq. (4) can be
interpreted as a classical isotropic pressure �ð1=�Þrp
described by a barotropic equation of state p ¼ pð�Þ. For
a quartic self-interaction, it is given by

p ¼ 1

2
g�2 ¼ 2�asℏ2

m3
�2: (5)

This is a polytropic equation of state of the form p ¼ K��

with polytropic index n ¼ 1 (i.e. � ¼ 1þ 1=n ¼ 2) and
polytropic constant K ¼ g=2 ¼ 2�asℏ2=m3. Other types
of barotropic equations of state can be obtained depending
on the form of the self-interaction. A detailed study of the
time-independent solutions of the GPP system (or quantum
barotropic Euler-Poisson system), connecting the noninter-
acting limit (as ’ 0) [13] to the Thomas-Fermi (TF) limit
(Q ’ 0) [11] has been given recently in Ref. [20].

III. BEC EQUATIONS IN AN EXPANDING
UNIVERSE

For the sake of simplicity, we consider an expanding
Einstein-de Sitter (EdS) universe (� ¼ 0 and � ¼ 0) [1]
described by the equations

�ba
3 � 1; €a ¼ � 4

3
�G�ba; _a2 ¼ 8

3
�G�ba

2;

(6)

yielding a / t2=3, H ¼ _a=a ¼ 2=3t and �b ¼ 1=6�Gt2,
where �bðtÞ is the background density, aðtÞ the scale factor
and H ¼ _a=a the Hubble constant. Our approach can be
easily extended to more general models of universe.
We shall first rewrite the hydrodynamic equations in

the comoving frame. Making the changes of variables
r ¼ aðtÞx, u ¼ Hrþ v and � ¼ ���b where v is the
peculiar velocity and �b ¼ ð2=3Þ�G�bðtÞr2 the back-
ground gravitational potential, and introducing the density
contrast 	ðx; tÞ ¼ ½�ðx; tÞ � �bðtÞ�=�bðtÞ, we obtain the
system of equations [18]:

@	

@t
þ 1

a
r � ½ð1þ 	Þv� ¼ 0; �� ¼ 4�G�ba

2	; (7)

@v

@t
þ 1

a
ðv �rÞvþ _a

a
v¼�g�b

a
r	� 1

a
r�

þ ℏ2

2m2a3
r
�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ	

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ	

p
�
�r�: (8)

For simplicity, we shall always denote the noise by �
although a new notation should be introduced after each
transformation. At large scales, pressure and noise effects
are negligible and the CDM model (ℏ ¼ p ¼ � ¼ 0) is
recovered. However, pressure effects become important
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when dense structures form, and the BEC dark matter
model (7) and (8) should be used instead.

Measuring the evolution in terms of a rather than in
terms of t and introducing the new velocity w ¼ v=a _a and
the new gravitational potential c ¼ �=4�G�ba

3, we can
recast the foregoing equations in the form

@	

@a
þr � ½ð1þ 	Þw� ¼ 0; �c ¼ 	

a
; (9)

@w

@a
þðw � rÞwþ 3

2a
ðwþrc Þ

¼� 3asℏ2

2Gm3a4
r	þ 3ℏ2

16�Gm2�ba
6
r
�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ	

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ	

p
�
�r�:

(10)

For short times, the perturbations are small 	 � 1,
� � 1, jwj � 1, and the hydrodynamic equations can
be linearized. We obtain

@	

@a
þr � w ¼ 0; �c ¼ 	

a
; (11)

@w

@a
þ 3

2a
ðwþrc Þ ¼ � 3asℏ2

2Gm3a4
r	

þ 3ℏ2

32�Gm2�ba
6
rð�	Þ � r�:

(12)

Taking the ‘‘time’’ derivative of Eq. (11) and the diver-
gence of Eq. (12), these equations can be combined into a
single equation for the density contrast

@2	

@a2
þ 3

2a

@	

@a
¼ 3	

2a2
þ 3asℏ2

2Gm3a4
�	

� 3ℏ2

32�Gm2�ba
6
�2	þ ��: (13)

This equation has been studied in Ref. [18] in the no-noise
limit. At large scales, we can ignore pressure and noise
effects, and we recover the equation for the density contrast
of a cold gas

@2	

@a2
þ 3

2a

@	

@a
¼ 3	

2a2
: (14)

The growing solution to this equation is 	þðx; aÞ ¼ aDðxÞ
[1]. Then, Eq. (11) implies that c ðx; aÞ ¼ c ðxÞ is con-
stant. Therefore, 	þðx; aÞ ¼ a�c ðxÞ. On the other hand,
in the cold gas approximation, Eq. (12) reduces to

@w

@a
þ 3

2a
ðwþrc Þ ¼ 0: (15)

After a transient regime, the velocity field tends toward the
solution wðx; aÞ ¼ �rc ðxÞ.

IV. ZELDOVICH APPROXIMATION AND
A GENERALIZED EQUATION OF

STRUCTURE FORMATION

The Zeldovich approximation [5] amounts to extending
this relation to the (weakly) nonlinear regime, i.e.
wðx; aÞ ’ �rc ðx; aÞ. The fact that w is a potential flow
in the BEC model gives further support to this approxima-
tion. In that case, Eq. (10) reduces to the form

@w

@a
þ ðw � rÞw ¼ � 3asℏ2

2Gm3a4
r	

þ 3ℏ2

16�Gm2�ba
6
r
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	

p
�
�r�;

(16)

where the explicit dependence on the gravitational poten-
tial has disappeared. Since 	 ¼ a�c ¼ �ar � w and
r	 ¼ �a�w, we can rewrite the foregoing equation as

@w

@a
þðw �rÞw¼ 3asℏ2

2Gm3a3
�w

þ 3ℏ2

16�Gm2�ba
6
r
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ar�wp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ar�wp

�
�r�:

(17)

This can be viewed as a generalized noisy Burgers equation
with an additional quantum pressure term. Since w is a
potential flow, we obtain

@c

@a
¼ ðrc Þ2

2
þ 3asℏ2

2Gm3a3
�c

� 3ℏ2

16�Gm2�ba
6

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�c

p þ �: (18)

This can be viewed as a cosmological KPZ equation [21].
Without the forcing term, this is just the Bernouilli
equation, or the Hamilton-Jacobi equation, with an addi-
tional quantum potential. For small a, it yields a bi-
Laplacian. We note that the potential c is related to the
phase S of the wave function of the BEC by c ¼
�ð1=aÞðS=ma2H � x2=2Þ. A noisy Burgers equation and
a KPZ equation have been introduced and studied previ-
ously in cosmology in Refs. [22–25].
Let us consider particular cases of Eq. (17).
For as ¼ ℏ ¼ � ¼ 0, we get the inviscid Burgers equa-

tion which is equivalent to the Zeldovich approximation.
If we neglect the quantum potential, we get the noisy

Burgers equation

@w

@a
þ ðw � rÞw ¼ �ðaÞ�w�r�; (19)

with a time-dependent viscosity given by �ðaÞ ¼
3asℏ2=2Gm3a3 (this equation is time-reversible via
a ! �a and w ! �w). Therefore, the BEC dark matter
hypothesis leads to a natural justification of the (stochastic)

BEC DARK MATTER, ZELDOVICH APPROXIMATION, AND . . . PHYSICAL REVIEW D 84, 063518 (2011)

063518-3



adhesion model. Another justification was previously
given by Buchert et al. [22] in terms of a coarse-graining
process inherent to a hydrodynamic description. However,
to arrive at the Burgers equation, several simplifying hy-
pothesis had to be introduced: (i) dark matter is described
by hydrodynamic equations with an isotropic pressure;
(ii) the equation of state is a polytrope p ¼ K�� with
� ¼ 2; (iii) the velocity field and the stochastic force
derive from a potential. Interestingly, these properties di-
rectly result from the BEC dark matter hypothesis (i.e.
from the GP equation) without further assumption. Note
also that the change of variable c ðx; aÞ ¼ 2�ðaÞ lnWðx; aÞ
transforms Eq. (18) into

@W

@a
¼ �ðaÞ�W þ

�
1

2�
�ðx; aÞ þ 3

a
lnW

�
W: (20)

In the absence of self-interaction and noise, we obtain an
equation of the form

@w

@a
þðw � rÞw¼ 3ℏ2

16�Gm2�ba
6
r
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ar �wp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ar �wp

�
: (21)

This can be viewed as a Burgers equation where
the small-scale regularization is provided by the quantum
pressure. This is similar to the effective wave mechanics
approach of Short & Cole [10]. However, in our approach,
the coefficient in front of the quantum potential in Eq. (21)
depends on time a, while in the approach of Short & Cole
[10], this coefficient is constant [see their Eq. 24]. This is
because they introduce an effective Schrödinger equation
[their Eq. 23] directly in the comoving framewhile we start
from the (nonlinear) Schrödinger Eq. (1) in the inertial
frame. When we write the (nonlinear) Schrödinger Eq. (1)
in the comoving frame, we obtain an equation different
from their Eq. 23. Ribeiro & Peixoto de Faria [26] have
also developed an effective wave mechanics approach in
which they relate the gradient of the quantum potential to
the Laplacian of a kinematical velocity plus a noise term.
Their approach, which is essentially phenomenological,
leads to a result different from Eq. (21).

V. CONCLUSION

In this paper, we have shown that the assumption that
dark matter is a self-gravitating Bose-Einstein condensate

with quartic self-interaction described by the (stochastic)
GPP system leads to a natural justification of the adhesion
model, the Burgers equation and the cosmological KPZ
equation, without more hypothesis than the Zeldovich
approximation (that is common to most works on the
subject). Therefore, not only the BEC model is consistent
with previous works, but it generalizes them and extends
their scope. In addition, it gives a new justification of these
phenomenological models. This result adds to the other
nice properties of BEC dark matter (flat central density
profiles, flat rotation curves, acceleration of the growth of
perturbations. . .) recalled in the Introduction.
Furthermore, the BEC model not only follows the

general evolution of inhomogeneities but it also describes
the internal structure of density enhancements. In this
sense, it improves upon the standard adhesion model.
Indeed, at the level of dark matter halos, the equations
reduce to the condition of hydrostatic equilibrium and lead
to virialized structures similar to n ¼ 1 polytropes (other
configurations could be obtained depending on the form of
the self-interaction and on the equation of state) [11,20].
Therefore, BEC dark matter provides a model that de-
scribes both the large-scale structures of the universe
(through the generalized Burgers Eq. (17)) and the struc-
ture of dark matter halos (through the explicit expression of
the pressure (5) arising from short-range interactions).
If we justify the GPP system in terms of quantum

mechanics, we must assume that the mass m of the bosons
is extraordinarily small (m< 10�22 eV=c2!) for quantum
mechanics to be relevant on galactic scales. This has been
called ‘‘fuzzy dark matter’’ in Ref. [15]. Alternatively, one
can produce similar quantum effects with larger boson
masses (m� eV=c2) if the particles have a self-interaction
[27]. Since the nature of dark matter is not known, we
cannot reject a priori that quantum mechanics plays some
role at galactic or cosmological scales. In any case, the
GPP system (1) and (2) can always be viewed as an
effective wave mechanics approach with an adjustable
Planck constant which generalizes the initial model of
Widrow & Kaiser [9] based on the SP system. Finally,
other approaches to the problem, based on the violent
relaxation of the Vlasov-Poisson (VP) system, could be
considered [28].
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