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Using a principal component basis that accommodates order unity features in the slow-roll parameters as

fine as 1=10 of a decade acrossmore than 2 decades of the inflationary expansion,we test slow-roll and single-

field inflation with the WMAP7 data. Detection of any nonzero component would represent a violation of

ordinary slow roll and indicate a feature in the inflaton potential or sound speed. Although one component

shows a deviation at the 98% CL, it cannot be considered statistically significant given the 20 components

tested. The maximum likelihood principal component parameters only improve 2� lnL by 17 for the 20

parameters associated with known glitches in the WMAP power spectrum at multipoles ‘ < 60. We make

model-independent predictions for the matching glitches in the polarization spectrum that would test their

inflationary origin. This complete analysis for band-limited features in the source function of generalized

slow roll can be used to constrain parameters of specificmodels of the inflaton potential without requiring a

separate likelihood analysis for each choice. We illustrate its use by placing bounds on the height and

width of a steplike feature in the potential proposed to explain the glitch at 20 � ‘ � 40. Even

allowing for the presence of features in the temperature spectrum, single-field inflation makes sharp

falsifiable predictions for the acoustic peaks in the polarization whose violation would require extra

degrees of freedom.
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I. INTRODUCTION

Observed glitches in the WMAP power spectrum of
cosmic microwave background (CMB) temperature fluc-
tuations [1], such as the low quadrupole and the dip and
bump at ‘ ¼ 20–40, have motivated many studies of fea-
tures in the initial conditions. Most of these studies have
focused on the reconstruction of the curvature power spec-
trum through parametric, minimally parametric or regular-
ized inverse techniques (e.g. [2–12]).

Reconstruction of the curvature spectrum suffers from
two potential problems. Given that fine scale features are
observable at high wave number, parametric models are
not complete unless a very large number of parameters
are employed. Secondly, not all curvature power spectra
can arise from physical mechanisms in the early universe
making parametric models potentially overcomplete and
subject to fitting the noise instead of fitting the physics. For
example, a delta function in the initial curvature spectrum
would be highly observable but not expected to arise in any
physical model.

For the purposes of testing inflationary models of the
initial conditions one can instead try to constrain the shape
of the inflaton potential under the assumption that inflation
arises from a single scalar field with a canonical kinetic
term. Specific potentials have been used to test the origin of
the low quadrupole moment, the glitches at multipole mo-
ments ‘ ¼ 20–40 and glitches near the WMAP beam scale
[1,13–15]. On the other hand, model-independent recon-
struction approaches have implicitly or explicitly assumed
a slowly varying inflaton potential [16–20].

Sharp features in the inflaton potential would cause
features in the temperature power spectrum [21,22]. As
long as those features are of small amplitude, inflation
continues uninterrupted but certain slow-roll parameters
are neither constant nor necessarily small. The generalized
slow roll (GSR) approach [23–26] can be used to analyze
such cases. In particular, to good approximation there is a
single source function that encodes observable features in
the inflation potential [26] for canonical kinetic terms or
the sound speed for noncanonical terms [27]. This function
is also closely related to the source of corresponding
bispectrum features [28]. In previous work, we studied
the strong constraints on this function imposed by the
precise and featureless measurements around the first
acoustic peak through a low order principal components
decomposition [29].
In this paper, we extend our previous analysis to a basis

of 20 principal components for the source function of
inflationary features. This basis is complete for models
where the features vary no more rapidly than 10 per
decade of the expansion or about 4 per efold during
inflation. In Sec. II we review the GSR and principal
components technique. In Appendix A, we describe nu-
merical techniques used to reduce the computation time of
the analysis. We test the validity of the GSR approxima-
tion in Appendix B. We present the results of the WMAP
likelihood analysis in Sec. III. In Sec. IV we develop tests
of single-field inflation and consider applications to spe-
cific classes of potentials. We discuss these results in
Sec. V.
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II. METHODOLOGY

We use the generalized slow roll (GSR) approximation
and principal components to study features generated by
single-field inflation. We refer the reader to Ref. [29] for
details but provide a brief description here. Features arise
from a single source function that describes the deviation
from slow roll in the background (Sec. II A) which we can
be decomposed into a basis of principal components that is
complete for band-limited models sampled at a maximal
rate per efold (Sec. II B).

A. Generalized slow roll

Under the GSR approximation, features in the curvature
power spectrum are generated by a single source function
of the background evolution of the inflaton �

G0ðln�Þ � �2ðlnfÞ0 þ 2

3
ðlnfÞ00; (1)

where

f ¼ 2� _�a�

H
: (2)

Primes here and below denote derivatives with respect to

ln� where � ¼ Rtend
t dt0=aðt0Þ is the conformal time to the

end of inflation and we take units where the reduced Planck

mass Mpl ¼ ð8�GÞ�1=2 ¼ 1 as well as c ¼ 1 and ℏ ¼ 1.

In the ordinary slow-roll approximation, the curvature
power spectrum is given by �2

R � f�2 since

�H ¼ 1

2

� _�

H

�
2
; � � 1

aH
: (3)

In the GSR approximation, the curvature power spectrum
is instead determined by features in the source function
through

ln�2
RðkÞ � Gðln�minÞ þ

Z �max

�min

d�

�
Wðk�ÞG0ðln�Þ

þ ln½1þ I21ðkÞ�; (4)

where integrating G0 gives

Gðln�Þ ¼ �2 lnfþ 2

3
ðlnfÞ0: (5)

Here the nonlinear correction is given by

I1ðkÞ ¼ 1ffiffiffi
2

p
Z �max

�min

d�

�
Xðk�ÞG0ðln�Þ: (6)

We take �min ¼ 1 Mpc and �max ¼ 105 Mpc which more
than covers the range observable to WMAP. The window
functions

WðuÞ ¼ 3 sinð2uÞ
2u3

� 3 cosð2uÞ
u2

� 3 sinð2uÞ
2u

;

XðuÞ ¼ 3

u3
ðsinu� u cosuÞ2;

(7)

define the linear and nonlinear response of the curvature
spectrum toG0 respectively. Accuracy of the GSR approxi-
mation requires the nonlinear response, as quantified by I21 ,
to remain below order unity. We call this the GSR condi-
tion (see Appendix B).

B. Principal component analysis

The principal components of the WMAP7 Fisher matrix
provide an efficient basis with which to decompose the
source function (1)

G0ðln�Þ ¼ 1� ns þ
XN
a¼1

maSaðln�Þ; (8)

where the eigenfunctions Sa are constructed following
Ref. [29] by sampling at a rate of 10 per decade in
� or equivalently 4.3 per efold of inflation across
� ¼ ½1–105� Mpc with spline interpolation between the
points. In terms of the width of features in the potential,

this limit corresponds to �� * �1=2H =4:3. This rate is suf-
ficient to capture models that describe the glitches in the
WMAP7 power spectrum (see Sec. IV for a discussion of
the limitations imposed by the sampling).
The amplitudes ma then can be incorporated into a

Markov Chain Monte Carlo (MCMC) likelihood analysis
of the WMAP data. As described in Appendix A we
slightly modify the original approach [29] to improve the
convergence properties of the MCMC analysis. Since a
constant G0 described by ns is equivalent to tilt in the
curvature spectrum and Gðln�minÞ is equivalent to a nor-
malization parameter we replace them with effective pa-
rameters �G0 and Ac. Specifically �G0 is an average of G0
for 30<�=Mpc< 400 and Ac is the normalization of the
temperature power spectrum CTT

‘ at the first peak ‘ ¼ 220
relative to a fiducial choice that fits the WMAP7 data.
From these two phenomenological parameters we can
derive constraints for the tilt ns and curvature power spec-
trum normalization As (see Appendix A).
Since a signal-to-noise analysis shows that 20 out of the

50 principal components are required for a complete rep-
resentation of the WMAP data at our bandlimit [29], we
choose N ¼ 20 for our analysis. These first 20 principal
components are shown in Fig. 1. Note that the first 10
components resemble local Fourier modes around
� � 102 Mpc where the well-constrained first acoustic
peak gets its power. It is not until components 11–20 that
horizon scale features at low multipole or 103–104 Mpc are
represented.
We use the MCMC method to determine joint con-

straints on the 20 PC amplitudes and cosmological
parameters
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p� ¼ fm1; . . . ; m20; Ac; �G; �;�bh
2;�ch

2; �g: (9)

Here � is the reionization optical depth, �bh
2 is the

physical baryon density, �ch
2 is the physical dark

matter density and � is 100 times the angular size of
the sound horizon at recombination.
The MCMC algorithm samples the parameter space

evaluating the likelihood LðxjpÞ of the data x given each
proposed parameter set p (e.g. see [30,31]). The posterior
distribution is obtained using Bayes’ theorem,

P ðpjxÞ ¼ LðxjpÞP ðpÞR
d�LðxjpÞP ðpÞ ; (10)

where P ðpÞ is the prior probability density. We place non-
informative top hat priors on all parameters in Eq. (9). To
ensure the validity of the GSR approximation we set the
prior to zero if I1 exceeds a maximum value of

I1;max ¼ maxjI1ðkÞj (11)

at any k. As shown in Appendix B, a value of I1;max ¼ 1=
ffiffiffi
2

p
is sufficient to ensure accuracy of the GSR approximation.
Figure 2 shows the maximal contribution to I1 per unit

amplitude deviation in each of the first 20 principal com-
ponents. The higher PCs actually produce a slightly
smaller response largely because the frequency of the
oscillations in Fig. 1 begins to exceed that of the nonlinear

response function Xðk�Þ. Thus a prior of I1;max ¼ 1=
ffiffiffi
2

p
actually allows high PC components to reach order unity
and jG0j to reach �4 or greater.
The MCMC algorithm generates random draws from the

posterior distribution. We test convergence of the samples
to a stationary distribution that approximates the joint
posterior density P ðpjxÞ by applying a conservative
Gelman-Rubin criterion [32] of R� 1< 0:01 across four
chains. We use the code CosmoMC [33] for the MCMC
analysis [34].
For the WMAP7 power spectrum data [35], we use the

optimized approximate likelihood from Ref. [29]. In addi-
tion, we utilize data from the BICEP (Background Imaging

FIG. 1 (color online). The first 20 principal components of the
GSR source G0 [see Eq. (8)] as a function of conformal time to
the end of inflation, in order of increasing variance from bottom
to top. 20 PC components suffice to represent inflationary
features observable to WMAP that vary no more rapidly than
�1=4 of an efold. Here and below, dashed red lines represent
power law conditions with zero amplitude in the PC components.

FIG. 2. Sensitivity of the nonlinearity parameter I1;max (see
Eq. (11)) to the amplitude of the first 20 PCs considered
individually. This parameter must be less than order unity for
the GSR approximation to be accurate, and we typically place a
prior of I1;max < 1=

ffiffiffi
2

p
.
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of Cosmic Extragalactic Polarization) and QUAD (QU
Extragalactic Survey Telescope at Degree Angular Scale
Interferometer) experiments which include polarization
constraints [36,37]. We calculate the CMB power spectra
without incorporating gravitational lensing and the default
sparse sampling in ‘ (accuracyboost ¼ 1). We correct for

these approximations in postprocessing by importance
sampling as described in Appendix A before presenting
the results in the next section. The main effect is a �0:5�
upwards shift in the �bh

2 posterior to compensate the
smoothing effect of lensing.

In order to ensure that models are compatible with a
reasonable cosmology we add non-CMB constraints from
the UNION2 (a supernova type Ia compilation) [38], the
SHOES (Supernova H0 for the Equation of State) H0 ¼
ð74:2� 3:6Þ km=s=Mpc measurement [39] and a big bang
nucleosynthesis constraint of �bh

2 ¼ 0:022� 0:002 [40].
These data mainly constrain the energy density compo-
nents of the universe rather than the inflationary initial
conditions. We call the combination of CMB and external
data the ‘‘all data’’ analysis. We address the impact of the
I1;max prior and the non-CMB data in Sec. III B below.

III. MCMC RESULTS

In this section, we present the results of the Markov
Chain Monte Carlo analysis in the principal component
(PC) space of the GSR source function. We discuss the
results of our fiducial all-data analysis in Sec. III A and
address the impact of priors and non-CMB data in
Sec. III B.

A. All Data

For our fiducial results we use the all-data combination
of CMB and external data described in the previous sec-
tion. To establish a baseline for the PC results we start with
the ma ¼ 0 power law (PL) case, �2

R ¼ Asðk=kpÞns�1.

Table I gives the mean, standard deviation of the posterior
probabilities, and the maximum likelihood (ML) parame-
ter values for the power law model.

For the PC analysis, we take 20 components and a non-

linearity top hat prior of I1;max < 1=
ffiffiffi
2

p
(see Sec. II B).

Table II gives the parameter constraints as well as the
maximum likelihood PC model (left columns).

The improvement in the ML PC model over the ML
power law model is 2� lnL ¼ 17 for 20 extra parameters
and so is not statistically significant in and of itself. Of
course, specific inflationary models may realize this im-
provement with a smaller set of physical rather than phe-
nomenological parameters (see Sec. IVB), and so it is
interesting to examine more closely the origin of this
improvement.

The main improvement comes from ‘ � 60 in the TT
part of the WMAP likelihood with a 2� lnL ¼ 11:9. We
shall see in Sec. IVA that these improvements are largely

associated with known features in the WMAP temperature
power spectrum.
In terms of the principal components, the improvements

are localized in only a few of the 20 parameters. Figure 3
plots these ma constraints and ML values. Most of the
components are consistent with zero at the �1� level.
Components m17–m20 are constrained in part by the
I1;max prior not just the data.

As in the 5 PC analysis of [29], the single most discrep-
ant parameter between the PL and PC cases is m4 corre-
sponding to a feature centered around �� 300 Mpc and
resembling a local running of the tilt. Figure 4 shows the
posterior probability distributions of the parameters. Anm4

value as extreme as the power law value of m4 ¼ 0 is
disfavored at 98.2% CL compared with 94.8% for 5 PCs
and WMAP7 alone. The increase in significance by a
fraction of a � arises because of the correlation between
m4 and the higher principal components. Perhaps more
importantly, freedom in the higher PCs allows large m4

without the need to make large adjustments to the cosmo-
logical parameters that would violate non-CMB con-
straints. On the other hand, one event out of 20 showing
a 98% exclusion is not that unlikely.
The poorly constrained a > 10 modes allow large am-

plitude deviations and in fact even marginally prefer them.
This explains why including the higher components can
change results on the lower components. Large amplitude
deviations in the high order components make the modes
no longer statistically independent as they would be for
infinitesimal deviations. Still the correlation remains rela-
tively small. For example R4a ¼ Covðm4; maÞ=�m4

�ma

reaches 0.4 only for one mode, m5, with more typical
correlations in the �0:1–0:2 range.
The next most significant deviations are in m9 (with a

value ofm9 ¼ 0 disfavored at the 89.6% CL) andm18 (with
a value of m18 ¼ 0 disfavored at the 91.8% CL). These
results are also consistent with the PL null hypothesis of

TABLE I. Power law (PL) parameter results: means, standard
deviations (left subdivision of columns) and maximum likeli-
hood values (right subdivision of columns) with CMB data
(WMAP7þ BICEPþ QUAD) and all data (þ UNION2þ
H0 þ BBN) in a flat universe. H0 and�� constraints are derived
from the other parameters.

Parameters All Data CMB Only

100�bh
2 2:241� 0:048 2.233 2:231� 0:051 2.229

�ch
2 0:1101� 0:0040 0.1098 0:1110� 0:0051 0.1116

� 1:0398� 0:0022 1.0397 1:0394� 0:0022 1.0394

� 0:089� 0:014 0.086 0:087� 0:015 0.085

ns, 1� �G0 0:9669� 0:9882 0.9649 0:9620� 0:0078 0.9622

ln½1010As� 3:0808� 0:0332 3.0733 3:0770� 0:0338 3.0746

H0 71:23� 1:74 71.23 70:70� 2:32 70.40

�� 0:738� 0:0198 0.739 0:732� 0:027 0.730

�2 lnL 8140.06 7608.39
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ma ¼ 0, given that there are only 3 events out of 20 where
tests of that model exceed the �90% CL.

We can get further insight on the origin of these con-
straints by examining the maximum likelihood (ML) mod-
els. Figure 5 show temperature and polarization power
spectra of the ML PL (red dashed lines) and PC (thick
solid curve) models, respectively. The poorly constrained
a > 10 modes create fluctuations in the low order multi-
poles which marginally fit features in the data better such
as the low quadrupole and glitch at ‘� 20–40. These large
amplitude modes require small amplitude low order PC
variations in order to compensate the broadband residual
effects they have. This can be seen by decomposing the
difference between the ML PL and PC models into con-
tributions from the various parameters (see Fig. 6).
Removing the large m10–m20 components from the model
not only removes the low ‘ oscillations but also creates
broadband deviations, especially at ‘ & 40, that are

compensated by a combination of small amplitude changes
in m1–m5 and effective tilt �G0.

B. Robustness tests

In order to test the robustness of the fiducial results of
the last section, we run separate MCMC chains with differ-
ent choices for the nonlinearity prior and data sets.
We first examine the impact of our I1;max prior by

reanalyzing the all-data case with I1;max ¼ 1=2 instead of

1=
ffiffiffi
2

p
(see Table II). The main impact of tightening the

prior is on m18–m20 as is expected from Fig. 3. These
components mainly affect the low ‘ multipoles. In spite
of this fact the prior on I1;max has very little impact on the

behavior of favored models at low ‘. In Fig. 7, we show the
maximum likelihood model with the stronger I1;max prior.

Even at low ‘ the differences are much smaller than cosmic
variance. In particular the posterior distribution of power in

TABLE II. 20 principal component (PC) parameter results: means, standard deviations (left subdivision of columns) and maximum
likelihood (ML) values (right subdivision of columns). Fiducial results are for all data and nonlinearity prior I1;max ¼ 1=

ffiffiffi
2

p
, left

columns, with variations shown in center and right columns. Parameters ns ��� are derived from the chain parameters. The
difference in likelihood 2� lnL is given for the ML values and taken with respect to the corresponding PL maximum likelihood model
in Table I.

Parameters All Data I1;max ¼ 1=
ffiffiffi
2

p
All Data I1;max ¼ 1=2 CMB Only I1;max ¼ 1=

ffiffiffi
2

p

100�bh
2 2:279� 0:107 2.227 2:282� 0:107 2.410 2:160� 0:159 2.110

�ch
2 0:1127� 0:0055 0.1101 0:1126� 0:0056 0.1100 0:1297� 0:0142 0.1338

� 1:0411� 0:0030 1.0402 1:0411� 0:0030 1.0417 1:0395� 0:0032 1.0381

� 0:086� 0:016 0.096 0:088� 0:016 0.091 0:082� 0:016 0.072
�G0 0:0122� 0:0268 0.0055 0:0191� 0:0248 0.0213 0:0186� 0:0283 0.0221

ln½1010Ac� 0:0032� 0:0117 0.0036 0:0032� 0:0122 0.0098 0:0051� 0:0122 0.0056

m1 0:0048� 0:0073 0.0060 0:0025� 0:0071 0.0068 0:0021� 0:0078 0.0009

m2 0:0152� 0:0122 0.0163 0:0120� 0:0122 0.0109 0:0086� 0:0137 0.0104

m3 �0:0120� 0:0181 �0:0042 �0:0140� 0:0179 �0:0085 �0:0151� 0:0191 �0:0161
m4 0:0427� 0:0190 0.0460 0:0327� 0:0171 0.0481 0:0455� 0:0195 0.0583

m5 0:0198� 0:0256 0.0050 0:0168� 0:0249 0.0486 0:0165� 0:0272 0.0165

m6 �0:0156� 0:0325 �0:0089 �0:0142� 0:0328 �0:0166 0:0062� 0:0377 �0:0120
m7 �0:0061� 0:0354 �0:0015 �0:0060� 0:0333 �0:0060 �0:0174� 0:0383 �0:0324
m8 0:0278� 0:0486 0.0285 0:0403� 0:0464 0.0431 0:0174� 0:0505 �0:0061
m9 �0:1239� 0:0731 �0:1436 �0:0970� 0:0670 �0:1458 �0:1319� 0:0770 �0:1184
m10 0:0336� 0:0609 0.0219 0:0282� 0:0602 0.0462 0:0150� 0:0647 0.0441

m11 0:0759� 0:0908 0.0225 0:0599� 0:0847 0.0364 0:0591� 0:0966 0.1339

m12 �0:0917� 0:1027 �0:1604 �0:0702� 0:0946 �0:1477 �0:1100� 0:1076 �0:2137
m13 �0:0947� 0:1129 �0:1895 �0:0764� 0:1036 �0:1577 �0:0506� 0:1194 �0:2300
m14 0:1116� 0:1616 0.2069 0:0561� 0:1450 0.2126 0:1507� 0:1714 0.2103

m15 �0:0199� 0:2042 0.0617 0:0191� 0:1864 �0:0091 �0:0255� 0:2152 0.0686

m16 0:1006� 0:0975 0.1318 0:0837� 0:0964 0.1102 0:1481� 0:1043 0.0772

m17 �0:1253� 0:2688 �0:1953 �0:1094� 0:2326 �0:1302 �0:0575� 0:2833 �0:1376
m18 �0:5089� 0:2938 �0:6131 �0:3322� 0:2475 �0:3798 �0:4894� 0:3083 �0:6610
m19 0:2239� 0:3773 0.2737 0:1524� 0:3028 0.1785 0:2406� 0:3878 0.5228

m20 �0:0742� 0:4070 0.0011 �0:2472� 0:3173 �0:1789 �0:1265� 0:4065 �0:0113
ns 1:0299� 0:0671 1.1296 1:0075� 0:0515 1.0535 1:0191� 0:0672 1.0823

ln½1010As� 3:0387� 0:0582 3.0358 3:0446� 0:0573 3.0654 3:0684� 0:0626 3.0726

H0 71:03� 2:28 71.22 71:08� 2:28 73.28 63:86� 5:88 61.35

�� 0:730� 0:026 0.739 0:731� 0:026 0.750 0:614� 0:105 0.588

2� lnL 16.85 14.26 17.2
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the quadrupole moment for models in the chain shown in
Fig. 8 differ negligibly.

Some of this robustness in the low multipole moments
is due to the impact of the non-CMB data. Without the
external data, the quadrupole distribution extends to
smaller quadrupole moments due to the ability to reduce
the integrated Sachs-Wolfe effect by lowering the cosmo-
logical constant in the absence of constraints on the accel-
eration of the expansion (see Fig. 8). In this case the data
may prefer more extreme inflationary models that further
lower the quadrupole that are excluded by our nonlinearity
prior on I1;max [13].

The main impact on parameters of removing the non-
CMB data is to allow a wider range in�ch

2 (see Table II).
In contrast to the 5 PC analysis [29], this wider range
though has little impact on the PC parameters. In particular
the higher order PC components allow compensation of the
effects of m4 across the acoustic peaks without the need to
vary�ch

2 substantially. For similar reasons, we expect our
flatness prior to have little impact on the PC results aside
from weakening the constraints on�� and�ch

2 and small
shifts of the location of features in G0 with the angular
diameter distance degeneracy.

IV. APPLICATIONS

Here we discuss applications of the fiducial 20 PC
analysis of Sec. III A. In Sec. IVA we place constraints
on and devise tests of slow-roll and single-field inflation in
a model-independent manner. Alternately, as a complete
observational basis for efold band-limited models, the PC
analysis places constraints on any such model that satisfies

the GSR condition. We use running of the tilt and a step in
the inflaton potential as example test cases in Sec. IVB.

A. Testing slow-roll and single-field inflation

Bounds on the PC components can be thought of as
functional constraints onG0 itself across the observed range
from WMAP. These in turn limit features in the inflaton
potential Vð�Þ through the approximate relation [26]

G0ðln�Þ � 3

�
V;�

V

�
2 � 2

V;��

V
: (12)

FIG. 3 (color online). Constraints on the 20 PC amplitudes
from the all-data analysis with an I1;max < 1=

ffiffiffi
2

p
prior (gray

band). The black points are the mean values of ma and the
error bars correspond to their 1� error. The only significant
deviation from the ma ¼ 0 PL expectation (red dashed line) is
m4 ¼ 0:0427� 0:0190. Only m17–m20 are significantly prior
limited. The maximum likelihood model is shown as blue
points.

FIG. 4 (color online). Posterior parameter probability dis-
tributions from the all-data analysis in a flat universe with
I1;max ¼ 1=

ffiffiffi
2

p
. Dashed lines represent the posteriors with ap-

proximations for the low ‘ polarization likelihood and C‘

accuracy used to run the MCMC (see Appendix); solid lines
represent posteriors corrected by importance sampling. Red
dashed lines represent corrected posteriors for power law mod-
els. Distributions here and below are arbitrarily normalized to
their maximum value.
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If the inflaton carries noncanonical kinetic terms then the
relationship is modified to include variations in the sound
speed [27].

Since the PC decomposition only represents features
in G0 across the observable domain, one should consider
the constraints on the mas as defining a PC filtered
version of G0:

G0
20ðln�Þ ¼

X20
a¼1

maSaðln�Þ: (13)

Any significant deviation from zero of this function
would indicate a violation of ordinary slow roll. We
can extract the posterior probability of G0

20 by consider-

ing its values on a continuous set of samples of � as
derived parameters.

FIG. 5 (color online). The temperature (left) and E-mode polarization (right) power spectra posterior using the all-data PC
constraints and a prior of I1;max ¼ 1=

ffiffiffi
2

p
. The shaded area encloses the 68% CL region and the upper and lower curves show the

upper and lower 95% CL limits. The maximum likelihood (ML) model is shown as the thick black central curve, and the power law
ML model is shown in red dashed lines. The blue points with error bars show the 7-year WMAP measurements.

FIG. 6 (color online). Parameter decomposition of the tem-
perature power spectrum difference between the power law (PL)
and PC maximum likelihood (ML) models shown in Fig. 5
(bottom panel). The curves include cumulative changes in pa-
rameters between the models starting with the cosmological
parameters, adding the normalization Ac and effective tilt �G0,
m1 . . .m5, etc. until the full PC ML parameters are utilized.

FIG. 7 (color online). Comparison of the maximum likelihood
models of the three MCMCs of Table II: the all-data analysis
with I1;max ¼ 1=

ffiffiffi
2

p
(black curve), all-data with I1;max ¼ 1=2

(blue curve), and CMB data with I1;max ¼ 1=
ffiffiffi
2

p
(red curve).

The smallness of the differences indicates robustness of our
results to the priors and external data sets.
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In Fig. 9 we plot both the ML model and the 68% and
95% posterior bands. Note that G0

20 ¼ 0 lies within the

95% CL regime for all �. These functional constraints
differ from a full reconstruction of G0 in that the PCs filter
out deviations at �< 20 Mpc and �> 104 Mpc as well as
deviations that are too high frequency to satisfy our
bandlimit.

In the well-constrained regime of 30 & �=Mpc & 400
constraints are both tight and consistent with G0

20 ¼ 0.
Only nearly zero mean high frequency deviations are
allowed in this regime. Nonetheless, the poorly constrained
m10–m20 components allow, but do not strongly prefer,
large oscillatory features between 103 & �=Mpc & 104.

In fact G0
20 ¼ 0 lies noticeably outside the 68% CL bands

only for the dip and bump between 1000–2000 Mpc and a
bump at 70–100 Mpc.
We can associate the most significant features with the

corresponding effects on the observable power spectra
themselves. Figure 5 shows the 68% and 95% range in
the power spectra posterior. The 1000–2000Mpc feature in
fact corresponds to the ‘ ¼ 20–40 dip and bump in the
temperature power spectrum. The 70–100 Mpc feature
corresponds to a glitch at ‘� 600–700 [14,15]. While
the � * 104 Mpc regime is limited by our priors on the
amplitude of deviations through I1;max we have shown that

the data do not favor a feature corresponding to a low
quadrupole ‘ ¼ 2 unless acceleration constraints are omit-
ted (see Sec. III B).
Finally, we can examine the posterior distributions of the

E-mode polarization. These predictions are not signifi-
cantly constrained by the polarization data sets employed.
Instead these distributions are limited mainly by the com-
mon origin of the temperature and polarization spectra
from single-field inflation. These serve as predictions for
future measurements. For example, the low significance
features in the temperature power spectrum predict corre-
sponding ones in the E-mode polarization which have yet
to be measured and can be used to test the hypothesis of
their inflationary origin at substantially higher joint sig-
nificance [41]. In particular, one expects a �26%þ13%

�17%

enhancement in the EE power spectrum at ‘ ¼ 39 and a
�� 37%þ17%

�3% deficit around ‘ ¼ 25. The skew distribu-

tion in the latter case reflects the difficulty in constructing
models with low power out of the principal components
rather than the data disfavoring such models. Models that
actually explain the low TT power at ‘ ¼ 25 predict low
EE power as well.
Even in the acoustic regime where the polarization

predictions are tight and do not suggest the presence
of features, these predictions are of interest. If future ob-
servations violate them, then not only will slow-roll infla-
tion be falsified but all single-field inflationary models,
including those with sound speed variations, as long as
they satisfy our weak prior constraint on acceptable
models: the efold bandlimit and small GSR nonlinearity

I1;max < 1=
ffiffiffi
2

p
. Such a violation might indicate other de-

grees of freedom breaking the relationship between
the temperature and polarization fields, e.g. isocurvature
modes in multifield inflation or trace amounts of cosmo-
logical defects. For ‘ & 30 violation could alternately in-
dicate a more complicated reionization scenario [41].
Currently these bounds and tests apply to the ‘ < 800

regime measured by WMAP but will soon be extended by
high resolution ground based experiments and Planck.

B. Constraining inflationary models

We can also apply the model-independent PC analysis to
any specific set of models that satisfy the GSR condition

FIG. 8 (color online). The temperature quadrupole power CTT
2

posterior distribution for the all-data analysis with I1;max ¼ 1=
ffiffiffi
2

p
(black curve), all-data with I1;max ¼ 1=2 (blue curve), and CMB

data with I1;max ¼ 1=
ffiffiffi
2

p
(red curve). Without external data to

constrain the cosmological constant, the quadrupole can be
lowered by reducing the integrated Sachs-Wolfe effect.

FIG. 9 (color online). The 20 PC filtered G0 posterior from the
fiducial all-data analysis and I1;max ¼ 1=

ffiffiffi
2

p
as a prior. The

shaded area encloses the 68% CL region and the upper and
lower curves show the upper and lower 95% CL limits. The
maximum likelihood is shown as the thick black central curve,
and the power law ML model is shown in red dashed lines.
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I1;max < 1=
ffiffiffi
2

p
and bandlimit of features no sharper than

about 1=4 efold. To place constraints on the parameters of a
model, one projects the source function G0 of the model
onto the principal components

ma ¼ 1

ln�max � ln�min

Z �max

�min

d�

�
Saðln�ÞG0ðln�Þ (14)

as a function of parameters and compares the result to the
joint posterior probability distributions of the components.
Likewise one can construct G0

20 from the result and com-

pare it with Fig. 9.
In fact, the means �ma and covariance matrix C of the

components ma extracted from their joint posterior form a
simple but useful representation. From these, one can
construct a 	2 statistic

	2 ¼ X20
a;b¼1

½ðma � �maÞC�1
ab ðmb � �mbÞ�; (15)

or the likelihood L / expð�	2=2Þ under a multivariate
Gaussian approximation to the posteriors. For example
the ML PC model gives an improvement of �	2 ¼
�15:36 over PL to be compared with�2� lnL ¼ �16:85.

As a simple illustration of a concrete model, consider a
linear deviation in G0

G0ðln�Þ ¼ 1� n0 þ 
 lnð�=�0Þ: (16)

The curvature power spectrum for this model has a local
tilt of

d ln�2
R

d lnk
¼ n0 � 1þ 
 ln

�
k�0

C

�
� 
�ffiffiffi

2
p I1

1þ I21
; (17)

where C ¼ e7=3��E=2 � 2:895 and

I1 ¼ 1ffiffiffi
2

p
�
�

2
ð1� n0 � 
 lnk�0Þ þ 1:67


�
: (18)

For jn0 � 1j � 1 and j
j � 1, the I1 term contributes
negligibly and the model gives a linear running of the
tilt [29].

The 20 PC components are a linear function of 
 given
explicitly by

mað
Þ ¼ 


ln�max � ln�min

Z �max

�min

d�

�
Saðln�Þ lnð�=�0Þ:

(19)

In Fig. 10 we show an example with 
 ¼ �0:026 and
compare the original linear G0 to the PC filtered G0

20. The

filter introduces features at low and high � that are not
present in the actual source. Note that a Fisher analysis of
sensitivity to 
 reveals that most of the signal-to-noise
should lie in the m4 component [29] which carries the
most significant deviations from zero in the data.

The 	2 analysis with all data implies 
 ¼ �0:039�
0:019. We can compare this result to a direct MCMC
analysis with 
 as a parameter constructed from 20 PCs:


 ¼ �0:027� 0:021. Thus the simple 	2 approximation
captures the information on 
 in the 20 PC posterior
to �0:5�.
We can further test the completeness of the 20 PC

decomposition of 
 by going to 50 PCs. In this case

 ¼ �0:026� 0:023 showing that 20 PCs completely
describe the observable properties of 
. In fact, 5 PCs
are enough to describe the observable properties of 
 in
this case; a direct MCMC analysis gives 
 ¼ �0:026�
0:020. Figure 11 shows that the full posterior distributions
of 
 for these cases are indistinguishable within the errors.
We also show the simple 	2 approximation which is shifted
by �0:5� as expected.

FIG. 11 (color online). Posterior probability distribution of 

from a direct MCMC analysis constructed from 50 PCs (black/
solid curve), 20 PCs (red curve), and 5 PCs (blue curve). The
distribution from the 	2 approximation is shown in black/dashed
curve.

FIG. 10 (color online). A model with a linear deviation in G0
with slope 
 ¼ �0:026 (and arbitrary offset) is shown as the
blue curve. The 20 PC filtered source G0

20 (in black lines) is

compared with the input linear G0 model. 20 PCs captures all of
the observable information in 
. These models are compatible
with the 68% CL region (shaded) for G0

20 from the fiducial all-

data analysis.
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The posterior distributions are skewed to negative values
of 
. For example the ML model of the 50 PC chain has

 ¼ �0:021 to be compared with a mean of �0:026. For
large negative 
, the linear G0 model no longer matches a
running of the tilt due to the I1 terms in Eq. (18). In Fig. 12,
we show an example with n0 ¼ 0:96 and �0 ¼ 145 Mpc
for 
 ¼ dns=d lnk ¼ �0:09 and �0:02. While the 

model closely matches constant dns=d lnk for the smaller
value, it produces substantially less deviations at high and
low k. This bias explains the difference between con-
straints on the linear 
 model and running of the tilt found
in [29]. For example, with the same data sets and priors
running of the tilt gives dns=d lnk ¼ �0:018� 0:019.
Note that the ML 
 ¼ �0:021 from the 50 PC chain is
consistent with this constraint.

Another example is the step potential which has been
employed to explain the glitches in the power spectrum at
‘ � 20–40

Vð�Þ ¼ 1

2
m2�2

�
1þ c tanh

�
���s

d

��
: (20)

For simplicity, we fix �s ¼ 14:668 so that the feature
appears at the correct position to explain the glitches
with the convention that � ¼ 20 Mpc is the comoving
horizon scale 50 efolds before the end of inflation.
Although we set the smooth part of the potential to corre-
spond to an m2�2 model with m ¼ 7:126	 10�6 for the
projection onto PCs, in the analysis we retain the freedom
to adjust the amplitude and tilt as usual. This leaves us with
2 additional parameters c and d to control the amplitude
and width of the step.

The constraints on ðc; dÞ from the 	2 approximation are
shown in Fig. 13 (top panel). Note that the crude 	2

analysis correctly picks out the favored parameters which

can explain the glitches [41]. The minimum 	2 model is
c ¼ 0:0015, d ¼ 0:026 and is favored over the PL ma ¼ 0
(or c ¼ 0) model by �	2 ¼ �10:2. Although the 	2

analysis assumes that the joint posterior in ma is a multi-
variate Gaussian, it does not make that assumption for
parameter probabilities. With the distorted shape of the
confidence region, the contours of the 68% area of the
probability distribution corresponds to �	2 ¼ 2:5, 95%
contour to 8.6 and 99.7% contour to 13.3, compared with
the more stringent 2.3, 6.2 and 11.6 obtained for Gaussian
distributions in ðc; dÞ. Here and below we take a prior of
d > 0:005 due to our bandlimit of 1=4 efold (see below).
We again compare this with a full analysis of the joint

20 PC posteriors. As in the case of 
, the projection onto
the two-dimensional maðc; dÞ space leaves us with too
few samples in the original 20 PC chain to reliably extract
the posterior via importance sampling. We instead run a
direct MCMC analysis on the 20 PC description with
maðc; dÞ. These results are shown in Fig. 13 in blue lines.
The maximum likelihood model has c ¼ 0:0016,
d ¼ 0:025 and is favored over PL ma ¼ 0 (or c ¼ 0) by

FIG. 12 (color online). Initial curvature power spectrum of a
model with running of the tilt (dns=d lnk ¼ �0:02, �0:09, solid
curves) compared to a model with a linear deviation in G0
(
 ¼ �0:02, �0:09, dashed curves). For the �0:02 case, the
two models are similar whereas for �0:09 the running of the tilt
model has larger deviations from scale free conditions at low and
high k.

FIG. 13 (color online). Constraints on the step potential model
parameters c (height of step) and d width of step. Top panel: the
	2 approximation (black curves) compared to the full 20 PC
posterior (blue curves). Bottom panel: constraints from the
20 PCs posterior (blue curves) compared to a direct GSR
calculation of the model (black points).
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2� lnL ¼ 9:1. These values are fully consistent with the
simple 	2 analysis. This improvement is a substantial
fraction of the total of 17 available to the 20 PCs from
Table II and is achieved with 3 parameters: c, d and
implicitly �s, the location of the step.

The filtered G0
20 source for both the ML and minimum

	2 model are shown in Fig. 14 and are consistent with
the posteriors of the fiducial all-data analysis. Furthermore,
the 	2 analysis correctly picks out the best-fit region
and qualitatively recovers its distorted shape. The main
difference is that the confidence region is slightly
underestimated.

Finally, we test the completeness of the 20 PC descrip-
tion of the step model by conducting a separate MCMC
with the full function G0 directly (see Appendix B,
Eqs. (B10)–(B13) for details). The maximum likelihood
model has c ¼ 0:0021, d ¼ 0:029 and is favored over PL
by 2� lnL ¼ 9:5 As shown in Fig. 13 (bottom panel), the
main difference is that the models are more tightly con-
strained at d < 0:01. The features in G0 span less than
�1=4 of an efold for these models and consequently the
20 PC decomposition is not complete. In Fig. 15 (top
panel) we show a model with d ¼ 9:2	 10�3 and
c ¼ 4:6	 10�4 represented by the full function G0 (in
black lines) compared to its 20 PCs description (in blue/
dashed curves). The fractional difference between these
two constructions is shown in the bottom panel. In such
models, the oscillations in the temperature power spectrum
continue to higher ‘, in this case ‘� 100, and are not
allowed by the data.

This example shows that the main limitation of the
20 PC analysis is that it is too conservative for models
with high frequency structure in the source: such models
tend to be in conflict with the data in ways not represented
by the principal components.

V. DISCUSSION

We have conducted a complete study of constraints from
the WMAP7 data on inflationary features beyond the slow-
roll limit. Using a principal component basis that accom-
modates order unity features as fine as 1=10 of a decade
across more than two decades of the inflationary expan-
sion, we find no significant deviations from slow roll.
Although one component shows a deviation at the 98%
CL, it cannot be considered statistically significant given
the 20 components tested. The maximum likelihood PC
parameters only improves 2� lnL by 17 for the 20 parame-
ters added.
On the other hand, specific inflationary models may

access this improvement with fewer physical parameters.
Most of the improvement comes from fitting features in the
temperature power spectrum at multipoles ‘ � 60 with the
known glitch at 20 � ‘ � 40 comprising a large fraction.
We have illustrated this fact by taking two parameters of
the well-known step model represented in the 20 PC space.
From our analysis, we also extract predictions for the

corresponding features in the polarization power spectrum
that can be used to test their inflationary origin indepen-
dently of a specific choice for the inflaton potential
(cf. [41]). In particular, one expects a �26% enhancement
in the EE power spectrum at ‘ ¼ 39 and a �37% deficit
around ‘ ¼ 25 if the temperature features have an infla-
tionary origin. Outside of the range of these low ‘ features,

FIG. 14 (color online). The ML model of the step potential
from the 	2 approximation is shown in blue dashed lines, and the
ML model from the projection onto 20 PCs [maðc; dÞ] is shown
in black lines. The step potential model captures the main feature
seen in the fiducial all-data analysis (shaded 68% CL area).

FIG. 15 (color online). Top panel: step potential model with
width d ¼ 9:2	 10�3 and height c ¼ 4:6	 10�4 represented
by the full source function G0 (in black lines) compared to its
20 PC description (in blue/dashed lines). Bottom panel: frac-
tional difference between the full GSR description and its 20 PC
decomposition. The oscillations at ‘� 100 are not captured by
the 20 PCs.
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the predictions are very precise and any violation of them
in future observations would falsify single-field inflation
independently of the potential.

Our constraints can also be used to test any single-field
model that satisfies our conditions. Most of the information
from the likelihood analysis is distilled in the means and
covariance of the principal components themselves which
we make publicly available [42]. Two models illustrate this
encapsulation: a linear source model that approximates
running of the tilt and a step potential model that fits the
features at ‘ ¼ 20–40. A simple 	2 analysis approximates
the joint parameter posteriors despite its highly non-
Gaussian form for the step parameters. This procedure
greatly simplifies the testing of inflationary models with
features in that parameter constraints on any model that
satisfies our conditions can be simply approximated with-
out a case-by-case likelihood analysis.
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APPENDIX A: MCMC OPTIMIZATION

1. Parameterization

We seek to define amplitude and tilt parameters for
the MCMC that are nearly orthogonal to the PC parameters
in order to improve the convergence properties of the
MCMC chains.

A constant G0 is equivalent to tilt ns and hence PC
components that have long positive or negative definite
stretches become degenerate with tilt and cause problems
forMCMCconvergence. Instead of a constant tilt, we define
a new chain parameter to be the average of G0 across a
narrower range that is better associatedwith the observables

�G 0 ¼ 1

ln�2 � ln�1

Z �2

�1

d�

�
G0; (A1)

where specifically, we choose �1 ¼ 30 Mpc and �2 ¼
400 Mpc to roughly minimize the variance of �G0 in the
chain (see Fig. 9).

Next, we replace the normalization parameterGðln�minÞ
with

As � ln�2
RðkpÞ; (A2)

where in practice we choose kp ¼ 0:05 Mpc�1.

The effective tilt and normalization parameters bring the
model of the power spectrum from Eq. (4) to

ln�2
R ¼ ln

�
As

�
k

kp

�� �G0�
þ XN

a¼1

ma½ �WaðkÞ � �WaðkpÞ�

þ ln

�
1þ 1

2

�
�

2
�G0 þ XN

a¼1

ma
�XaðkÞ

�
2
�

� ln

�
1þ 1

2

�
�

2
�G0 þ XN

a¼1

ma
�XaðkpÞ

�
2
�
; (A3)

where

�WaðkÞ ¼
Z �max

�min

d�

�
Wðk�ÞðSaðln�Þ � �SaÞ;

�XaðkÞ ¼
Z �max

�min

d�

�
Xðk�ÞðSaðln�Þ � �SaÞ;

(A4)

and

�S a � 1

ln�2 � ln�1

Z �2

�1

d�

�
Sa: (A5)

Note that we can recover the tilt ns, equivalent to the
average of �G across the whole range �min to �max, as

ns ¼ ð1� �G0Þ þ X20
a¼1

ma
�Sa; (A6)

and keep it as a derived parameter in the chain.
Given the oscillatory nature of the k-space response to

the PC eigenfunctions through �Wa and �Xa and the geomet-
ric projection from k to angular multipole ‘, normalization
at a given k does not correspond simply to normalization at
a given ‘. Since the observations best constrain the ampli-
tude of the temperature power spectrum near the first
acoustic peak at ‘� 220 it is advantageous to use an
‘-space normalization in the MCMC and then transform
back to As.
Let us define a phenomenological parameter Ac which

renormalizes the angular power spectra as

CXY
‘ ¼ elnAc

CTTfid
220

~CTT
220

~CXY
‘ : (A7)

Here CTTfid
220 is the temperature power spectrum at the first

peak of a fiducial model that fits the WMAP7 data. We use
CTTfid
220 ¼ 0:747 �K2. Thus if Ac ¼ 0, CTT

220 ¼ CTTfid
220 re-

gardless of the PC parameters.
We can recover constraints on the k-space normalization

by considering As as a derived parameter. If we compute

the original ~CXY
‘ with the As ¼ Afid

s of the fiducial model,
then the true As is given by

lnAs ¼ lnAc þ lnðCTTfid
220 = ~CTT

220Þ þ lnAfid
s : (A8)

In summary, we replace the parameters ns and Gðln�minÞ
with �G0 and Ac in order to reduce parameter degeneracies
that would otherwise inhibit chain convergence.
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2. Likelihood corrections

To speed up the calculation of the WMAP and other
CMB likelihoods we employ three approximations when
running the chains. Firstly, we use a fitting function for the
low ‘WMAP7 polarization likelihood as described in [29].
Secondly, we calculate the CMB power spectra with gravi-
tational lensing artificially turned off. Thirdly, we use the
default ‘-space sampling of CAMB that is designed for
smooth underlying power spectra. Each of these approx-
imations produce small errors in the likelihood evaluation
that we can correct by importance sampling the chain.

The advantage of correcting these approximations in a
postprocessing step is twofold. The chains may be thinned
due to the high correlation between samples in the chain.
Secondly, postprocessing elements of the thinned chains is
embarrassingly parallel unlike the running of the original
chain.

In practice, when we satisfy our convergence criterion
described in the main text, we thin the chains by a factor of
half of the correlation length. We have tested that with such
thinning we reproduce the posteriors of the original chains.
Next we compute the CMB power spectra of the thinned
chains with lensing turned on and a higher ‘-space sam-
pling (CAMB ‘‘accuracy boost’’ 2). We use these high
accuracy power spectra to correct the chain multiplicity
for the change in the likelihood.

In Fig. 16 we show as an example the posteriors coming
directly from power law (PL) chains (in blue/solid curves),

the chains with all corrections (in blue/dashed lines) and
finally all corrections but lensing (in red/dashed lines).
These should be compared with results from a separate
chain run with all the corrections turned on from the start
(in black/solid lines). Importance sampling accurately
models the impact of the small corrections for all parame-
ters. The leading correction is on �bh

2 from lensing.
In Fig. 17, we show the impact of the corrections on the

PC chain using m18 as an example with the largest correc-
tion. The correction on PC parameters is extremely small
and again dominated by lensing.

APPENDIX B: GSR ACCURACY

To test the accuracy of the GSR approximation in the PC
space, we need to consider the inverse problem: construct
an inflationary model that matches a desired G0 for which
we can solve exactly for the curvature power spectrum.
In the forward direction, given an inflationary model we

can compute the exact curvature spectrum by first evaluat-
ing the background behavior of the model through

gðln�Þ ¼ f00

f
� 3

f0

f
¼ 3

2
G0 þ

�
f0

f

�
2
; (B1)

and then solving the equation

d2y

dx2
þ

�
1� 2

x2

�
y ¼ g

x2
y; (B2)

where x ¼ k�, subject to the usual Bunch-Davies initial
conditions [23]. The curvature power spectrum is then
given by

FIG. 16 (color online). Power law parameter posteriors from
the approximations used to run the MCMC chain (in blue/solid
curve), from an independent MCMC with no approximation
(in black/solid curve), from the approximate chain with impor-
tance sampling correction (in blue/dashed curve), and from the
approximate chain without lensing correction (in red/dashed
curve).

FIG. 17 (color online). The m18 posterior probability distribu-
tions from the approximations used to run the MCMC with all
data and I1;max ¼ 1=

ffiffiffi
2

p
(in black lines), from the approximate

chain with importance sampling correction (in blue/dashed
lines), and from the approximate chain without lensing correc-
tion (in red/dashed lines). m18 has the largest correction of the
PC amplitudes which is still� 1� and dominated by the lensing
correction.
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�2
R ¼ lim

x!0
x2

jyj2
f2

: (B3)

Therefore to test the GSR approximation we first need to
determine the function g that matches a given G0ðln�Þ.
Transforming variables to r ¼ f0=f, we obtain from
Eq. (B1)

r0 � 3r ¼ 3

2
G0; (B4)

which has the general solution

r ¼ 3

2
�3

Z d~�

~�
~��3G0 þ C�3: (B5)

Let us choose the integration constant

C ¼ � 3

2

Z �max

�min

d~�

~�
~��3G0; (B6)

and assume G0 vanishes outside this range. We then get

r ¼ � 3

2
�3

Z �max

�

d~�

~�
~��3G0; (B7)

for �> �min and

r ¼ � 3

2
�3

Z �max

�min

d~�

~�
~��3G0; (B8)

for �< �min. With this numerical solution we construct
g as

g ¼ 3

2
G0 þ r2: (B9)

This suffices to specify the source for y in Eq. (B2). Finally,
to get the curvature power spectrum we need f at some
�lim � k�1

max. However since this quantity is independent
of k, it is absorbed into our normalization definition. In
Fig. 18, we take parameters from the all-data chain and use
this technique to calculate the temperature power spectra
of matching inflationary models exactly. Even for the

model that saturates the I1;max ¼ 1=
ffiffiffi
2

p
prior, the WMAP

likelihood difference between the exact and GSR calcula-
tion is j2� lnLj ¼ 0:4.

Using the step model chain from Sec. IVB, we can
explore the accuracy of the GSR approximation as a func-
tion of I1;max independently of the prior taken in the all-data

analysis. Specifically, we take a model from the chain that
defines G0 and construct the matching full inflationary
model as above.

Recall that to construct G0, we solve for the background
evolution of � in the step potential of Eq. (20). This
specifies the m2�2 model source through Eq. (1), which
we callG0

m. To allow for a retilting of the spectrum, we add
an extra constant parameter �G0

p to the model source to form

the full source

G0ðln�; c; d; �G0
pÞ ¼ G0

mðln�; c; dÞ þ �G0
p: (B10)

The GSR approximation then tells us that the curvature
spectrum is given by

ln�2
R ¼ ln

�
As

�
k

kp

�� �G0
p
�
þ ImðkÞ � ImðkpÞ (B11)

with

ImðkÞ¼
Z �max

�min

d�

�
Wðk�ÞG0

m

þ ln

�
1þ1

2

�
�

2
�G0
pþ

Z �max

�min

d�

�
Xðk�ÞG0

m

�
2
�
: (B12)

In Fig. 19, we compare the impact of taking this power
spectrum to a full inflationary calculation with matching

FIG. 18 (color online). Fractional difference in temperature
power spectra between GSR and the exact inflationary solution
for the maximum likelihood model from the all-data analysis
(in black lines) as well as a model that saturates the prior
I1;max ¼ 1=

ffiffiffi
2

p
from the chain (in blue lines). For reference,

the ML model has I1;max ¼ 0:66.

FIG. 19 (color online). Likelihood difference between the
GSR solution and the full inflationary calculation of a series of
step potential models as a function of I1;max. Models were chosen

from the full GSR chain to be the maximum likelihood in a series
of bins in step amplitude c. The maximal error is small below
I1;max ¼ 1=

ffiffiffi
2

p
(blue dashed line), the prior in the fiducial all-sky

analysis.
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source (B10) on the WMAP likelihood. For the full calcu-
lation of Eq. (B3), we take �2

RðkpÞ ¼ As to define the

normalization f. Since I1;max increases monotonically

with c, we showmodels with maximum likelihood parame-
ters in uniform bins of c. Note that the maximal error
increases with I1;max but does not exceed order unity at

I1;max < 1=
ffiffiffi
2

p
.

For reference, to compute a matching 20 PC representa-
tion as in Fig. 15 we take the amplitudes of the principal
components from Eq. (14) and use Eq. (A1) to define

�G 0 ¼ �G0
p þ 1

ln�2 � ln�1

Z �2

�1

d�

�
G0

mðln�Þ: (B13)

and keep the normalization As fixed.
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