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We show a model of the slow expansion, in which the scale invariant spectrum of curvature perturbation

is adiabatically induced by its increasing mode, by applying a generalized Galileon field. In this model,

initially � � �1, which then rapidly increases, and during this period the Universe is slowly expanding.

There is no ghost instability, and the perturbation theory is healthy. When ���1, the slow expansion

phase ends, the available energy of field can be released and the Universe reheats. This scenario might be a

viable design of the early Universe.
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I. INTRODUCTION

The observations imply that the primordial curvature
perturbation is scale invariant. Thus, how to generate it is
still a significant issue, especially for a single field. The
curvature perturbation on a large scale consists of a con-
stant mode and a mode dependent on time [1]. When one is
dominated and scale invariant, the spectrum of curvature
perturbation will be scale invariant. When the scale factor
is rapidly changed while � is nearly constant, the constant
mode is responsible for that of inflation [2–5], while the
increasing mode is for the contraction with matter [6–8],
both are dual [6].

In principle, the increasing mode of metric perturbation,
which is scale invariant for � � 1 [9] or � � �1 [10],
might dominate the curvature perturbation. The constant
mode of metric perturbation is the same as that of the
constant mode of curvature perturbation. The duality of
scale invariant spectrum of metric perturbation has been
discussed in [11–13]. The evolution with � � 1 is slowly
contracting, which is that of an ekpyrotic universe [14],
while � � �1 gives the slow expansion [10], which has
been applied for the island universe [15]. In a certain sense,
it was first observed in Ref. [10] that the slow expansion
might adiabatically generate the scale invariant spectrum
of curvature perturbation, see [16] for that induced by the
entropy perturbation.

When the available energy of field is released, the slow
expansion phase ends and the Universe reheats. Thus, the
slow expansion might be a viable scenario of the early
Universe. In principle, when � is constant, whether the
increasing mode of the metric perturbation can be inherited
by the curvature perturbation depends on the physics
around the exiting [17]. However, when � is rapidly
changed, the thing is altered, see [18] for that of the slow
contraction. During the slow expansion, the scale invariant
curvature perturbation can be naturally induced by its
increasing mode [19], or its constant mode [20,21].

The perturbation mode can leave the Hubble horizon
during the slow expansion, if � < 0 [10,19], or a period
after it is required to extend the perturbation mode out of

the Hubble horizon [20]. Thus, in [10,19], the phantom was
applied for a phenomenological study. However, there is a
ghost instability. It was argued that the evolution of � < 0
emerges only for a period, and the phantom field might
only be a simulation of a full theory without the ghost
below a certain physical cutoff [22].
Recently, the cosmological application of a Galileon,

[23,24], or its nontrivial generalization [25–27], has gained
increased attention [28–32]. It has been found that for a
generalized Galileon, � < 0 can be implemented stably,
and there is no ghost instability. In this paper we will show
a model of the slow expansion given in [19], by applying a
generalized Galileon field. In this model, the perturbation
theory is healthy, and the scale invariant curvature pertur-
bation is given by itself increasing mode, which can be
consistent with the observations. As will be argued, in a
certain sense this validates the argument and calculations
in [10,19].
The models of the early Universe, built by applying a

generalized Galileon field, have been studied. In Ref. [26],
the inflation model is implemented by using a generalized
Galileon field. However, here we discuss an alternative to
inflation. There is a slightly similar scenario in [33].
However, in [33], the adiabatic perturbation is not scale
invariant; the scale invariant curvature perturbation is ob-
tained by the conversion of the perturbations of other light
scalar fields. Here, we will see how the adiabatic perturba-
tion is naturally scale invariant.

II. AS A GENERAL RESULT

We begin with a brief review of the slowly evolving
model in [19]. The quadratic action of the curvature per-
turbation R is

S2 �
Z

d�d3x
a2Q

c2s
ðR02 � c2sð@RÞ2Þ; (1)

which is actually general for a single field, like PðX;’Þ
[34], a generalized Galileon [25,26,35], and the modified
gravity [36,37]. Q and c2s are generally different for
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different models. However, Q> 0 and c2s > 0 should be
satisfied to avoid the ghost and gradient instabilities.

The equation of R is [38,39]

u00k þ
�
c2sk

2 � z00

z

�
uk ¼ 0; (2)

after defining uk � zRk, where
0 is the derivative for �,

z � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

PQ
q

=cs. Here we only conisder the case with

constant c2s . When k2 � z00=z, the solution of R given
by Eq. (2) is

R � C is constant mode (3)

or D
Z d�

z2
is changed mode; (4)

where the D mode is increasing or decaying dependent of
different evolutions.

The scale invariance of R requires z00
z � 2

ð����Þ2 , which
implies

z� a
ffiffiffiffi
Q

p
cs

� 1

�� � �
for constant mode (5)

or ð�� � �Þ2 for increasing mode (6)

has to be satisfied, where initially � � �1. In a certain
sense, both evolutions are dual [6]. The results will be
different if c2s is changed, however, which we will not be
involve here. In principle, both a and Q can be changed,
and together contribute to the change of z. However, only
one among them is changed, while another is hardly
changed could be interesting, e.g. the inflation, given
by (5), or the contraction dominated by the matter, given by
(6), in which a is rapidly changed, while Q is hardly
changed.

However, the case can also be the inverse. When Q is
rapidly changed while a is hardly changed, the scale
invariant spectrum of curvature perturbation can also be
induced by either by its constant mode [18–20], given by
(5), or its increasing mode [19], given by (6). Though both
cases give the scale invariant spectrum, both pictures
are distinct. In general, for the picture in [19], initially
j�j � 1, which is then rapidly decreasing, the slow evolu-
tion of the scale factor ends when j�j � 1. While for that in
[18,20,21], initially j�j & 1, which then is rapidly increas-
ing. In addition, for [18,20,21], during the slow evolution,
the perturbation mode is actually still inside the Hubble
horizon. Thus, a period after it is required to extend the
perturbation mode out of the Hubble horizon, while in [19],
the perturbation mode can naturally leave the Hubble
horizon during the slow evolution. There is also not the
problem pointed out in [40].

Here, we will discuss that in [19]. We have generally
Q ¼ � for a single field action PðX;’Þ [34], while the case
is slightly complex for a generalized Galileon [25,26].

However, as will be shown in the following section, we
actually have Q� j�j.
Thus, Q ¼ j�j will be set for general discussion in the

following. In principle, j�j is dependent on a. However, it
can be observed that a is nearly constant for j�j � 1. Thus,
for (6), we have

Q ¼ j�j ��4�ðt� � tÞ4; (7)

since �� t, where �� is the 1=t� dimension. The Hubble
parameter is given by

H � 1

�4�ðt� � tÞ5 : (8)

Thus, a is given by��������ln
�
a

a�

���������� 1

�4�ðt� � tÞ4 �
1

j�j : (9)

When initially ��ðt� � tÞ � 1, i.e.j�j � 1, the evolution
corresponds to the slow expansion for � � �1, or the slow
contraction for � � 1, since a=a� ’ 1. The slow evolution
ends when ��ðt� � tÞ ’ 1, at which j�j � 1.
When k2 ’ z00=z, the perturbation mode is leaving the

horizon, and hereafter it freezes out. This horizon could be
referred to as the R horizon

1=H freeze ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi�������� z

z00

��������
s

’ �� � �: (10)

Thus, the physical R horizon is a=H freeze ’ t� � t, while
the Hubble horizon is 1=H given by Eq. (8). Here, the
evolutions of the R horizon and the Hubble horizon are
different. While when a is rapidly changed and j�j is
unchanged, e.g. inflation, both evolutions are mostly the
same. The reason is that for inflation, z00=z� a00=a, thus

1=H freeze ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi�������� z

z00

��������
s

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� a

a00

��������
s

� 1=H ; (11)

while here a is constant and j�j is rapidly changed, we do
not have z00=z� a00=a.
When k2 � z00=z, i.e. the perturbation is deep inside the

R horizon, uk oscillates with a constant amplitude. The
quantization of uk is well defined for Q� j�j> 0, which
gives its initial value. The evolutions of a, 1=H, and
a=H freeze are plotted in Fig. 1 for the slow expansion. It
can be found that the perturbation mode first leaves the R
horizon, after which it is freezed out, but it is still inside the
Hubble horizon. However, since the Hubble horizon is
decreasing, after awhile the perturbation mode will inevi-
tably be extended outside it, and become the primordial
perturbation on the super Hubble scale.
When k2 � z00=z, the amplitude of the perturbation

spectrum is P 1=2
R ’

ffiffiffiffiffi
k3

p
j ukz j. Thus,

P R ’
�������� 1

a
ffiffiffiffiffiffiffiffiffiffi
csj�j

p ð�� � �ÞMP

��������2’ j�j
csM

2
P

H2; (12)
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where Q� j�j is applied. The perturbation is given by the
increasing mode (4), because a is hardly changed and j�j is
decreasing. When j�j � 1, the change of a begins to be-
come non-negligible. Though j�j is still decreasing, a is
increased exponentially. Thus, this mode will become the
decaying mode at a certain time tf �Oðt�Þ shortly after

j�j � 1. In principle, the spectrum of R should be calcu-
lated around tf. Thus,

P 1=2
R �

ffiffiffiffiffiffiffiffiffiffiffiffi
j�fj
csM

2
P

s
Hf: (13)

The Universe reheats around or after tf, and hereafter

the perturbation is dominated by its constant mode, until
it enters into the Hubble horizon during radiation or
matter domination. We assume that j�fj � 1. Thus,

�4�ðt� � tfÞ4 � 1. Eq. (13) becomes

P 1=2
R � ��

MP
ffiffiffiffiffi
cs

p ; (14)

which is a general result of the slow evolution in [19], i.e.
the evolution of j�j follows Eq. (7) and c2s is constant.

III. A GALILEON DESIGN OF SLOW EXPANSION

Here, we will show a detailed model of the slow expan-
sion given in [10,19]. While the scenario of the slow
contraction given in [19] is slightly alike with that in
[18], which might be studied in detail elsewhere.

A. The background

We consider a generalized Galileon as

L ��e4’=MX þ 1

M8
X3 � 1

M7
X2h’; (15)

where M is the energy scale. Here, the sign before

e4’=MX is negative. However, as will be shown this model
does not have ghost and gradient instabilities, since Q> 0
and c2s > 0. The evolution of background is determined by�

�e4’=M þ 15

M8
X2 þ 24

M7
H _’X

�
€’

þ 3

�
�e4’=M þ 3

M8
X2

�
H _’

þ
�
� 4

M
e4’=M þ 6 _H _’2

M7
þ 18H2 _’2

M7

�
X ¼ 0; (16)

3H2M2
P ¼ �e4’=MX þ 5

M8
X3 þ 6

M7
X _’3H: (17)

We require that initially � � �1, and behaves as Eq. (7).

This can be found by requiring e4’=MX ’ 5X3

M8 in Eq. (17).

This gives

e’=M ¼
�
5

4

�
1=4 1

Mðt� � tÞ : (18)

Thus,

_’ ¼ M
ðt� � tÞ : (19)

Thus,

H ’ _’5

M7
’ 1

M2M2
Pðt� � tÞ5 (20)

is induced. Thus, forMMP ��2�, Eq. (8) is obtained. This
gives Eq. (7), which is just the required evolution.
Equations (16) and (17) are numerically solved in Figs. 2

and 3. We can see that Eqs. (19) and (20) can be highly
consistent with accurate solutions for a long range of time.
A significant deviation only occurs around tf �Oðt�Þ. We

might think that the slow expanding phase ends when the
significant deviation appears, and the reheating begins.
However, it might be possible that the reheating of the
Universe begins some time after the significant deviation
occurs, since the perturbation generated during this period
only are the perturbation on a small scale, which does not
have to be scale invariant.
Equations (19) and (20) imply H _’M�X, H _’=M3�

e2’=M, and H _’ � €’, since

H � 1

ðt� � tÞ5 �
1

ðt� � tÞ (21)

for j�j � 1, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMP

p ðt� � tÞ � 1. Thus, Eq. (16) is
approximately

FIG. 1. The evolutions of a, the Hubble horizon, and the R
horizon during the slow expansion given by Eq. (7). a� ¼ 10
is set. During this phase, due to the rapid change of H and
Hfreeze, the perturbation mode is initially inside both horizons,
i.e. �� a � 1=Hfreeze � 1=H will naturally leave the R
horizon, i.e.�� a > 1=Hfreeze, and then the Hubble horizon,
i.e.�� a > 1=H.
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�
�e4’=M þ 15

M8
X2

�
€’� 4

M
e4’=MX ’ 0 (22)

for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMP

p ðt� � tÞ � 1. It can be found that Eq. (22) is
consistent with Eqs. (18) and (19). Thus, the equation of
the perturbation �’ of ’ is�

�e4’=M þ 15

4M8
_’4

�
� €’� 4

M
e4’=M _’� _’

þ 15

M8
_’3 €’� _’�

�
4

M
€’þ 8

M2
_’2

�
e4’=M�’ ’ 0:

When Eqs. (18) and (19) are considered, the solution is

�’� ðt� � tÞ6; is decaying mode (23)

or 1=ðt� � tÞ; is increasing mode: (24)

The decaying mode is negligible. The increasing mode

is dominated. Thus, �’� _’
M . Thus, for M�t � 1,

�’ � �’. Thus, if initially �’ � ’ is satisfied, it will
be valid all along. When the time arrives around tf,

Eq. (21) will be not right. Thus, Eq. (22) cannot be found.
This explains why there will be significant deviation for
Eq. (19) around tf.

There might be other fluids, However, their energies
generally do not increase, since the expansion is slow.

Thus for j�j � 1, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMP

p ðt� � tÞ � 1, the evolution
of background, given by Eqs. (19) and (20), is stable.

B. The curvature perturbation

R satisfies Eq. (2). We follow the definitions and cal-
culations of Refs. [26,35] Here, the generalized Galileon
action is (15). Thus, it is found that

F ¼ �e4’=M þ 3X2

M8
þ 8X

M7
ð €’þH _’Þ � 8X4

M14M2
P

’ 7

2M4ðt� � tÞ4 (25)

G ¼ �e4’=M þ 15X2

M8
þ 12H _’3

M7
þ 12X4

M14M2
P

’ 5

2M4ðt� � tÞ4 (26)

for Mðt� � tÞ � 1. In [26], the results are applied to that
of inflation, however, which are actually general for arbi-
trary evolution. Thus, Q is given by

Q¼ FX

M2
PðH� 2 _’X2

M7M2
P

Þ2
�M14M2

PF
_’8

’M2M2
Pðt��tÞ4; (27)

where Eqs. (19) and (20) are applied. Thus, Q� j�j> 0,
which is just required here, satisfies Eq. (7). There is not
the ghost instability. Here, the importance of X2h’ is
obvious, because if it disappears in (15), F is given by

F ¼ �e4’=M þ 3X2

M8
’ � 1

2M4ðt� � tÞ4 < 0; (28)

Q> 0 will hardly be obtained, which is consistent with
Q ¼ � < 0 for this case. This indicates that it is X2h’ that
alters the sign of Q, and leads Q� j�j> 0. The c2s is
given by

c2s ¼ F
G

� 1:4: (29)

Thus, c2s > 0 is constant, which is also just required. The
sign of c2s is determined by the signs ofF andG, which are
both are positive. Here, obviouslyF > 0 is also required to
assure c2s > 0. Thus, there are no ghost and gradient insta-
bilities, and the effective theory is healthy.

30 25 20 15 10 5

0.5

1.0

1.5

2.0

2.5

3.0

150 100 50

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 3 (color online). The evolutions of a and H with respect
to the time. The red line is that of H. The black line is that of a,
while the black dashed line is that of Eq. (9). The inset is that
around tf �Oðt�Þ.
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FIG. 2 (color online). The evolution of _’ with respect to the
time. The initial values of ’ and _’ are required to satisfy
Eqs. (18) and (19), respectively. The parameter M ¼ 0:01MP.
The dashed line is that of Eq. (19). The inset is that around
tf �Oðt�Þ.
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We plot the evolution of the amplitude of the curvature
perturbation in Fig. 4, and the spectrum of perturbation in
Fig. 5. We can see that the perturbation initially does not
increase, since it is inside the R horizon. The increase
begins after the perturbation mode leaves the R horizon.
The longer the wavelength of the perturbation, the earlier
the perturbation leaves the R horizon, and the earlier it
begins to increase. However, since the shorter the wave-
length of perturbation is, the larger its initial amplitude is,
all perturbation modes will eventually have the same
amplitude.

There is a cutoff kcutoff in Fig. 5, which is given by

kcutoff �H inifr; (30)

where H inifr is H freeze at the initial time, and can be
changed with the difference of the initial parameters in
the numerical calculation. The spectrum is scale invariant
for k > kcutoff . However, for k < kcutoff , since the corre-
sponding perturbation modes are outside theR horizon all
along, only their amplitudes are increasing but the shape of
the spectrum is not altered [41,42].
The spectrum of R is scale invariant. The amplitude of

spectrum is given by Eq. (14)

P 1=2
R �

ffiffiffiffiffiffiffiffiffiffiffiffi
M
csMP

s
; (31)

where �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMP

p
is applied. P 1=2

R � 10�5 requires

M� 10�10csMP. Thus, M� 109 GeV for
cs ’ 1. The only adjusted parameter in this model is fixed
by the observation. There is no other fine-tuning.

C. The reheating

When the slowly expanding phase ends, the energy of a
Galileon field is required to be released into the radiation,
and the Universe reheats. Hereafter, the evolution of the
hot ‘‘big bang’’ cosmology begins. We can notice that
before this, the perturbation mode has left the Hubble
horizon.
Here, in a certain sense, the reheating is like that of

inflation. The preheating theory after inflation has been
developed in [43,44]. In general, during the preheating
phase after inflation the energy of inflaton will be rapidly
released by the parametric resonance effects, due to the
coupling of inflaton with other fields. This issue has been
extensively studied, see [45–47] for reviews.
We will apply the instant preheating mechanism [48] for

the case given here. We consider the straight coupling of ’
with the � particle as

L � g2ð’� ’rehÞ2�2; (32)

where g is the coupling constant. The effective mass of
the � particle is M2

�eff � g2ð’� ’rehÞ2. When the ’ field

arrives at the region around ’reh, M
2
�eff &

_M�eff , the adia-

batic condition is broken, and the production of � particles
will be inevitable. This generally occurs in a region around
’reh, �’ & _’reh=g, in which _’reh is the velocity of ’
through ’reh. Thus, the production of � particles is instan-
taneous, �treh � 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
g _’reh

p
.

The number density n� of the � particle is

n� ¼ 1

2�2

Z
nkk

2dk ’ g3=2 _’3=2
reh

8�3
; (33)

where nk is the occupation number of the � particle.
Thus, �� ¼ n�M� � g2 _’2

reh, sinceM�eff � gð’� ’rehÞ �
g _’reh�treh. The energy drained by the production of
� particle is

k 0.0001

k 0.001
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10 8
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10 5

FIG. 4 (color online). The evolutions of the amplitude of
curvature perturbation for different k with respect to the time.
The green and black lines are that with different k. Here, the time
axis is rescaled as Mt for the convenience of numerical calcu-
lation, and t is that in Figs. 2 and 3, M ¼ 0:01.

t 3

t 10

t 100

1 10 5 5 10 51 10 4 5 10 4 0.001 0.005 0.010
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FIG. 5 (color online). The spectrum of curvature perturbation
at different times with respect to k. The black dashed line is the
initial spectrum. The short dashed, long dashed, and solid orange
lines are the spectra at different times, respectively. There is a
cutoff kcutoff � 5� 10�5, below which the spectrum is not scale
invariant, which is explained in the text.
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��

�’reh
� g2

8�3
M6M2

Pðt� � trehÞ8; (34)

where Eqs. (19) and (20) are applied, and �’reh is the

energy density of ’ around treh. We assume tf � treh for

simplicity, i.e. the reheating occurs at the time when the
slow expansion ends. Thus, M2M2

Pðt� � trehÞ4 � 1. This
implies

��

�’reh
� g2M2

8�3M2
P

: (35)

We generally require M � 1 and g < 1. Thus,
��=�’reh � 1, which indicates that for such a single pre-

heating, the energy of ’ can hardly be released completely,
and the Universe is still dominated by �’, which will

continue all along, since the energy density of ’ is increas-
ing with the expansion of the Universe, while that of the
� particle is decreasing.

However, there might be N couplings, one of which is
like that in (32). We can find, after doing similar calcula-
tions, that when

N >
M2

P

g2M2
; (36)

the release of the energy of ’ will be complete. The sketch
of this reheating course is plotted in the upper panel
in Fig. 6. We assume that the � particle produced is
rapidly transferred into the radiation. In this case, the
reheating temperature Tr is approximately determined by
�’reh � T4

r . Thus, we have

Tr �
�

_’10

M14M2
P

�
1=4 �M1=4M3=4

P ; (37)

where M2M2
Pðt� � trehÞ4 � 1 is applied again. Thus, if

M� 10�10MP, we have Tr � 1015 GeV.
Here, N � 1 is feasible; however, it might be uncom-

fortable. N � 1 is required because the energy of ’ has

to be released completely one time, or since the energy
density of ’ is increasing, the Universe will dominated by
’ all along. However, we also could consider another
channel of the reheating, like that in phantom inflation
[59]. The energy of ’ is first shifted to the kinetic energy
of a normal field, e.g.c , and then the energy of c is
released by the instant preheating. The sketch of this
reheating course is plotted in the lower panel in Fig. 6.
Here, the energy of c is not required to be released
completely, since �c � 1=a6 is decreasing faster than

that of the radiation, the Universe will be dominated by
that of early or late radiation.
We can implement it by considering the potential of ’,

illustrated in Fig. 7. We require that it is only significant
around or after j�j � 1, and is negligible j�j � 1. Then we
introduce a waterfall field c , coupled to ’. The effective
mass of c is initially positive and becomes negative
around j�j � 1. Thus, c will roll down along its potential.
Almost all the energy of ’ will be shifted to
�c � _c 2. This energy will be expected to be released by

the instant reheating. Thus, there could be a suitable re-
heating after the slow expansion ends, after which the
evolution of hot ‘‘big bang’’ cosmology begins.

IV. DISCUSSION

When initially � � �1 and is rapidly increasing, the
Universe is slowly expanding. The spectrum of curvature
perturbation generated during such a phase of slow expan-
sion can be scale invariant. This provides a mechanism by
which an alternative scenario of the early Universe can be
imagined. Here, we show a model of such a scenario by
applying an effective action of a generalized Galileon.
In principle, � < 0 implies ghost instability. However, in

this model, because of the introduction of a Galileon field,
there is no ghost instability, and the perturbation theory is
healthy. In Refs. [10,19], a phantom was applied for im-
plementing slow expansion. In the calculations of pertur-
bation, for consistency, j�j is used, though the initial value

ρ

t

ρψ

ρradiation

ρ
radiationρ

ϕ

ϕ
ρ

tf treh trdomi

expansion
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FIG. 6 (color online). The sketch of the evolution of the energy
density � for different reheating courses discussed here.
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FIG. 7 (color online). The figure of the effective potential for
the exiting from the slow expansion. The black solid line is the
motive trajectory of the field in ð’; c Þ space.
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of perturbation is still pathologically defined. However, in
the model given here, it can be found that actuallyQ ’ j�j.
This in a certain sense validates the argument and calcu-
lations used in [10,19], i.e. the phantom field might be a
simple simulation of a full theory without the ghost below a
certain physical cutoff, which can give the same results as
that of a full theory, when the replacement of � with j�j is
done.

When ���1, the slow expansion ends. The exiting to a
hot Universe is only a simple reheating, since the Universe
expands all along. Thus, there is no problem with how the
bouncing is implemented in bouncing cosmologies
[14,49,50]. We have discussed possible implementations
of reheating, and found that the available energy of a
Galileon field can completely released, and the Universe
can reheat to a suitable temperature. Thus, the model of the
slow expansion given here might be a viable design of the
early Universe.

The material compares of model with the observations is
certainly interesting, which will place rigid constraints on
the model. The results obtained will be expected to either
improve or rule out this model. We will investigate it
elsewhere. However, it should be pointed that we only
bring one of all possible implementations of the slow
expansion. In principle, there might be other effective
actions of a generalized Galileon, or modified gravity,
which could give the same evolution of background.
Thus, for the slow expansion, it might also be significant
to find alternative implementations to the model given

here, which will help to improve the flexibility of the
slow expansion to the observations.
Here, the scale factor is asymptotic to a constant value in

the infinite past, and there is no singularity point. Thus, in a
certain sense, the slow expansion scenario offers a solution
to the cosmological singularity problem. However, it can
also be imagined that after the available energy of the field
is released, it might be placed again in the bottom of its
effective potential, and after the Universe undergoes the
radiation and matter periods, the field might dominate
again and roll again with increasing energy. This models
an eternally expanding cyclic universe [51–53], i.e. H
oscillates periodically, while a expands all along. The
implementation of this cyclic universe might be interesting
for refining the model given here.
Here, the constant cs is set. However, its change will

obviously enlarge the space of solutions of the scale in-
variance of curvature perturbation [54–58]. In a certain
sense all possibilities of the changes of a, Q, and c2s might
be interesting to explore further.
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