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We consider a five-dimensional action which is composed of a gravitational sector and a sector of

matter, where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-

Hilbert action. In the event that the matter action is the action for a perfect fluid, it is shown that the

standard five-dimensional Friedmann-Robertson-Walker (FRW) equations and some of their solutions can

be obtained, in a certain limit, from the so-called Chern-Simons-FRW field equations, which are the

cosmological field equations corresponding to a Chern-Simons gravity theory. It is also shown, using a

compactification procedure known as dynamic compactification, that the cosmological field equations

obtained from the Chern-Simons gravity theory lead, in a certain limit, to the usual four-dimensional FRW

equations.
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I. INTRODUCTION

Three of the four fundamental forces of nature are con-
sistently described by Yang-Mills (YM) quantum theories.
Gravity, the fourth fundamental interaction, resists quanti-
zation in spite of general relativity (GR) and YM theories
having a similar geometrical foundation. There exists,
however, a very important difference between YM theory
and GR (for a thorough discussion, see, e.g., Ref. [1]).

YM theories rely heavily on the existence of the
‘‘stage’’—the fixed, nondynamical, background metric
structure with which the space-time manifold M is as-
sumed to be endowed.

In GR the space-time is a dynamical object which
has independent degrees of freedom, and is governed by
dynamical equations, namely, the Einstein field equa-
tions. This means that in GR the geometry is dynamically
determined. Therefore, the construction of a gauge theory
of gravity requires an action that does not consider a
fixed space-time background. An action for gravity ful-
filling these conditions, albeit only in odd-dimensional
space-time, d ¼ 2nþ 1, was proposed long ago by
Chamseddine [2–4]. In the first-order formalism, where
the independent fields are the vielbein ea and the spin
connection !ab, the Lagrangian can be written as

Lð2nþ1Þ ¼ �"a1���a2nþ1

Xn
k¼0

ck

‘2ðn�kÞþ1

� Ra1a2 � � �Ra2k�1a2kea2kþ1 � � � ea2nþ1 ; (1)

where � and ck are dimensionless constants and ‘ is a
length parameter. As it stands, the Lagrangian (1) is
invariant under the local Lorentz transformations �ea ¼
�a

be
b, �!ab ¼ �D!�

ab, where �ab ¼ ��ba are the

real, local, infinitesimal parameters that define the
transformation and D! stands for the Lorentz covariant
derivative. When the ck constants are chosen as

ck ¼ 1

2ðn� kÞ þ 1

n
k

� �
;

the Lagrangian (1) can be regarded as the Chern-Simons
form for the anti–de Sitter (AdS) algebra, and its invariance
is enlarged accordingly to include AdS ‘‘boosts.’’
If Chern-Simons theories are the appropriate gauge

theories to provide a framework for the gravitational inter-
action, then these theories must satisfy the correspondence
principle; namely, they must be related to general relativ-
ity. Interesting research in this direction has recently been
carried out in Refs. [5–7]. In the first two references it was
found that the modification of Chern-Simons theory for
AdS gravity according to the expansion method of Ref. [8]
is not sufficient to produce a direct link with general
relativity due to the presence of higher order curvature
terms in the action.
However, in Ref. [7] it was shown that the standard, five-

dimensional general relativity (without a cosmological
constant) can be obtained from Chern-Simons gravity
theory for a certain Lie algebra B. The Chern-Simons
Lagrangian is built from a B-valued, one-form gauge
connection A that depends on a scale parameter l which
can be interpreted as a coupling constant that characterizes
different regimes within the theory. The B algebra, on the
other hand, is obtained from the AdS algebra and a par-
ticular semigroup S by means of the S-expansion proce-
dure introduced in Refs. [9,10]. The field content induced
byB includes the vielbein ea, the spin connection!ab, and
two extra bosonic fields ha and kab. In Ref. [7] it was then
shown that it is possible to recover odd-dimensional
Einstein gravity theory from a Chern-Simons gravity the-
ory in the limit where the coupling constant l tends to zero
while keeping the effective Newton’s constant fixed.
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It is the purpose of this work to find some solutions for
flat cosmological field equations, which were obtained
from an action for Chern-Simons gravity theory, studied
in Ref. [7]. Using a compactification procedure, known as
dynamic compactification, we show that the cosmological
field equations obtained from Chern-Simons gravity theory
lead, in a certain limit, to the usual four-dimensional
Friedmann-Robertson-Walker (FRW) equations.

This paper is organized as follows: In Sec. II we briefly
review how to recover the five-dimensional general rela-
tivity from Chern-Simons gravity. In Sec. III we obtain the
field equations for the Lagrangian L ¼ Lg þ LM, where

Lg is the Chern-Simons gravity Lagrangian and LM is the

corresponding matter Lagrangian. In the case where LM is
a perfect fluid, we obtain the so-called Chern-Simons
Friedmann-Robertson-Walker field equations in Sec. IV,
together with some of their solutions, which lead, in a
certain limit, to the usual five-dimensional FRWequations.
In Sec. V we consider a cosmological model based on the
Kaluza-Klein theory: We study a metric in which the scale
factor of the compact space evolves as an inverse power of
the radius of the observable Universe. A summary and
three appendixes conclude this work.

II. GENERAL RELATIVITY FROM
CHERN-SIMONS GRAVITY

In this section we briefly review how to recover the five-
dimensional general relativity from Chern-Simons gravity.
The Lagrangian for five-dimensional Chern-Simons AdS
gravity can be written as

Lð5Þ
AdS ¼ �

�
1

5l5
�a1���a5e

a1 � � � ea5

þ 2

3l3
�a1���a5R

a1a2ea3 � � � ea5

þ 1

l
�a1���a5R

a1a2Ra3a4ea5
�
; (2)

where ea corresponds to the one-form vielbein, and
Rab ¼ d!ab þ!a

c!
cb to the Riemann curvature in the

first-order formalism.
The Lagrangian (2) is off-shell invariant under the

AdS-Lie algebra SO(4,2), whose generators ~Jab of
Lorentz transformations and ~Pa of AdS boosts satisfy the
commutation relationships

½~Jab; ~Jcd� ¼ �cb
~Jad � �ca

~Jbd þ �db
~Jca � �da

~Jcb; (3)

½~Jab; ~Pc� ¼ �cb
~Pa � �ca

~Pb; (4)

½ ~Pa; ~Pb� ¼ ~Jab: (5)

In order to interpret the gauge field associated with a
translational generator ~Pa as the vielbein, one is forced to
introduce a length scale l in the theory (for details see [7]).
Therefore, following Refs. [2,3], the one-form gauge field
A of the Chern-Simons theory is given, in this case, by

A ¼ 1

l
ea ~Pa þ 1

2
!ab~Jab: (6)

It is important to notice that once the length scale l is
brought into the Chern-Simons theory, the Lagrangian
splits into several sectors, each one of them proportional
to a different power of l, as we can see directly in Eq. (1)
with

ck ¼ 1

2ðn� kÞ þ 1

n
k

� �
:

From Lagrangian (2) it is apparent that neither the
l ! 1 nor the l ! 0 limit yields the Einstein-Hilbert
term �a1���a5R

a1a2ea3 � � � ea5 alone. Rescaling � properly,

those limits will lead either to the Gauss-Bonnet term
(Poincaré Chern-Simons gravity) or to the cosmological
constant term by itself, respectively.
We arrive at the Lagrangian (2) as the Chern-Simons

form for the AdS algebra in five dimensions. This algebra
choice is crucial, since it permits the interpretation of the
gauge fields ea and !ab as the fünfbein and the spin
connection, respectively. It is, however, not the only pos-
sible choice: As it explicitly shown in [7], there exist other
Lie algebras that also allow for a similar identification and
lead to a Chern-Simons Lagrangian that touches upon the
Einstein-Hilbert term in a certain limit.
Following the definitions of Ref. [9], let us consider the

S expansion of the Lie algebra SO(4,2) using as a semi-

group Sð3ÞE . After extracting a resonant subalgebra and
performing its 0S reduction, one finds a new Lie algebra,
call it B, whose generators fJab; Pa; Zab; Zag satisfy the
commutation relationships

½Jab; Jcd� ¼ �cbJad � �caJbd þ �dbJca � �daJcb;

½Jab; Pc� ¼ �cbPa � �caPb;

½Pa; Pb� ¼ Zab;

½Jab; Zcd� ¼ �cbZad � �caZbd þ �dbZca � �daZcb;

½Jab; Zc� ¼ �cbZa � �caZb;

½Zab; Pc� ¼ �cbZa � �caZb;

½Pa; Zb� ¼ 0;

½Zab; Zc� ¼ 0;

½Zab; Zcd� ¼ 0;

½Za; Zb� ¼ 0;

(7)

where these new generators can be written as Jab ¼
�0 � ~Jab, Zab ¼ �2 � ~Jab, Pa ¼ �1 � ~Pa, Za ¼ �3 � ~Pa.
Here ~Jab and ~Pa correspond to the original generators of

SO(4,2), and the �� belong to a discrete, Abelian semi-
group. The semigroup elements f�0; �1; �2; �3; �4g are not
real numbers, and they are dimensionless. In this particular
case, they obey the multiplication law given by ���� ¼
��þ� when �þ � � 4, and ���� ¼ �4 when �þ �> 4.
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In order to write down a Chern-Simons Lagrangian
for the B algebra, we start from the one-form gauge
connection

A ¼ 1

2
!abJab þ 1

l
eaPa þ 1

2
kabZab þ 1

l
haZa (8)

and the two-form curvature (for details see [7])

F ¼ 1

2
RabJab þ 1

l
TaPa þ 1

2

�
D!k

ab þ 1

l2
eaeb

�
Zab

þ 1

l
ðD!h

a þ kabe
bÞZa; (9)

where D is the covariant derivative with respect to the
Lorentz piece of the connection, and Ta ¼ Dea.

Using the extended Cartan homotopy formula as in
Ref. [11], and integrating by parts, it is possible to write

down the Chern-Simons Lagrangian in five dimensions for
the B algebra as

Lð5Þ
ChS ¼ �1l

2"abcdeR
abRcdee þ �3"abcdeð23Rabecedee

þ 2l2kabRcdTe þ l2RabRcdheÞ; (10)

where we can see that (i) if one identifies the field ea with
the vielbein, the system consists of the Einstein-Hilbert
action plus nonminimally coupled matter fields given
by ha and kab, and (ii) it is possible to recover the odd-
dimensional Einstein gravity theory from a Chern-Simons
gravity theory in the limit where the coupling constant l
equals zero while keeping the effective Newton’s constant
fixed.
The variation of the Lagrangian (10), modulo boundary

terms, is given by

�Lð5Þ
ChS ¼ "abcdeð2�3R

abeced þ �1l
2RabRcd þ 2�3l

2D!k
abRcdÞ�ee þ �3l

2"abcdeR
abRcd�he þ 2�3l

2"abcdeR
cdTe�kab

þ 2"abcdeð�1l
2RcdTe þ �3l

2D!k
abTe þ �3e

cedTe þ �3l
2RcdD!h

e þ �3l
2Rcdkefe

fÞ�!ab: (11)

Therefore, in the limit where the coupling constant l
equals zero, we obtain

�Lð5Þ
ChS ¼ 2�3"abcdeR

abeced þ 2�3"abcdee
cedTe�!ab;

(12)

i.e., the limit where l ! 0 leads us to just the Einstein-
Hilbert dynamics in the vacuum. It is interesting to observe
that the argument given here is not just a five-dimensional
accident. In every odd dimension, it is possible to perform
the S expansion in the way sketched here, take the vanish-
ing coupling constant limit l ! 0, and recover Einstein-
Hilbert gravity [7].

III. EINSTEIN-CHERN-SIMONS FIELD
EQUATIONS FOR THE FRW METRIC

In this section we consider the field equations for the
Lagrangian L ¼ Lg þ LM, where Lg is the Chern-Simons

gravity Lagrangian Lð5Þ
ChS and LM is the corresponding

matter Lagrangian. If Ta ¼ 0 and kab ¼ 0, Eq. (11) takes
the form

�Lð5Þ
ChS ¼ "abcdeð2�3R

abeced þ �1l
2RabRcdÞ�ee

þ �3l
2"abcdeR

abRcd�he

þ 2"abcde�!
ab�3l

2RcdDhe: (13)

In Eq. (13) the fields ea, !ab (through Rab), and ha are
present. If we wish to find a FRW-type cosmological
solution, then we must demand that the three fields satisfy
the cosmological principle.

Five-dimensional FRW metric

We consider first the fields ea and !ab (through Rab). In
five dimensions, the FRW metric is given by [12–14]

ds2 ¼ �dt2 þ a2ðtÞfd�2 þ r2ð�Þ½d	22 þ sen2	2d	
2
3

þ sen2	2sen
2	3d	

2
4�g

¼ �abe
aeb�ab ¼ diagð�1;þ1;þ1;þ1;þ1Þ: (14)

Introducing an orthonormal basis, we have

e0 ¼ dt; e1 ¼ aðtÞd�; e2 ¼ aðtÞrð�Þd	2;
e3 ¼ aðtÞrð�Þsen	2d	3;
e4 ¼ aðtÞrð�Þsen	2sen	3d	4:

(15)

Taking the exterior derivatives, we get

de0 ¼ 0; de1 ¼ _a

a
e0e1; de2 ¼ _a

a
e0e2 þ r0

ar
e1e2;

de3 ¼ _a

a
e0e3 þ r0

ar
e1e3 þ 1

ar
cot	2e

2e3;

de4 ¼ _a

a
e0e4 þ r0

ar
e1e4 þ 1

ar
cot	2e

2e4

þ 1

ar

1

sen	2
cot	3e

3e4; (16)

where a prime denotes a derivative with respect to r. The
next step is to use Cartan’s first structural equation

Ta ¼ dea þ!a
be

b ¼ 0

and the antisymmetry of the connection forms,
!ab ¼ �!ba, to find the nonzero connection forms. The
calculations give
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!0
p ¼ _a

a
ep ¼ !p

0; p ¼ 1; 2; 3; 4;

!1
p ¼ r0

ar
ep ¼ �!p

1 ; p ¼ 2; 3; 4;

!2
p ¼ � 1

ar
cot	2e

p ¼ �!p
2; p ¼ 3; 4;

!3
4 ¼ � 1

ar

1

sen	2
cot	3e

4 ¼ �!4
3:

(17)

From Cartan’s second structural equation

Ra
b ¼ d!a

b þ!a
c!

c
b

we can calculate the curvature matrix. The nonzero com-
ponents are

R0
p¼ €a

a
e0ep¼Rp

0; p¼1;2;3;4;

R1
p¼

��
_a

a

�
2� r00

a2r

�
e1ep¼�Rp

1; p¼2;3;4;

Rq
p¼

��
_a

a

�
2þ 1

ðarÞ2�
�
r0

ar

�
2
�
eqep¼�Rp

q; q¼2;3;

p¼qþ1;4: (18)

From the assumption of isotropy, the spatial directions
should be equal for the orthonormal frame. Hence, the
components of the curvature matrix should be equal for
the four directions. This means that we must have�
_a

a

�
2� r00

a2r
¼
�
_a

a

�
2þ 1

ðarÞ2�
�
r0

ar

�
2
; r00 �1

r
r02þ1

r
¼ 0:

(19)

Integrating, one finds

r0 � dr

d�
¼ ð1� Kr2Þ1=2: (20)

Introducing (20) in (19) we have

r00 ¼ �kr (21)

with k ¼ þ1, 0, �1. Therefore

R0p ¼
�
€a

a

�
e0ep; p ¼ 1; 2; 3; 4; (22)

Rqp ¼
�
_a2 þ k

a2

�
eqep; q ¼ 1;2; 3; p¼ qþ 1;4: (23)

The field ha

We consider now the field ha. Writing the field ha in the
vielbein basis, we have

ha ¼ ha
e

 ¼ �a
h
�e

�: (24)

Using Eq. 13.4.6 of Ref. [15], we have

h0 ¼ fðtÞe0; hp ¼ gðtÞep; p ¼ 1; . . . ; 4: (25)

From (17) and (25) we can see that

Dh0 ¼ 0; Dhp ¼
�
ðg� fÞ _a

a
þ _g

�
e0ep; (26)

where a, f, and g are functions dependent on time t. The
next step is to introduce (22), (23), and (26) into

�L¼ �LChSþ�LM;

�L¼ �LChSþ�LM

�ea
�eaþ�LM

�ha
�ha þ �LM

�!ab
�!ab;

(27)

where �Lð5Þ
ChS is given by (13), and where �LM

�ea is associated

with the energy-momentum tensor T
�,
�LM

�ha is associated

with the energy-momentum tensor for the field ha, which

we denote as TðhÞ

�, and

�LM

�!ab is associated with the spin

tensor S
��.

The calculations give

48�3

�
_a2 þ k

a2

�
þ 24�1l

2

�
_a2 þ k

a2

�
2 ¼ �1T00; (28)

� 24�3

�
€a

a
þ

�
_a2 þ k

a2

��
� 24�1l

2 €a

a

�
_a2 þ k

a2

�
¼ �1T11;

(29)

24�3l
2

�
_a2 þ k

a2

�
2 ¼ �2T

ðhÞ
00 ; (30)

� 24�3l
2 €a

a

�
_a2 þ k

a2

�
¼ �2T

ðhÞ
11 ; (31)

24�3l
2

�
_a2 þ k

a2

��
ðg� fÞ _a

a
þ _g

�
¼ 0; (32)

where in the last equation we took into account the fact that
Ta ¼ 0, which means that the spin tensor is zero.

IV. DYNAMICS OF HOMOGENEOUS
AND ISOTROPIC COSMOLOGIES

The cosmological principles state that our Universe is
homogeneous and isotropic. To solve the Einstein-Chern-
Simons field equations under this assumption, we need
an energy-momentum tensor which is also homogeneous
and isotropic. The most general forms of the energy-

momentum tensors, T
� and TðhÞ

�, compatible with homo-

geneity and isotropy are given by [12]

T
� ¼ ð�þ PÞu
u� þ P�
�; (33)

TðhÞ

� ¼ ð�ðhÞ þ PðhÞÞu
u� þ PðhÞ�
�; (34)

where � is the proper energy (or mass) density of the usual

fluid and P its pressure. �ðhÞ and PðhÞ are the energy density
and pressure for the perfect fluid associated with the field
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ha. Homogeneity implies that the pressure and density
should be position independent on the spatial hypersurfa-
ces. Hence, they can only be time dependent. If the vector
u
, which is the five-velocity of the fluid, has a spatial

component, then the fluid has a spatial direction compared
to the hypersurfaces. This would violate our assumption of
spatial isotropy. Thus the vector u
 has only a time com-

ponent; the fluid flow is orthogonal to the hypersurfaces:
u
 ¼ ð1; 0; 0; 0; 0Þ. The energy-momentum tensor is there-

fore diagonal, i.e.,

T00 ¼ �; T11 ¼ T22 ¼ T33 ¼ T44 ¼ P;

TðhÞ
00 ¼ �ðhÞ; TðhÞ

11 ¼ TðhÞ
22 ¼ TðhÞ

33 ¼ TðhÞ
44 ¼ PðhÞ:

(35)

Introducing (35) in (28)–(32), we have

6

�
_a2 þ k

a2

�
þ �l2

�
_a2 þ k

a2

�
2 ¼ �1�; (36)

3

�
€a

a
þ

�
_a2 þ k

a2

��
þ �l2

€a

a

�
_a2 þ k

a2

�
¼ ��1P; (37)

l2
�
_a2 þ k

a2

�
2 ¼ �2�

ðhÞ; (38)

l2
€a

a

�
_a2 þ k

a2

�
¼ ��2P

ðhÞ; (39)

ðg� fÞ _a

a
þ _g ¼ 0; (40)

where

� ¼ 3�1

�3

; �1 ¼ �1

8�3

; �2 ¼ �2

24�3

: (41)

We note that �1 is the gravitational constant which is
positive; � and �2 are constants whose values should be
determined. We should note that Eqs. (36) and (37) have
been found in the study of the FRW equations for an
Einstein plus Gauss-Bonnet action in 4þ d dimensions
(see [16]). From Eqs. (36)–(40) we notice the following:

(a) If l ¼ 0 and ha ¼ 0 we have that f ¼ g ¼ �ðhÞ ¼
PðhÞ ¼ 0. Thus Eqs. (36)–(40) take the form

6

�
_a2 þ k

a2

�
¼ �1�; (42)

3

�
€a

a
þ

�
_a2 þ k

a2

��
¼ ��1P; (43)

i.e., in the limit l ¼ 0 we recover the usual five-
dimensional FRW equations.

(b) We need an equation relating the energy,
the pressure, and the scale factor. The energy-
momentum tensor has to be divergence-free, which
signals the conservation of energy. This follows

automatically from Eqs. (36) and (37) from which
we find the following relation:

_�þ 4
_a

a
ð�þ PÞ ¼ 0: (44)

Analogously, from Eqs. (38) and (39) we find the following
conservation equation:

_� ðhÞ þ 4
_a3

að _a2 þ kÞ�
ðhÞ þ 4

_a

a
PðhÞ ¼ 0: (45)

A. Solutions of FRW-ChS field equations: Case k¼ 0

The observational evidence seems to indicate that the
Universe could be flat (see [17,18]). Now try to solve
Eqs. (36)–(40) for the case k ¼ 0. If k ¼ 0 Eqs. (36)–(40)
take the form

6
_a2

a2
þ �l2

_a4

a4
¼ �1�; (46)

_�þ 4
_a

a
ð�þ PÞ ¼ 0; (47)

l2
_a4

a4
¼ �2�

ðhÞ; (48)

_� ðhÞ þ 4
_a

a
ð�ðhÞ þ PðhÞÞ ¼ 0; (49)

ðg� fÞ _a

a
þ _g ¼ 0: (50)

It seems that the most convenient way to approach the
solution of Eqs. (36)–(40) is as follows: First solve the
system of Eqs. (36) and (37), in the same way as is done in
general relativity, and then replace aðtÞ in (38)–(40).
Following the same procedure used in general relativity,
we further assume that the perfect fluid obeys the baro-
tropic equation of state,

P ¼ !�; (51)

where! can be a time-dependent function or a constant. If
! is a constant then, introducing (51) in (47), we obtain

� ¼ �0

�
a0
a

�
4ð!þ1Þ

; (52)

where the subscript zero means evaluation at the present
time t0.
Using Eqs. (46), (47), and (51) we obtain

ð1þ!Þ
�
6þ �l2

_a2

a2

�
_a2

a2
¼ �

�
3þ �l2

_a2

a2

�
d

dt

�
_a

a

�
: (53)

This equation gives the behavior of the scale factor
a ¼ aðtÞ and is to be solved for the cases when the
parameter is uniquely ! ¼ �1 and the general case
when ! � �1.
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1. Solutions for !¼�1

If ! ¼ �1, Eq. (53) reduces to�
3þ �l2

_a2

a2

�
d

dt

�
_a

a

�
¼ 0: (54)

To find a solution to (54) there are two possibilities:

d

dt

�
_a

a

�
¼ 0; (55)

�
3þ �l2

_a2

a2

�
¼ 0: (56)

It is straightforward to see that both equations lead to
similar results. The solution of (56) is a particular case of
the solution (55). The solution of (55) is given by

aðtÞ ¼ CeH0t (57)

which is a de Sitter-type solution, whereC is a constant and
H0 ¼ H ¼ _a

a is the Hubble constant. Rewriting Eq. (46) as

�l2
�
_a2

a2

�
2 þ 6

_a2

a2
� �1� ¼ 0 (58)

we see that it is a quadratic equation in _a2=a2 whose
solution yields a value for the Hubble parameter of the
form

_a2

a2
¼ � 3

�l2

�
1�

�
1� l2

�

9
�1�

�
1=2

�
: (59)

If we consider the case of a small l2 limit, we can expand
the root to first order in l2. In the expansion we can see that
it is necessary to take the negative sign to recover the FRW
equations when l2 ¼ 0. Thus in the first-order approxima-
tion, Eq. (59) takes the form

H2 ¼ _a2

a2
	 ��1

6

�
1� l2

�

36
�1�

�
(60)

or

H2
0 	

�0�1

6

�
1� l2

�

36
�1�0

�
; (61)

where in the l2 ¼ 0 limit, we get the same result that we
obtain using the Einstein equations in five dimensions.

2. Solutions for ! � �1

We consider now the behavior of the scale factor for the
general case when ! is left as a free parameter. By inte-
grating Eq. (53) with ! � �1 we obtain

_a

a
¼ 1


tan

�
1



�
a

_a
� 2ð1þ!Þt

��
; (62)

where we have defined  ¼
ffiffiffiffiffiffi
�l2

6

q
. In the small l2 limit, we

can expand Eq. (62). In fact, taking the arctan of each side
of (62) we have

arctan

�


_a

a

�
¼ 1



�
a

_a
� 2ð1þ!Þt

�
(63)

and, carrying out the expansion to first order in , we
obtain

2 _a2

a2
þ 2ð1þ!Þ _a

a
t� 1 	 0: (64)

Solving for the Hubble parameter, we obtain

_a

a
	 �ð1þ!Þ

2
t

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�


ð1þ!Þt
�
2

s �
: (65)

Again, expanding the square root in (65) to first order in l2,
and considering the negative sign to recover the five-
dimensional FRW equations, we have

_a

a
	 �ð1þ!Þ

2
t

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�


ð1þ!Þt
�
2

s �
: (66)

Integrating (66), we obtain a value for the scale factor of
the form

aðtÞ 	 Ct1=2ð1þ!Þ
�
1þ �l2

12

�
1

2ð1þ!Þ
�
3 1

t2

�
; (67)

where

C ¼ a0

�
½2ð1þ!Þ�2 �1�0

6

�
1=4ð1þ!Þ

:

From Eq. (67) we notice the following:
(i) The cases of greatest physical interest are those

with ! ¼ 0 and ! ¼ 1=4, which are in the category
! � �1. These cases are usually called the eras of
matter and radiation, respectively.

(ii) For small values of l2 and for values of t2 that are not
small, we have that the term on the right in (67) is
negligible compared to the first term, and we re-
cover the usual solutions to the five-dimensional
FRW equations.

(iii) In the case that t2 is of the order of l2, we have that
the term on the right in (67) is not negligible
compared to the first term, and therefore, it be-
comes important in the description of evolution:
This is a notable difference from the results ob-
tained from general relativity. If the term on the
right in (67) takes a value greater than zero, then it
is possible that this term is important for the de-
scription of an inflationary period in the early
stages of the Universe.

(iv) We should note that this solution corresponds to a
valid theory in five dimensions which describes the
evolution of five-dimensional space-time.

3. Solution without matter, �¼ p¼ 0

We consider the case � ¼ p ¼ 0. This case is described
by the equation of state p ¼ !�. If � ¼ 0 and assuming
that _a=a � 0, we have that Eq. (46) takes the form
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6
_a2

a2
þ �l2

_a4

a4
¼ 0 ) _a2

a2
¼ � 6

�l2
: (68)

Since _a2

a2
> 0, we have that � must be less than zero.

Writing � ¼ �j�j, Eq. (68) takes the form

H2
0 ¼

_a2

a2
¼ 6

j�jl2 (69)

whose solution is given by

aðtÞ ¼ CeH0t (70)

which corresponds to a model of de Sitter type. In the
context of general relativity there is no similar solution for
the case � ¼ p ¼ 0.

V. FOUR-DIMENSIONAL FRW EQUATIONS
OF STANDARD COSMOLOGY FROM

FIVE-DIMENSIONAL FRW-CHS
EQUATIONS: CASE k¼ 0

So far we have found some solutions for flat cosmologi-
cal field equations, which were obtained from a Lagrangian
for a Chern-Simons gravity theory, studied in Ref. [7]. One
problem with these solutions is that they are valid only in a
five-dimensional space. In this section we consider a
space-time metric which contains as a subspace the usual
FRW metric in four dimensions. As in the previous sec-
tions we study the case k ¼ 0. The metric will be written in
a convenient way so that it can achieve the compactness of
the fifth dimension. Following Refs. [16,19] we consider
the following five-dimensional metric:

ds2 ¼ �dt2 þ a2ðtÞ½ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2�
þ b2ðtÞdx2: (71)

Introducing an orthonormal basis, we get

e0 ¼ dt; ep ¼ adxp; p ¼ 1; 2; 3; e4 ¼ bdx4:

(72)

Taking the exterior derivatives, we get

de0 ¼ 0; dep ¼ _a

a
e0ep; p¼ 1;2;3; de4 ¼

_b

b
e0e4:

(73)

We introduce (72) and (73) into Cartan’s first structural
equation

Ta ¼ dea þ!a
be

b ¼ 0 (74)

and the antisymmetry of the connection forms,
!ab ¼ �!ba, to find the nonzero connection forms. The
calculations give

!0
p ¼ !p

0 ¼
_a

a
ep; p ¼ 1; 2; 3; !0

4 ¼ !4
0 ¼

_b

b
e4:

(75)

From Cartan’s second structural

Rab ¼ d!ab þ!a
c!

cb (76)

we can calculate the curvature matrix. The nonzero com-
ponents are

R0p ¼ �Rp0 ¼ €a

a
e0ep; p ¼ 1; 2; 3;

R04 ¼ �R40 ¼
€b

b
e0e4;

Rpq ¼ �Rqp ¼ _a2

a2
epeq; p; q ¼ 1; 2; 3;

Rp4 ¼ �R4p ¼ _a

a

_b

b
e0ep; p ¼ 1; 2; 3:

(77)

We consider now the field ha. Writing the ha field in the
vielbein basis we have ha ¼ ha
e


 ¼ �a
h
�e
�. Using

the procedure developed in chapter 13 of Ref. [15], we
have

h0 ¼ fe0 þ ge4;

hp ¼ rep; p ¼ 1; 2; 3;

h4 ¼ me0 þ qe4;

(78)

where f ¼ fðtÞ, g ¼ gðtÞ, r ¼ rðtÞ, m ¼ mðtÞ, q ¼ qðtÞ.
From (75) and (78) we can see that

Dh0 ¼
_b

b
ðg�mÞe0e4;

Dhp ¼
�
_rþ ðr� fÞ _a

a

�
e0ep þ g

_a

a
epe4; p ¼ 1; 2; 3;

Dh4 ¼
�
_qþ

_b

b
ðq� fÞ

�
e0e4: (79)

The next step is to introduce (77) and (79) into

�L ¼ �LChS þ �LM

�ea
�ea þ �LM

�ha
�ha þ �LM

�!ab
�!ab;

(80)

where �Lð5Þ
ChS is given by (13), and where �LM

�ea is associated

with the energy-momentum tensor T
�,
�LM

�ha is associated

with the energy-momentum tensor for the field ha which

we denote as TðhÞ

�, and

�LM

�!ab is associated with the spin

tensor S
��.

The calculations give�
_a2

a2
þ _a

a

_b

b

�
þ l2

�1

�3

_a3

a3

_b

b
¼ �1

24�3

�; (81)

�
2
€a

a
þ

€b

b
þ2

_a

a

_b

b
þ _a2

a2

�
þ l2

�1

�3

�
2
€a

a

_a

a

_b

b
þ _a2

a2

€b

b

�
¼� �1

8�3

P;

(82)
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�
€a

a
þ _a2

a2

�
þ l2

�1

�3

€a

a

_a2

a2
¼ � �1

24�3

Pd; (83)

l2
_a3

a3

_b

b
¼ �2

24�3

�ðhÞ; (84)

l2
�
2
€a

a

_a

a

_b

b
þ _a2

a2

€b

b

�
¼ � �2

24�3

PðhÞ; (85)

l2
€a

a

_a2

a2
¼ � �1

24�3

PðhÞ
d ; (86)

_a

a

�
_qþ ðq� fÞ

_b

b

�
þ 2

_a

a

_b

b

�
_rþ ðr� fÞ _a

a

�
¼ 0; (87)

_a

a

�
_rþ _a

a
ðr� fÞ

�
¼ 0; (88)

g
_a2

a2
¼ 0; (89)

�
2
€a

a

_a

a2
gþ _a2

a2

_b

b
ðg�mÞ

�
¼ 0; (90)

where we have considered T
� ¼ ð�; P; P; P; PdÞ and

TðhÞ

� ¼ ð�ðhÞ; PðhÞ; PðhÞ; PðhÞ; PðhÞ

d Þ and where Pd and PðhÞ
d

are related to the pressure in the fifth dimension.
Assuming that _a

a � 0, we have that Eqs. (87)–(90) are

reduced to

_qþ
_b

b
ðq� fÞ ¼ 0; (91)

_rþ _a

a
ðr� fÞ ¼ 0; (92)

g ¼ m ¼ 0 (93)

so that the system of Eqs. (81)–(90) takes the following
form:

3

�
_a2

a2
þ _a

a

_b

b

�
� 12"

_a3

a3

_b

b
¼ �

2�1

; (94)

�
2
€a

a
þ

€b

b
þ 2

_a

a

_b

b
þ _a2

a2

�
� 4"

�
2
€a

a

_a

a

_b

b
þ _a2

a2

€b

b

�
¼ � P

2�1

;

(95)

� 3

�
€a

a
þ _a2

a2

�
þ 12"

€a

a

_a2

a2
¼ � Pd

2�1

; (96)

"
_a3

a3

_b

b
¼ ��2�

ðhÞ; (97)

"

3

�
2
€a

a

_a

a

_b

b
þ _a2

a2

€b

b

�
¼ ��2P

ðhÞ; (98)

"
€a

a

_a2

a2
¼ ��2P

ðhÞ
d ; (99)

_qþ
_b

b
ðq� fÞ ¼ 0; (100)

_gþ _a

a
ðg� fÞ ¼ 0; (101)

where we have defined

g ¼ r; " ¼ � 1

4

�1

�3

l2; �1 ¼ 4
�3

�1

;

�2 ¼ �2

96

�1

�2
3

:

(102)

From Eqs. (94)–(101) we can see that it is necessary to
have an equation relating the energy, the pressure, and the
scale factor. The energy-momentum tensor has to be
divergence-free which signals the conservation of energy.
This follows automatically from Eqs. (94)–(100) from
which we find the following conservation equation:

_�þ 3
_a

a
ð�þ PÞ þ

_b

b
ð�þ PdÞ ¼ 0: (103)

Analogously from Eqs. (97)–(99), we find the following
conservation equation:

_� ðhÞ þ 3
_a

a
ð�ðhÞ þ PðhÞÞ þ

_b

b
ð�ðhÞ þ PðhÞ

d Þ ¼ 0: (104)

A. Dynamical compactification

Following the compactification procedure developed in
Ref. [19], we consider the case when the scale factor bðtÞ is
given by

bðtÞ ¼ 1

an
; n > 0: (105)

The parameter n must be positive for dynamical compac-
tification to take place. Therefore, b gets smaller as the
radius of our Universe a become bigger.
Substituting (105) into the metric (71) we have

ds2 ¼ �dt2 þ a2ðtÞ½ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2� þ dx2

a2nðtÞ :
(106)

From (105) we can see that

_b

b
¼ �n

_a

a
;

€b

b
¼ nðnþ 1Þ _a2

a2
� n

€a

a
(107)

so that by introducing (107) into Eqs. (94)–(104) we obtain
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3ð1� nÞ _a2

a2
þ 12"n

_a4

a4
¼ �

2�1

; (108)

ð1� nÞ
�
2
€a

a
þ _a2

a2

�
þ 4n"

�
4
€a

a
� _a2

a2

�
_a2

a2
¼ � ~P

2�1

; (109)

� 3

�
€a

a
þ 2

_a2

a2

�
þ 3

_a2

a2
þ 12"

€a

a

_a2

a2
¼ Pd

2�1

; (110)

"n
_a4

a4
¼ ��2�

ðhÞ; (111)

"

�
nðnþ 1Þ

3

_a2

a2
� n

€a

a

_a2

a2

�
¼ ��2P

ðhÞ; (112)

"
€a

a

_a2

a2
¼ �2P

ðhÞ
d ; (113)

_q� n
_a

a
ðq� fÞ ¼ 0; (114)

_gþ _a

a
ðg� fÞ ¼ 0; (115)

and the conservation equations take the form

_�þ 3
_a

a
ð�þ ~PÞ ¼ 0; (116)

_� ðhÞ þ 3
_a

a
ð�ðhÞ þ ~PðhÞÞ ¼ 0; (117)

where, following Refs. [16,19], we have defined the effec-

tive pressures ~P and ~PðhÞ as

~P ¼ P� n

3

_a

a
ð�þ PdÞ;

~PðhÞ ¼ PðhÞ � n

3

_a

a
ð�ðhÞ þ PðhÞ

d Þ:
(118)

From (108)–(117) we notice the following:
(a) If l ¼ 0 (i.e. " ¼ 0), the equations that do not vanish

identically are given by

3ð1� nÞ _a2

a2
¼ �

2�1

; (119)

ð1� nÞ
�
2
€a

a
þ _a2

a2

�
¼ � ~P

2�1

; (120)

� 3

�
€a

a
þ 2

_a2

a2

�
þ 3

_a2

a2
¼ Pd

2�1

; (121)

_�þ 3
_a

a
ð�þ ~PÞ ¼ 0: (122)

Equations (119), (120), and (122) have the same
form as the equations obtained using general
relativity in four dimensions. However, there is a

difference. The pressure in these equations is the
effective pressure ~P defined in (118), which may
take negative values when P and Pd are positive so
that, in principle, it could be used to describe an
accelerated expansion of the Universe (see
Ref. [19]).

(b) If l ! 0 (i.e., " ! 0) the Friedmann equations ob-
tained using four-dimensional general relativity are
recovered (with ~P instead of P). In this limit, in
addition to the Friedmann equations, a system of
equations appears describing the behavior of the
field ha.

Now, we consider the solution of the Eqs. (108), (109),
and (116). Following the same procedure used in general
relativity, we further assume that the perfect fluid obeys the
barotropic equation of state

~P ¼ !�; (123)

where! can be a time-dependent function or a constant. If
! is a constant then, introducing (123) in (116), we obtain

� ¼ �0

�
a0
a

�
3ð!þ1Þ

; (124)

where the subscript zero means evaluation at the present
time t0.
Using (108), (116), and (123) we obtain

ð1þ!Þ
�
3ð1� nÞ þ 12"n

_a2

a2

�
_a2

a2

¼ � 2

3

�
3ð1� nÞ þ 24"n

_a2

a2

�
d

dt

�
_a

a

�
; (125)

giving the behavior of the scale factor a ¼ aðtÞ and that to
be solved for the cases when the parameter is uniquely
! ¼ �1 and the general case when ! � �1.

1. Solution !¼�1

If ! ¼ �1, Eq. (125) reduces to�
3ð1� nÞ þ 24"n

_a2

a2

�
d

dt

�
_a

a

�
¼ 0: (126)

To find a solution to (126) there are two possibilities:

d

dt

�
_a

a

�
¼ 0; (127)

3ð1� nÞ þ 24"n
_a2

a2
¼ 0: (128)

It is straightforward to see that both equations lead to
similar results. The solution of (128) is a particular case of
the solution (127). The solution of (127) is given by

aðtÞ ¼ CeH0t (129)

which is a de Sitter-type solution, where C is a constant
and H0 ¼ H ¼ _a

a is the Hubble constant. Rewriting

Eq. (108) as
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12"n

�
_a2

a2

�
2 þ 3ð1� nÞ _a2

a2
� �

2�1

¼ 0 (130)

we see that it is a quadratic equation in _a2=a2 whose
solution yields a value for the Hubble parameter of the
form

_a2

a2
¼ � 3ð1� nÞ

24"n

�
1�

�
1� "

8n

3ð1� nÞ2
�

�1

�
1=2

�
: (131)

If we consider the case of a small l2 limit, we can expand
the root to first order in l2. In the expansion we can see that
it is necessary to take the negative sign to recover the FRW
equations when l2 ¼ 0. Thus in the first-order approxima-
tion, Eq. (131) takes the form

H ¼ _a2

a2
	 �

3ð1� nÞ�1

�
1� "

2n

3ð1� nÞ2
�

�1

�
(132)

or

H0 	 �0

3ð1� nÞ�1

�
1� "

2n

3ð1� nÞ2
�

�1

�
; (133)

an expression in the l2 ¼ 0 limit which is identical to that
obtained when using the Einstein equations in four
dimensions.

2. Solutions for !��1

We consider now the behavior of the scale factor for the
general case when ! is left as a free parameter. By inte-
grating Eq. (125) with ! � �1 we obtain

_a

a
¼ 1


tan

�
1



�
a

_a
� 3

2
ð1þ!Þt

��
; (134)

where we have defined  ¼
ffiffiffiffiffiffiffiffiffiffi
4n"
ð1�nÞ

q
. In the small l2 limit, we

can expand Eq. (134). In fact, taking the arctan of each side
of (134) we have

arctan

�


_a

a

�
¼ 1



�
a

_a
� 3

2
ð1þ!Þt

�
; (135)

and carrying out the expansion to first order in  we obtain

2 _a2

a2
þ 3

2
ð1þ!Þ _a

a
t� 1 	 0: (136)

Solving for the Hubble parameter, we obtain

_a

a
	 � 3ð1þ!Þ

42
t

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
4

3ð1þ!Þt
�
2

s �
: (137)

Again, expanding the square root in (137) to first order in
l2, and considering the negative sign to recover the four-
dimensional FRW equations, we have

_a

a
	 � 2

3ð1þ!Þ
1

t

�
1� 4n"

ð1� nÞ
�

2

3ð1þ!Þ
1

t

�
2
�
: (138)

Integrating (138), we obtain a value for the scale factor of
the form

aðtÞ 	 Ct1=3ð1þ!Þ
�
1þ 2n"

ð1� nÞ
�

2

3ð1þ!Þ
�
3 1

t2

�
; (139)

where

C ¼ a0

��
3

2
ð1þ!Þ

�
2 �0

6ð1� nÞ�1

�
1=4ð1þ!Þ

:

From Eq. (139) we notice the following:
(i) The cases of greatest physical interest are those with

! ¼ 0 and ! ¼ 1=3, which are in the category
! � �1. These cases are usually called the eras of
matter and radiation, respectively.

(ii) For small values of " and for values of t2 that are not
small, we have that the term on the right in (139) is
negligible compared to the first term, and we re-
cover the usual solutions to the four-dimensional
FRW equations.

(iii) In the case that t2 is the order of ", we have that the
term on the right in (139) is not negligible com-
pared to the first and therefore becomes important
in the description of evolution. This is a notable
difference from the results obtained from general
relativity. If the term on the right in (139) takes a
value greater than zero, then it is possible that this
term is important for the description of an infla-
tionary period in the early stages of the Universe.

3. Solution without matter � ¼ ~P¼ 0

We consider the case � ¼ ~P ¼ 0. This case is described
by the equation of state ~P ¼ !�. If � ¼ 0 and assuming
that _a=a � 0, we have that Eq. (125) takes the form

_a2

a2
¼ �ðn� 1Þ

4n"
¼ H2

0 (140)

whose solution is given by

aðtÞ ¼ CeH0t (141)

which corresponds to a model of de Sitter type. In the
context of general relativity there is no similar solution for
the case � ¼ P ¼ 0.

VI. SUMMARYAND OUTLOOK

We have considered a five-dimensional action S ¼
Sg þ SM which is composed of a gravitational sector and

a sector of matter, where the gravitational sector is given by
a Chern-Simons gravity action instead of the Einstein-
Hilbert action and where the matter sector is given by the
so-called perfect fluid. We have studied the implications of
replacing the Einstein-Hilbert action by the Chern-Simons
action on the cosmological evolution for a Friedmann-
Robertson-Walker metric.
We have found some solutions for cosmological field

equations, which were obtained from the action S ¼
Sg þ SM, where Sg is the action for the Chern-Simons

gravity theory, studied in Ref. [7]. In the event that the
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matter action is the action for a perfect fluid, we have
shown that the standard five-dimensional FRW equations
can be obtained from the above-mentioned cosmological
field equations. From the solution (67) we can conclude the
following. (a) For small values of l2 and for values of t2 that
are not small, we have that the term on the right in (67) is
negligible compared to the first term, and we recover the
usual solutions to the five-dimensional FRW equations.
(b) In the case that t2 is the order of l2, we have that the
term on the right in (67) is not negligible compared to the
first term and therefore becomes important in the descrip-
tion of evolution: This is a notable difference from the
results obtained from general relativity. If the term on the
right in (67) takes a value greater than zero, then it is
possible that this term is important for the description of
an inflationary period in the early stages of a five-
dimensional universe [20].

We have also shown, using a compactification procedure
known as dynamic compactification, that the cosmological
field equations obtained from the Chern-Simons gravity
theory lead, in a certain limit, to the usual four-dimensional
FRW equations. From the solution (139) we notice the
following. (a) For small values of " and for values of t2

that are not small, we have that the term on the right in
(139) is negligible compared to the first term, and we
recover the usual solutions of the four-dimensional FRW
equations. (b) In the case that t2 is the order of ", we have
that the term on the right in (139) is not negligible com-
pared to the first term and therefore becomes important in
the description of evolution. This is a notable difference
from the results obtained from general relativity. If the
term on the right in (139) takes a value greater than zero,
then it is possible that this term is important for the
description of an inflationary period in the early stages of
the Universe [20]. For the case � ¼ P ¼ 0 the solution to
the field equations corresponds to a model of de Sitter type.
It should be noted that such a solution does not exist in the
context of general relativity.

This article leads to interesting questions such as the
following: What implications will the replacement of the
Einstein-Hilbert action by the Chern-Simons action have
on the evolution of wormholes described by metrics given
in Refs. [21–23]?
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APPENDIX A: INTERPRETATION OF
THE FIELD ha, CASE 1

So far we have interpreted the field ha as a field of matter
whose nature has not been specified.

It is known that for space-time of five dimensions in the
presence of a gravitational field, a scalar field ’ satisfies
the field equations obtained from the action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
� 1

2
g
�@
’@�’� Vð’Þ

�
(A1)

because ’ is a scalar field and therefore @
’ ¼ 5
’.

Now we consider the action (A1) for the case under study.
The FRW metric with k ¼ 0, written in Cartesian coordi-
nates, is given by

ds2 ¼ �dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2 þ dw2�; (A2)

where we see that detg
� ¼ �a8, so that
ffiffiffiffiffiffiffi�g

p ¼ a4. Since

in a homogeneous space ’ depends only on the time
coordinate, we have

S ¼
Z

d5xa4
�
� 1

2
g00@0’@0’� Vð’Þ

�

¼
Z

d5xa4
�
1

2
_’2 � Vð’Þ

�
: (A3)

Varying this action we obtain the following equation of
motion:

€’þ 4
_a

a
_’þ dV

d’
¼ 0: (A4)

The energy-momentum tensor associated with the ’
field is given by

T
� ¼ @
’@�’� g
�½12g��@�’@�’þ Vð’Þ� (A5)

so that

T00 ¼ 1
2 _’

2 þ Vð’Þ; (A6)

T11 ¼ T22 ¼ T33 ¼ T44 ¼ 1
2 _’

2 � Vð’Þ: (A7)

Since for a perfect fluid T00 and Tii are related to the energy
density � and pressure P, we have

T00 ¼ �’ ¼ 1
2 _’

2 þ Vð’Þ;
T11 ¼ T22 ¼ T33 ¼ T44 ¼ P’ ¼ 1

2 _’
2 � Vð’Þ:

(A8)

On the other hand, we know that the ha field is associated
with the conservation equation (45) which, for a flat model
i.e. with k ¼ 0, takes the form (49),

_� ðhÞ þ 4
_a

a
ð�ðhÞ þ PðhÞÞ ¼ 0: (A9)

If we identify �ðhÞ with the energy density and PðhÞ with the
pressure for a scalar field ’, that is, if we postulate

�ðhÞ ¼ 1
2 _’

2 þ Vð’Þ; PðhÞ ¼ 1
2 _’

2 � Vð’Þ; (A10)

then if we introduce (A10) in (49) we obtain

_’ €’þ4
_a

a
_’2 þ _’

dV

d’
¼ 0; (A11)
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that is,

€’þ 4
_a

a
_’þ dV

d’
¼ 0; (A12)

which is identical to Eq. (A4) found for the scalar field.
This allows us to associate a scalar field with the field ha.
For example, one could make the identification by choos-
ing the components of ha in the form f � 0 and g � ’.

APPENDIX B: INTERPRETATION OF
THE FIELD ha, CASE 2

From the metric (71),

ds2 ¼ �dt2 þ a2ðtÞ½ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2� þ b2ðtÞdx2;
(B1)

we can see that detg
� ¼ �a6b2, that is,
ffiffiffiffiffiffiffi�g

p ¼ a3b.

Since in a homogeneous space ’ depends only on the
time coordinate, we have that (A1) takes the form

S ¼
Z

d5xa3b

�
� 1

2
g00@0’@0’� Vð’Þ

�

¼
Z

d5xa3b

�
1

2
_’2 � Vð’Þ

�
: (B2)

Varying this action we obtain the following equation of
motion:

€’þ 3
_a

a
_’þ

_b

b
_’þ dV

d’
¼ 0: (B3)

The corresponding energy-momentum tensor associated
with the field ’ is given by

T00 ¼ �’ ¼ 1
2 _’

2 þ Vð’Þ;
T11 ¼ T22 ¼ T33 ¼ T44 ¼ P’ ¼ 1

2 _’
2 � Vð’Þ: (B4)

On the other hand, we know that the field ha is associated
with the conservation equation (104),

_� ðhÞ þ 3
_a

a
ð�ðhÞ þ PðhÞÞ þ

_b

b
ð�ðhÞ þ PðhÞ

d Þ ¼ 0: (B5)

If we identify �ðhÞ with the energy density and PðhÞ with the
pressure for a scalar field ’, that is, if we postulate

�ðhÞ ¼ 1
2 _’

2 þ Vð’Þ; PðhÞ ¼ PðhÞ
d ¼ 1

2 _’
2 � Vð’Þ;

(B6)

then if we introduce (B6) in (B5) we obtain

_’ €’þ3
_a

a
_’2 þ

_b

b
_’2 þ _’

dV

d’
¼ 0; (B7)

that is,

€’þ 3
_a

a
_’þ

_b

b
_’þ dV

d’
¼ 0; (B8)

which is identical to Eq. (B3) found for the scalar field.
This allows us to associate a scalar field with the field ha in
a manner similar to the case studied in Appendix A.

APPENDIX C: THE COSMOLOGICAL PRINCIPLE

We have considered a space-time in five dimensions
whose spatial part is homogeneous and isotropic. This
space is of type R� R� S3. We have said that the cos-
mological principle implies that all fields must be homo-
geneous, i.e., are invariant under translations, as well as
isotropic, i.e., are invariant under spatial rotations. This
means that these conditions must be satisfied by the fields
present in (10).
The cosmological principle implies that the metric

should be of the form

ds2 ¼ �dt2 þ fðtÞgijðxkÞdxidxj; i; j ¼ 1; 2; . . . ; N ¼ 4;

(C1)

with ðx0; xiÞ ¼ ðt; xiÞ. xi correspond to the coordinates in
the homogeneous and isotropic subspace.
Since there are NðN þ 1Þ=2 Killing vectors correspond-

ing to spatial translations and rotations, we have that (C1)
must be invariant in form under the following coordinate
transformations:

x0 ! x00 ¼ x0; xi ! x0i ¼ xi þ "�iðx0; xjÞ; (C2)

where �i are the Killing vectors associated with spatial
translations and rotations.
On the other hand, any tensor field invariant in the form

under transformations (C2) has a vanishing Lie derivative
along the vectors �i, i.e.

L �T
���� ¼ 0: (C3)

This means that condition (C3) is the condition for a field
satisfying the cosmological principle. This implies that, if a
field T
���� satisfies the cosmological principle, then it must

satisfy the equation

�

iTj

����� þ ��
iT


j
���� þ ��

iT
����j . . .

¼ �

jT�����i þ ��

jT

i
���� þ ��

jT
����i � � � : (C4)

Examples

(1) Scalar.—We consider a scalar invariant under (C2)
in a five-dimensional space-time, which contains a four-
dimensional subspace that is maximally symmetric
(
; �; . . . ¼ 0; 1; 2; 3; 4; i; j; . . . ¼ 1; 2; 3; 4):

�0 ¼ 0; �i ¼ �iðx0; xjÞ; (C5)

with NðN þ 1Þ=2 Killing vectors. If we want a scalar S to
be maximally invariant in form (in its spatial part), then it
must satisfy

L �S ¼ 0 ) �
@
S ¼ 0 ) �i@iS ¼ 0: (C6)
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Since �i is arbitrary, we have @iS ¼ 0 for which

S ¼ Sðx0Þ ¼ SðtÞ: (C7)

(2) Vectors.—We consider a vector invariant under (C2)
in a five-dimensional space-time, which contains a maxi-
mally symmetric four-dimensional subspace. From (C4)
we can see that the vectors must satisfy

�

iAj ¼ �


jAi: (C8)

The contraction of 
 with i leads us to

�i
iAj ¼ �i

jAi ) NAj ¼ Aj ) ðN � 1ÞAj ¼ 0 ) Ai ¼ 0:

(C9)

So L�A

 ¼ 0 takes the form

L �A
0 ¼ 0 ) �
@
A

0 ¼ 0 ) �i@iA
0 ¼ 0; (C10)

where

@iA
0 ¼ 0 ) A0 ¼ A0ðx0Þ ¼ A0ðtÞ: (C11)

Thus,

A0 ¼ A0ðtÞ; Ai ¼ 0: (C12)

(3) Tensors of rank 2.—We consider a tensor of rank 2.
From (C2) we can see that the tensors of rank 2 must satisfy

�

iAj

� þ ��
iA


j ¼ �

jAi

� þ ��
jA


i:

The same procedure above tells us that

A00 ¼ A00ðtÞ; Ai0 ¼ 0 ¼ A0i;

Aij ¼ fðtÞ�ij; i; j ¼ 1; 2; 3; 4:
(C13)

A specific case of a tensor of rank 2 is the energy-
momentum tensor for a perfect fluid,

T
� ¼ ð�þ PÞu
u� þ P�
�; u
 ¼ ð1; 0; 0; . . . ; 0Þ
(C14)

so that

T00 ¼ �ðtÞ þ PðtÞ ¼ T00ðtÞ;
T0i ¼ P�0i ¼ 0;

Tij ¼ P�ij:

(C15)
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