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In this paper we compute the quantity which is truly measured in a large galaxy survey. We take into

account the effects coming from the fact that we actually observe galaxy redshifts and sky positions and

not true spatial positions. Our calculations are done within linear perturbation theory for both the metric

and the source velocities but they can be used for nonlinear matter power spectra. We shall see that the

complications due to the fact that we only observe on our background light cone, and that we do not truly

know the distance of the observed galaxy but only its redshift, not only cause an additional difficulty, but

provide even more a new opportunity for future galaxy surveys.
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I. INTRODUCTION

All the photons which we receive have been emitted on
our past light cone. In cosmology, looking far away always
also means looking into the past. If the redshift of the
objects under consideration is small, z � 1, and evolution
is relevant only on cosmological time scales, this effect is
small and may be neglected. However, for redshifts of
order unity or larger, the fact that we are not observing a
spatial hypersurface but a part of the background light cone
becomes relevant.

If we observe the large scale distribution of galaxies, we
usually compare the true, observed distribution with the
one of an unperturbed universe with background density ��
and measure its fluctuations, �ðxÞ ¼ ð�ðxÞ � ��Þ= ��, where
�� is usually the mean observed galaxy density. This is then
cast in the power spectrum,

h�ðkÞ�ðk0Þi ¼ ð2�Þ3�ðk� k0ÞP�ðkÞ;

where �ðkÞ is the Fourier transform of �ðxÞ and we assume
statistical homogeneity and isotropy. For small galaxy
catalogs one may assume that we measure the density
fluctuation today, �ðxÞ ¼ �ðx; t0Þ, but already for the
Sloan Digital Sky Survey which determines the galaxy
distribution out to z� 0:2 or 0.5 (for luminous red gal-
axies, LRG’s) it is no longer a good approximation, to
compare the observed power spectrum with the above
defined P�ðt0Þ. Time evolution of P� can be taken into
account by multiplying the power spectrum with a growth
factor. In addition to this, there is the issue of gauge. The
density fluctuation �ðx; tÞ which we calculate in a given

Friedmann background is not gauge invariant. It depends
on the background Friedmann universe that we compare
the observed �ðx; tÞ with. This is the cosmological gauge
problem [1].
There are several attempts in the literature to deal with

these issues, but they are so far incomplete. People have
considered individual observational effects like redshift-
space distortions [2], the Alcock-Pacinski effect [3], or
lensing. A first full treatment is attempted in [4]. In the
present paper we shall go beyond this work and deter-
mine the spectrum truly in terms of directly observable
quantities. We derive gauge-invariant expressions which
are correct to first order in perturbation theory and which
are straightforward to compare with observations. This is
an important first step for this problem, as the gauge
issue is mainly relevant on very large scales, where
perturbations are small so that first order perturbation
theory is justified.
Our results will be most significant for future galaxy

catalogs like BOSS [5], DES [6], Pan-Starrs [7] and,
especially, Euclid [8], but also an analysis of SLOAN-7
[9] along the lines outlined here is interesting.
Notation.—We work with a flat Friedmann background

and in conformal time t such that

ds2 ¼ a2ðtÞð�dt2 þ �ijdx
ixjÞ:

A photon geodesic in this background which arrives at
position xO at time tO and which has been emitted at affine
parameter � ¼ 0 at time tS, moving in direction n, is then
given by ðx�ð�ÞÞ ¼ ð�þ tS;xO þ ð�þ tS � tOÞnÞ. Here
� ¼ t� tS ¼ rS � r, where r is the comoving distance
r ¼ jxð�Þ � xOj, and hence dr ¼ �d�. We can of course
choose xO ¼ 0.

*cbonvin@ast.cam.ac.uk
†ruth.durrer@unige.ch

PHYSICAL REVIEW D 84, 063505 (2011)

1550-7998=2011=84(6)=063505(16) 063505-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.063505


II. THE MATTER FLUCTUATION SPECTRUM
IN REDSHIFT SPACE

In a galaxy redshift survey, the observers measure the
number of galaxies in direction n at redshift z; let us call
this Nðn; zÞd�ndz. They then average over angles to ob-
tain their redshift distribution, hNiðzÞdz. From this they can
build directly the redshift density perturbation [10] i.e. the
perturbation variable

�zðn; zÞ ¼ �ðn; zÞ � h�iðzÞ
h�iðzÞ ¼

Nðn;zÞ
Vðn;zÞ � hNiðzÞ

VðzÞ
hNiðzÞ
VðzÞ

¼ Nðn; zÞ � hNiðzÞ
hNiðzÞ � �Vðn; zÞ

VðzÞ : (1)

Here Vðn; zÞ is the physical survey volume density per
redshift bin, per solid angle. The volume is also a perturbed
quantity since the solid angle of observation as well as
the redshift bin are distorted between the source and the
observer. Hence Vðn; zÞ ¼ VðzÞ þ �Vðn; zÞ. The truly ob-
served quantity is the perturbation in the number density of
galaxies,

Nðn; zÞ � hNiðzÞ
hNiðzÞ ¼ �zðn; zÞ þ �Vðn; zÞ

VðzÞ � �ðn; zÞ; (2)

which therefore must be gauge invariant. Actually, as we
shall see, both �zðn; zÞ and �Vðn; zÞ=VðzÞ are gauge in-
variant. This is not surprising, as we could measure the
volume perturbation also with tracers other than galaxies,
and it is therefore measurable by itself and hence gauge
invariant.

We neglect biasing in our treatment as we want to keep
the expressions as model independent as possible. We shall
add only some comments on how simple linear biasing
could be included.

A. Computation of �zðn; zÞ
Let us first relate �zðn; zÞ to the well-known gauge

dependent quantity �ðx; tÞ. For this we note that to first
order

�zðn; zÞ ¼ �ðn; zÞ � ��ðzÞ
��ðzÞ ¼ ��ð �zÞ þ ��ðn; zÞ � ��ðzÞ

��ðzÞ
¼ ��ðz� �zÞ þ ��ðn; zÞ � ��ðzÞ

��ðzÞ
¼ ��ðn; zÞ

��ð�zÞ � d ��

d�z

�zðn; zÞ
��ð�zÞ : (3)

Here �z ¼ �zðtÞ is the redshift of a background Friedmann
universe that we compare our perturbation with and �z
is the redshift perturbation to this universe. Moreover,
�ðn; �zðtÞÞ ¼ ��ðtÞ þ ��ðn; tÞ, where the time is obtained
by solving the background relation �z ¼ �zðtÞ. Note that
��ðzÞ ¼ ��ð �zþ �zÞ deviates to first order from ��ð�zÞ.
Clearly, both �z and �� depend on the chosen background

and are hence gauge dependent. However, their combina-
tion in Eq. (3) must turn out to be gauge invariant, as it is, in
principle, observable.
Let us first compute the redshift in a perturbed

Friedmann universe with metric

ds2 ¼ a2ðtÞ½�ð1þ 2AÞdt2 � 2Bidtdx
i

þ ½ð1þ 2HLÞ�ij þ 2HTij þ 2Hij�dxidxj�: (4)

HereHij is the transverse traceless gravitational wave term

and A, Bi, HL, and HTij are scalar degrees of freedom,

two of which can be removed by gauge transformations.

In Fourier space Bi ¼ �k̂iB andHTij ¼ ðk̂ik̂j � �ij=3ÞHT .

For simplicity, we shall neglect the contribution from
gravitational waves in the main text. In Appendix A we
also include these terms. We consider a photon emitted
from a galaxy, the source, S, which is moving in direction n
(hence, to lowest order, it is seen under the direction �n
from the observer O). We denote the peculiar velocities of
the source and observer by vS and vO. The observer re-
ceives the photon redshifted by a factor

1þ z ¼ ðn � uÞS
ðn � uÞO : (5)

We solve the equation for the photon geodesicn ¼ a�2ð1þ
�n0;nþ �nÞ, where n denotes the unperturbed photon
direction at the observer. Using that u ¼ a�1ð1� A; vÞ,
where v is the peculiar velocity, we find, by the same
calculation which leads to Eq. (2.228) in [1] (see also [11]),

1þ z ¼ aðtOÞ
aðtSÞ

�
1þ

�
HL þ 1

3
HT þ n � V þ�þ�

�
tO

tS

�
Z 0

rS

ð _�þ _�Þd�
�
: (6)

The first term is simply 1þ �z. Here t denotes conformal
time, � and � are the Bardeen potentials, and V is the
gauge-invariant velocity perturbation which corresponds
to the ordinary velocity perturbation in longitudinal
gauge. For more details see [1,11] and Appendix A. In
this redshift perturbation the dipole term n � VðxO; tOÞ is
the only term in the square brackets in (6) which depends
on directions when evaluated at xO. The terms evaluated
at the emission point do of course all depend on n via the
position of the emission point which, to lowest order,
is simply xS ¼ xO � nðtO � tð�zSÞÞ. The integral extends
along the unperturbed photon trajectory from the emis-
sion point, where we set � ¼ 0, to our position where
� ¼ tO � tS ¼ rS. Equation (6) implies that the redshift
perturbation is
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�z ¼ z� �z

¼ �ð1þ zÞ
��

HL þ 1

3
HT þ n � V þ�þ�

�
ðn; zÞ

þ
Z rS

0
ð _�þ _�Þd�

�
; (7)

where we have neglected the unmeasurable monopole
term and the dipole term from the observer position. We
indicate the source position by the direction it is seen
under, �n, and its observed redshift z. To lowest order
xðn; zÞ ¼ �rSðzÞn. To obtain the density fluctuation in

redshift space, we now use that d ��
d�z ¼ 3 ��

1þ�z . With this we

obtain

�zðn; zÞ ¼ Dgðn; zÞ þ 3ðV � nÞðn; zÞ þ 3ð�þ�Þðn; zÞ
þ 3

Z tO

tS

ð _�þ _�Þðn; zðtÞÞdt: (8)

Here we relate a perturbation variable in direction
n at redshift z to its unperturbed position and time,
fðn; zÞ ¼ fðxðn; zÞ; tðzÞÞ, and overdots are partial deriva-
tives with respect to t, the second argument in fðx; tÞ.

Dg is the density fluctuation on the uniform curvature

hypersurface. It is related to the density fluctuation in
comoving gauge, Dcm, by [1,11]

Dcm � D ¼ Dg þ 3�þ 3k�1HV:

If we would want to introduce a bias between the matter
density and the galaxy density, it would probably be most
physical to assume that both galaxies and dark matter
follow the same velocity field, as they experience the
same gravitational acceleration. We then expect that bias-
ing should be applied to the density fluctuation in comov-
ing gauge,Dcm, not toDg. On small scales such differences

are irrelevant, but on large scales they do become relevant,
as becomes clear when considering the (linear) power
spectra for the different density fluctuation variables;
see Fig. 1.

B. Volume perturbations

As a next step we compute the volume perturbation
�V=V in Eq. (2), which must be gauge invariant since �z

is also gauge invariant by itself. This is not surprising, as it
would, in principle, be a measurable quantity if we had an
‘‘unbiased tracer’’ of the volume.
We consider a small volume element at the source

position. By this we mean the spatial volume seen by a
source with four-velocity u�. This is given by

dV ¼ ffiffiffiffiffiffiffi�g
p

����	u
�dx�dx�dx	: (9)

We want to express the volume element in terms of the
polar angles at the observer position, 
O and ’O, and the
observed redshift z. We have

dV¼ ffiffiffiffiffiffiffi�g
p

����	u
�@x

�

@z

@x�

@
S

@x	

@’S

��������
@ð
S;’SÞ
@ð
O;’OÞ

��������dzd
Od’O

�vðz;
O;’OÞdzd
Od’O; (10)

where we have introduced the density v which determines
the volume perturbation,

�V

V
¼ v� �v

�v
¼ �v

�v
:

j @ð
S;’SÞ
@ð
O;’OÞ j is the determinant of the Jacobian of the trans-

formation from the angles at the source to the angles at the
observer. Equation (10) is still exact. In a homogeneous
and isotropic universe geodesics are straight lines and

S ¼ 
O and ’S ¼ ’O. In a perturbed universe the angles
at the source are perturbed with respect to the angles at the
observer, and we have 
S ¼ 
O þ �
 and’S ¼ ’O þ �’.
Hence to first order the Jacobian determinant becomes��������

@ð
S; ’SÞ
@ð
O;’OÞ

��������¼ 1þ @�


@

þ @�’

@’
: (11)

Using the expression for the metric determinant,
ffiffiffiffiffiffiffi�g

p ¼
a4ð1þ Aþ 3HLÞ, and the four-velocity of the source,
u ¼ 1

a ð1� A; viÞ, we find to first order

v ¼ a3ð1þ Aþ 3HLÞ
�
dr

dz
r2 sin
S

�
1þ @�


@

þ @�’

@’

�

�
�
A
d�r

d�z
þ vr

dt

dz

�
�r2 sin
O

�
: (12)

Here dr=dz is to be understood as the change in comoving
distance r with redshift along the photon geodesic. At
linear order we can write (the distinction between z and �z
is only relevant for background quantities)

dr

dz
¼ d�r

d�z
þ d�r

d�z
� d�z

d�z

d�r

d�z
¼

�
d�r

dt
þ d�r

d�
� d�z

d�

d�r

d�z

�
dt

d�z
;

(13)

where we have used that for first order quantities we can set
dt ¼ d� when we have to take the derivative along the
photon geodesic. The last term of Eq. (13) contains the
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FIG. 1 (color online). The (linear) matter power spectrum on
the uniform curvature hypersurface (top curve, green), in longi-
tudinal gauge (middle curve, red), and in comoving gauge
(bottom curve, blue).
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redshift-space distortion which will turn out to be the
biggest correction to the power spectrum. To lowest order
along a photon geodesic �d�r=d�z ¼ dt=d�z ¼ �H�1 ¼
�a=H , where H is the physical Hubble parameter and
H ¼ aH is the comoving Hubble parameter. With this the
volume element becomes

v ¼ a4 �r2 sin
O
H

�
1þ 3HL þ

�
cot
O þ @

@


�
�
þ @�’

@’

� v � nþ 2�r

r
� d�r

d�
þ a

H
d�z

d�

�
: (14)

To obtain the fluctuation of v we subtract the unperturbed
part �vðzÞ. Note, however, that we evaluate this at the
observed redshift, z ¼ �zþ �z. Hence

�vðzÞ ¼ �vð�zÞ þ d �v

d�z
�z:

From the unperturbed expression with a ¼ 1=ð�zþ 1Þ,

�vð �zÞ ¼ sin
O �r
2

ð1þ �zÞ4H ; (15)

one infers

d �v

d�z
¼ �vð�zÞ

�
�4þ 2

�rSH
þ

_H
H 2

�
1

1þ �z
: (16)

Combining Eqs. (14) and (16) we obtain for the perturba-
tion of the volume element

�v

�v
ðn; zÞ ¼ vðzÞ � �vðzÞ

�vðzÞ
¼ 3HL þ

�
cot
O þ @

@


�
�
þ @�’

@’
� v � n

þ 2�r

r
� d�r

d�
þ 1

H ð1þ �zÞ
d�z

d�

�
�
�4þ 2

�rH
þ

_H
H 2

�
�z

1þ �z
: (17)

In order to express these quantities in terms of the
perturbed metric and the peculiar velocity of observer
and emitter, we need to compute the deviation vector that
relates the perturbed geodesic to the unperturbed one,
�x�ð�Þ ¼ x�ð�Þ � �x�ð�Þ. Here we give only the main
steps. More details on the derivation can be found in
Appendix A. We use

dx�

dt
¼ dx�

d�

d�

dt
¼ n�

n0
(18)

which leads to

x0ðtSÞ ¼ �ðtO � tSÞ ¼ rS at every order; (19)

xiðtSÞ ¼ �ðtO � tSÞ �ni �
Z rS

0
d�ð�ni � �ni�n0Þ (20)

to first order.
In the following we neglect perturbations at the observer

position since, as already mentioned, they give rise only to
an unmeasurable monopole term or a dipole term. Using
the null geodesic equation for n� we find

�xiðtSÞ¼
Z rS

0
d�ðh�i �n�þh0� �n

i �n�Þ

þ1

2

Z rS

0
d�ðrS�rÞðh�	;iþ _h�	 �n

iÞ �n� �n	; (21)

where rð�Þ ¼ �. From this we obtain

�r � �xieri ¼ ��xi �ni ¼ � 1

2

Z rS

0
d�h�	 �n

� �n	

¼
Z rS

0
d�ð�þ�Þ þ B

k
þ 1

k2

�
dHT

d�
� 2 _HT

�
: (22)

We also use that �ni@i þ @t ¼ d
d� ¼ d

dt and rS ¼ tO � tS to

lowest order. For the derivative of �r we obtain

d�r

d�
¼ �ð�þ�Þ þ 1

k

dB

d�
þ 1

k2

�
d2HT

d�2
� 2

d _HT

d�

�
: (23)

Similarly we find for the perturbed angles

�
��xie
i
rS

¼ 1

rS

Z rS

0
d�

�
h�i �n

�ei
þ
1

2
ðrS� rÞh�	;iei
 �n� �n	

�
; (24)

�’� �xie’i
rS sin
O

¼ 1

rS sin
O

Z rS

0
d�

�
h�i �n

�ei’þ1

2
ðrS�rÞh�	;iei’ �n� �n	

�
:

(25)

We have used that �nie
i ¼ �nie’i ¼ 0. The second term of

the integral in Eq. (24) can be rewritten as

h�	;ie
i

 �n

� �n	 ¼ 1

r
@
ðh�	Þ �n� �n	

¼ 1

r
½@
ðh�	 �n� �n	Þ � h�	@
ð �n� �n	Þ�; (26)

where @
 �n
� ¼ �ei
�i�, and analogously for ’. The angu-

lar contribution to the volume then reads
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ðcot
þ@
Þ�
þ@’�’

¼
Z rS

0
d�

ðrS�rÞ
2rSr

�
cot
@
þ@2
þ

1

sin2

@2’

�
h�	 �n

� �n	

þ
Z rS

0
d�

1

r

�
ðcot
þ@
Þhi�ei
 �n�þ

@’
sin


hi�e
i
’ �n

�

�

¼�1

rS

Z rS

0
d�

ðrS�rÞ
r

��ð�þ�Þ���HTðtSÞ
k2r2S

; (27)

where �� denotes the angular part of the Laplacian,

�� �
�
cot
@
 þ @2
 þ

1

sin2

@2’

�
: (28)

It is interesting to note that the angular part of the volume
perturbation is not a gauge-invariant quantity by itself.
If HT � 0 the angular and radial directions are mixed in
a nontrivial way. This is not really surprising since the
angular volume distortion is not a measurable quantity
by itself. On the other hand, the convergence � and the
magnification � that are observable contain, in addition to
the angular volume distortion, other perturbations (see
[12,13]) and are gauge invariant.

The redshift contribution to the volume perturbation is
obtained by differentiating Eq. (7).

1

H ð1þ �zÞ
d�z

d�
¼ �þ�þHL þHT

3
þ V � n

þ
Z rS

0
d�ð _�þ _�Þ � 1

H

�
�ni@ið�þ�Þ

þ dHL

d�
þ 1

3

dHT

d�
þ dðV � nÞ

d�

�
: (29)

Putting everything together we find, after several integra-
tions by part and a total Laplacian of HT which cancels a
factor 1=k2, the following expression for the volume den-
sity perturbation:

�v

v
¼ �2ð�þ�Þ � 4V � nþ 1

H

�
_�þ @r�� dðV � nÞ

d�

�

þ
� _H
H 2

þ 2

rSH

��
�þ V � nþ

Z rS

0
d�ð _�þ _�Þ

�

� 3
Z rS

0
d�ð _�þ _�Þ þ 2

rS

Z rS

0
d�ð�þ�Þ

� 1

rS

Z rS

0
d�

rS � r

r
��ð�þ�Þ: (30)

Here and in the following, the functions without arguments
are to be evaluated at the source position xS ¼
xO � nðtO � tSÞ and at the source time tS. More details
of the derivation of this result are given in Appendix A.

Adding the results (8) and (30) we obtain the galaxy
number density fluctuation in redshift space as defined in
Eq. (2),

�ðn;zÞ¼Dgþ�þ�þ 1

H
½ _��@rðV �nÞ�

þ
� _H
H 2

þ 2

rSH

��
�þV �nþ

Z rS

0
d�ð _�þ _�Þ

�

þ 1

rS

Z rS

0
d�

�
2�rS�r

r
��

�
ð�þ�Þ: (31)

Here we have used that pressureless matter also moves
along geodesics so that

n � _V þHn � V � @r� ¼ 0:

Equation (31) together with (8) and (30) is our first main
result.
The first term in (31) is the gauge-invariant density

fluctuation. Dg is the density fluctuation in the flat slicing.

It is related to the density perturbation in Newtonian gauge
by Dg ¼ Ds � 3�. In terms of Ds the first three contribu-

tions combine to form Dg þ�þ� ¼ Ds � 2�þ�.

The term �H�1@rðn � VÞ is the redshift-space distor-
tion. As we shall see in the next section, this is the largest
single correction on intermediate scales. The second line
comes from the redshift perturbation of the volume. It
contains a Doppler term and the ordinary and integrated
Sachs-Wolfe terms. The third line represents the radial and
angular volume distortions. The second term in the integral
on the third line is especially relevant on large scales; it is
the lensing distortion.

III. THE ANGULAR POWER SPECTRUM OF THE
GALAXY DENSITY FLUCTUATIONS

For fixed redshift, �ðz;nÞ is a function on the sphere
and it is most natural to expand it in spherical harmonics.
Let us do this with the result (31),

�ðn; zÞ ¼ X
‘m

a‘mðzÞY‘mðnÞ; C‘ðzÞ ¼ hja‘mj2i: (32)

The coefficients a‘mðzÞ are given by

a‘mðzÞ ¼
Z

d�nY
�
‘mðnÞ�ðn; zÞ: (33)

The star indicates complex conjugation.
The different terms in �ðn; zÞ are either a perturbation

variable evaluated at the source position or an integral of a
perturbation variable over the unperturbed photon trajec-
tory. Let us first consider a contribution from a perturbation
variable at the source position, e.g. �. We want to relate
the C‘ðzÞ spectra to the usual power spectrum P�ðk; tÞ
which is defined by

h�ðk; tÞ��ðk0; tÞi ¼ ð2�Þ3�ðk� k0ÞP�ðk; tÞ:
The delta function and the fact that P� depends only on the
modulus of k, k � jkj, are a consequence of statistical
homogeneity and isotropy. Expressing � in terms of its
Fourier transform,
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�ðx; tÞ ¼ 1

ð2�Þ3
Z

d3k�ðk; tÞe�iðk�xÞ;

a short calculation (see e.g. [1]) gives

a�‘mðzSÞ ¼
i‘

2�2

Z
d3kj‘ðkrSÞ�ðk; tSÞY�

‘mðk̂Þ: (34)

Here j‘ is the spherical Bessel function of order ‘;
see [14]. Correspondingly, the contribution from an inte-
gral

RrS
0 fðxð�Þ; tð�ÞÞd� becomes

a

R
f

‘m ðzSÞ ¼ i‘

2�2

Z rS

0
d�

Z
d3kj‘ðk�Þfðk; tÞY�

‘mðk̂Þ: (35)

For a velocity term V � n we use that Vðk; tÞ ¼ ik̂V, so
that V � n exp½iðk � nÞr� ¼ V@kr exp½iðk � nÞr�. With this,
one obtains

aVn‘mðzSÞ ¼
i‘

2�2

Z
d3kj0‘ðkrSÞVðk; tÞY�

‘mðk̂Þ: (36)

The prime in j‘ denotes a derivation with respect to the
argument. Finally, for the redshift-space distortion,
�@rðV � nÞ ¼ n � rðV � nÞ, we have to use the above iden-
tity twice and arrive at

a�@rðVnÞ
‘m ðzSÞ ¼ i‘

2�2

Z
d3kj00‘ ðkrSÞk�1Vðk; tÞY�

‘mðk̂Þ: (37)

One can now write down the C‘ðzÞ’s for one’s theory of
choice for the background and the perturbations, e.g. for
modified gravity or a quintessence model.

So far the derivation has been completely general. We
have not used Einstein’s equation. The only assumptions
are that galaxies follow the distribution of matter which is
made out of nonrelativistic particles which move along
geodesics, and that photons move along null geodesics.

To proceed further, we have to be more specific. Here we
just study the simplest model of purely scalar adiabatic

perturbations, which have been generated at some early
time in the past (e.g. inflation). If there are more e.g.
isocurvature modes present, the subsequent calculation
has to be repeated for them.
In the case of one adiabatic mode, all the perturbation

variables are given by transfer functions from some
initial random variable that we take to be the Bardeen
potential �. Hence

�ðk; tÞ ¼ T�ðk; tÞ�inðkÞ; (38)

�ðk; tÞ ¼ T�ðk; tÞ�inðkÞ; (39)

Dgðk; tÞ ¼ TDðk; tÞ�inðkÞ; (40)

Vðk; tÞ ¼ TVðk; tÞ�inðkÞ: (41)

The transfer functions T� depend on the matter content and
the evolution history of the Universe and on the theory of
gravity which relates matter and metric degrees of free-
dom. What is important for us is that they are deterministic
functions and do not depend on directions of k. We char-
acterize the initial power spectrum by a spectral index n
and an amplitude A,

k3h�inðkÞ��
inðk0Þi ¼ ð2�Þ3�ðk� k0ÞAðktOÞn�1: (42)

We have introduced present time tO in order to keep A
dimensionless. From the CMB observations we know that
it is of the order of A� 10�8. With these identifications
we can now relate C‘ðzÞ to the initial power spectrum
AðktOÞn�1. Inserting the above in expression (31), a short
calculation gives

C‘ðzSÞ ¼ 2A

�

Z dk

k
ðktOÞn�1jF‘ðk; zSÞj2 (43)

with

F‘ðk; zSÞ ¼ j‘ðkrSÞ
�
TD þ

�
1þ

_H
H 2

þ 2

rSH

�
T� þ T� þ 1

H
_T�

�
þ j0‘ðkrSÞ

� _H
H 2

þ 2

rSH

�
TV þ k

H
TVj

00
‘ ðkrSÞ

þ 1

rS

Z rS

0
j‘ðk�Þ

�
2þ rS � �

�
‘ð‘þ 1Þ

�
ðT� þ T�Þd�þ

� _H
H 2

þ 2

rSH

�Z rS

0
j‘ðk�Þð _T� þ _T�Þd�: (44)

Here rS ¼ tO � tS is the source position.
We now evaluate and compare the amplitude of different

terms in a �CDM universe. Rather than entering in a
precise numerical evaluation, we estimate the terms by
using approximations for the transfer functions. This will
help us to gain insight into the importance of the different
terms. We plan to do a full numerical evaluation which can
be used to estimate cosmological parameters in future work.

From the first order Einstein equations, neglecting an-
isotropic stresses from neutrinos, we can relate the transfer
functions TD, TV , and T� to T�. We find

T� ¼ T�; (45)

TD ¼ � 2a

3�m

�
k

H 0

�
2
T� � 3T� � 3

H
k

TV; (46)

TV ¼ 2a

3�m

k

H 2
0

ðHT� þ _T�Þ: (47)
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Using the notation of [15] (see also [16]), we decompose
the transfer function T�ðk; tÞ into a growth rateD1ðaÞ and a
time independent transfer function TðkÞ such that

T�ðk; tÞ ¼ 9

10

D1ðaÞ
a

TðkÞ; (48)

and we use CAMBCODE [17] to compute TðkÞ. The
amplitude of the power spectrum can be expressed as [15]

A ¼ 50�2

9 �2
Hð �m

D1ða¼1ÞÞ2. We choose�m ¼ 0:24,�� ¼ 0:76,

and �8 ¼ 0:75, leading to �H ¼ 5:6	 10�5.

A. The transversal power spectrum

Let us first determine the C‘’s at fixed redshift. They
provide the transversal power spectrum, i.e. correlations on
the sphere normal to the observer directions. Of course
for the intrinsic density fluctuations these are not different
from correlations in any other direction, but observational
effects on them are different. For example, as we can only
observe on the background light cone, we can only see
fluctuations on this sphere at the same time but not fluctu-
ations which have a different radial distance from us. On
the other hand, in general, the same redshift does of course
not imply the same lookback time, since both these quan-
tities are perturbed in different ways.

In Fig. 2 (top panel) we show the total transversal power
spectrum at redshifts zS ¼ 0:1, 0.5, 1, and 3. Note that the
amplitude of the linear power spectrum from zS ¼ 0:1 to
zS ¼ 0:5 is reduced by a factor 6 at ‘� 100 and by a factor
20 at ‘ & 10. This comes from the following fact: the
transversal power spectrum is dominated by the density
fluctuation and the redshift-space distortion which are
proportional to integrals of the form

Z dk

k

�
k

H 0

�
4
T2ðkÞj2‘ðkrSÞ:

At x ¼ krS ¼ ‘, this term goes like ‘4 and it is therefore
expected to dominate at large ‘. However, since for a
constant transfer function, this integral would diverge, it
is dominated by the maximum of the transfer function
which is roughly at keq. Since for z * 0:5, keqrS * ‘,

j2‘ðkeqrSÞ / 1=ðkeqrSÞ2 which therefore decreases like

1=r2S. Already this simple observation tells us that the

amplitude of the transversal power spectrum at different
redshifts might offer a possibility to constrain rSðzÞ and
the growth factor, which both depend on cosmological
parameters in different ways. On the other hand, this is
complicated by nonlinear effects and biasing which are not
accounted for in this work.

The different contributions to the power spectrum at
different redshifts are shown in more detail in Fig. 3.
For zS ¼ 1, we show the spectrum up to ‘ ¼ 600 while
for the other redshifts we stop at ‘ ¼ 100, beyond which

the structure does not change anymore. We denote byD the
density term in comoving gauge,

D ¼ Dg þ 3�þ 3
H
k

V;

by z the redshift-space distortion, by L the lensing term, by
V the Doppler terms, and by � the gravitational potential
terms (see Table I for a definition of each term). CDD

‘

represents, for example, the contribution from the density
term alone and CDz

‘ the correlation between the density and

redshift-space distortion. Except for the correlation be-
tween the density and redshift-space distortion that we
represent individually, we include the correlations with
the smaller contribution. Note that usually the correlations
between lensing, Doppler, and gravitational potential are
negligible and, except when explicitly specified, we do
neglect them. Therefore, when we plot, for example, the
lensing term (magenta), it contains CLL

‘ þ 2CLD
‘ þ 2CLz

‘ .

The formulas for the dominant C‘’s are given in
Appendix B.
The lensing term scales like ‘4 and is, in principle, of the

same order as the density and redshift-space distortion
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FIG. 2 (color online). Top panel: The transversal power spec-
trum at (from top to bottom) zS ¼ 0:1, zS ¼ 0:5, zS ¼ 1, and
zS ¼ 3. Bottom panel: The ratio between the new contributions
(lensingþ potential) and the total angular power spectrum at
(from top to bottom) zS ¼ 3, zS ¼ 1, zS ¼ 0:5, and zS ¼ 0:1.
Solid lines denote positive contributions whereas dashed lines
denote negative contributions.
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terms. However, it is given by an integral of the form (see
Appendix B)

‘2ð‘þ 1Þ2
r2S

Z dk

k
T2ðkÞ

�Z rS

0
d�

rS � r

r
j‘ðkrÞ

�
2

which does converge when integrated over k. It is therefore
dominated at k ¼ ‘=r. (We have used Limber’s approxi-
mation [18] to evaluate this integral, which we have tested
numerically and found to be of excellent accuracy.) The
contribution of the lensing term becomes more important
at larger source redshift for small ‘. But it always remains
subdominant in the transversal power spectrum. In the
bottom panel of Fig. 2 we plot the ratio between the new
contributions, i.e. lensing term plus potential term, and the
total angular power spectrum. We see that neglecting the
new contributions for zS 
 1 represents an error of no
more than 0.1%, whereas for zS ¼ 3 the error amounts to
a few percent. Note that we do not include the Doppler
terms in the new contributions since they appear already
in the original Kaiser formula [19] (even though there the

term from expansion / _H =H 2, which is of the same
order for redshifts z � 1, is not considered). In Fig. 4
(top panel) we depict the redshift dependence of all the
terms for a fixed value of ‘ ¼ 20. The lensing and potential
terms are both negative at small redshift and become
positive at large redshift. This is due to the fact that at
small redshift the dominant contribution comes from their
correlation with the density that is negative, whereas at
large redshift the dominant contribution is their autocorre-
lation, CLL

‘ , respectively C��
‘ . The bottom panel of Fig. 4

shows the ratio between the new contributions and the total
angular power spectrum. The error induced by neglecting
the new terms increases with redshift and it reaches a few
percent at high redshift.
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FIG. 3 (color). The dominant terms at redshifts (from top to
bottom) zS ¼ 0:1, 0.5, 1, and 3: density (red line), redshift-space
distortion (green line), the correlation of density with redshift-
space distortion (blue line), lensing (magenta line), and Doppler
(cyan line); see Table I. The potential terms are too small to
appear on our log-plot.

TABLE I. The color coding of the different terms of Eq. (31)
in the angular power spectrum of �ðn; zÞ as shown in Figs. 3–5,
7, 9, and 10. In addition to the terms given in the second column,
all the correlations with the terms in the lines above are also
included. Only the most dominant correlation between density
and redshift-space distortion is shown separately in blue. In
Figs. 5 and 10 the ‘‘standard terms,’’ i.e. the top three lines,
are represented together as the blue line.

Density D Red

Redshift-space

distortion

�H�1@rðV � nÞ Green

Lensing �1
rS

RrS
0 d� rS�r

r ��ð�þ�Þ Magenta

Correlation �2DH�1@rðV � nÞ Blue

Doppler ð _H
H 2 þ 2

rSH
ÞV � n Cyan

Potential �� 2�þ 2
rS

RrS
0 d�ð�þ�Þ þ

ð _H
H 2 þ 2

rSH
Þ½�þ RrS

0 d�ð _�þ _�Þ� �
2a
�m

ðH
H 0

Þ2ð�þ _�
H
Þ

Black
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B. The radial power spectrum

The results above give us the transversal power spectrum
at fixed redshift. But of course there is also a radial power
spectrum which correlates fluctuation at different distances
from us. This encodes different information, and it is
important to study them both. From the fact that the trans-
fer function is not direction dependent, we infer that

ha‘mðzSÞa‘0m0 ðzS0 Þi ¼ �‘;‘0�m;m0C‘ðzS; zS0 Þ: (49)

Hence the radial power spectrum is given by

C‘ðzS; zS0 Þ ¼ 2A

�

Z dk

k
ðktOÞn�1F‘ðk; zSÞF�

‘ðk; zS0 Þ: (50)

Here an interesting new phenomenon occurs: due to the
fact that we evaluate F‘ðk; zSÞ at different redshifts, we
also evaluate the Bessel functions j‘ðkrSÞ at different dis-
tances rS. This leads to a suppression of the result due to
oscillations, if the region in k space where the integrand

dominates has krS > ‘. As we discussed above, this is the
case for the k2 term of the density fluctuations and for
the redshift-space distortion, the terms which dominate the
transversal power spectrum. These terms are therefore
substantially suppressed in the radial power spectrum.
All other terms have convergent integrals of j2‘ðkrSÞ, al-
ready when neglecting the turnover of the transfer func-
tion; hence they are suppressed by powers of ‘with respect
to the lensing term. Therefore the lensing term dominates
the radial power spectrum at low ‘. This is precisely what
one sees in Fig. 5, where the lensing term (magenta)
dominates for zS0 significantly larger than zS. As in
Fig. 4, at small redshift zS ¼ 0:1 and zS ¼ 0:5, the corre-
lation density lensing dominates (and is negative), whereas
at large redshift zS ¼ 3 the lensing-lensing term domi-
nates. It is interesting to note how constant the lensing
term remains, while the density term and the redshift-space
distortion decay very rapidly with growing redshift differ-
ence. At zS ¼ 1 the lensing-lensing term and its correlation
with the density are of the same order of magnitude which
explains the change of sign as zS0 increases. Finally, at
zS ¼ 0:1 the Doppler term dominates over the standard
term for some very specific values of zS0 . The first of them
is actually the zero in the real space correlation function
which e.g. at redshift zS ¼ 0:1 corresponds to �z ¼ 0:011.
An alternative way to measure radial correlations is to

introduce a window function Wðz; z0Þ which corresponds
to a smearing of fluctuations on scales smaller than some
width �zS. We use a Gaussian window around some mean
redshift zS with width �zS. This suppresses power which
comes from values of k with k�rS > ‘, where �rS ¼
rðzS þ �zSÞ � rðzSÞ. This is also a more realistic case
since we can measure the galaxy distribution only in
redshift bins of some finite width. A small width does
already substantially affect the resulting spectrum of the
density (see Fig. 6, top panel) and the redshift-space dis-
tortion (middle panel). As expected, the lensing term is
insensitive to this smearing (bottom panel).
In Fig. 7 we show the effect of a 10% window on the

different terms at different redshifts. As before, the terms
which we indicate by ‘‘lensing term,’’ ‘‘Doppler term,’’ and
‘‘gravitational potential contributions’’ in the figure are not
only the corresponding terms themselves but also their
correlations with all other terms. If the latter dominate,
such a contribution can become negative. For example, the
lensing contribution for zS ¼ 1 changes sign at ‘ ¼ 28. For
‘ > 28 it is dominated by negative correlations with the
density, while for ‘ < 28 the positive autocorrelation
dominates. Since the power from scales smaller than
k�rS is removed, the power at ‘ truly corresponds to that
at k ¼ ‘=rðzÞ in the power spectrum. The ‘‘wiggles’’ in the
density and in the velocity terms for zS ¼ 0:1 are the
baryon acoustic oscillations, the first of which appears at
‘ ’ 15 for zS ¼ 0:1. They are also visible in the anticorre-
lation of the lensing term with the density for zS ¼ 0:5 and
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FIG. 4 (color). Top panel: The various terms as a function of zS
for a fixed value of ‘ ¼ 20: density (red line), redshift-space
distortion (green line), the correlation of density with redshift-
space distortion (blue line), lensing (magenta line), Doppler
(cyan line), and potential (black line); see Table I. Solid lines
denote positive contributions whereas dashed lines denote nega-
tive contributions. Bottom panel: The ratio between the new
contributions (lensingþ potential) and the total angular power
spectrum as a function of zS for a fixed value of ‘ ¼ 20.
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zS ¼ 1, but these terms are probably too small to be
detected in real data.
In Fig. 8 (top panel) we show the total C‘ðzSÞ’s smeared

with a 10% window function. Comparing it with Fig. 2, we
mainly notice that the power is reduced significantly, by
nearly 1.5 orders of magnitude. Furthermore, at zS ¼ 0:1,
the baryon acoustic oscillations are clearly visible. In the
presence of a window, different terms can dominate at
different redshift and for different values of ‘. In the
bottom panel of Fig. 8, we depict the ratio between the
new contributions and the total angular power spectrum.
Neglecting the new contributions induces an error of a few
percent already at redshift 1, and this error increases to
roughly 50% at redshift 3. Note that this ratio depends
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FIG. 5 (color). Different terms of C‘ðzS; zS0 Þ at ‘ ¼ 20 for
redshifts (from top to bottom) zS ¼ 0:1, 0.5, 1, and 3, plotted
as a function of zS0 : standard term, i.e. CDD

‘ þ Czz
‘ þ 2CDz

‘

(blue line), lensing (magenta line), Doppler (cyan line),
and potential (black line); see Table I. Solid lines denote
positive contributions whereas dashed lines denote negative
contributions.
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FIG. 6 (color online). The effect of a window function on
the density contribution (top panel), redshift-space distortion
(middle panel), and lensing contribution (bottom panel). We
have chosen zS ¼ 0:1 and �zS ¼ 0 (no window, top curve,
red), �zS ¼ 0:002 (middle curve, green), and �zS ¼ 0:01 (bot-
tom curve, blue).
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strongly on the width of the window function, and that a
wider window would lead to a larger error.
In Fig. 9 (top panel) we plot the different terms as a

function of redshift, for a fixed value of ‘ ¼ 20. Contrary
to Fig. 4, where the lensing term always remains subdo-
minant with respect to the density and redshift-space dis-
tortion term, we see in Fig. 9 that for zS > 2:4 the lensing
term dominates over the standard contribution. The red-
shift at which this dominance takes place depends of
course on the chosen window function: for larger �zS,
the lensing term starts to dominate at smaller redshift. In
the bottom panel of Fig. 9 we show the ratio between the
new contributions and the total angular power spectrum
as a function of redshift for ‘ ¼ 20. From this figure we
understand why in Fig. 8 (bottom panel), the ratio at zS ¼ 1
is not significantly larger than at zS ¼ 0:5. The lensing
contribution changes sign around zS ¼ 0:9, and conse-
quently, it is still small at zS ¼ 1. At a redshift of
zS ¼ 1:5, however, the error induced by neglecting the
new terms is already of the order of 10%.
In Fig. 10 we show correlations between different red-

shifts bins (with a 10% window function), for a fixed value
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FIG. 7 (color). The effect of a window function with width
�zS ¼ 0:1zS on the power spectrum C‘ðzSÞ for redshifts (from
top to bottom) zS ¼ 0:1, 0.5, 1, and 3. The different curves are as
follows: density (red line), redshift-space distortion (green line),
the correlation of density with redshift-space distortion (blue
line), lensing (magenta line), Doppler (cyan line), and gravita-
tional potential (black line); see Table I. Solid lines denote
positive contributions whereas dashed lines denote negative
contributions.
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FIG. 8 (color online). Top panel: The total power spectrum at
redshifts (from top to bottom) zS ¼ 0:1, zS ¼ 0:5, zS ¼ 1, and
zS ¼ 3 smeared by a window function with width �zS ¼ 0:1zS.
Bottom panel: The ratio between the new contributions
(lensingþ potential) and the total angular power spectrum at
(from top to bottom) zS ¼ 3, zS ¼ 1, zS ¼ 0:5, and zS ¼ 0:1.
Solid lines denote positive contributions whereas dashed lines
denote negative contributions.

WHAT GALAXY SURVEYS REALLY MEASURE PHYSICAL REVIEW D 84, 063505 (2011)

063505-11



of ‘ ¼ 20. As in Fig. 5 we see that the lensing term
becomes dominant when the redshift separation between
the bins increases. At large redshift, zS ¼ 3, the lensing
term is always dominant. The individual behavior of each
contribution is, however, quite different from Fig. 5 which
is due to the smearing introduced by the window function.
Note that comparing the second panel in Fig. 10 with
the results in [20], we see that the redshift separation
between their four different bins (their Fig. 13) is too small
for the lensing contribution to be relevant. However, a
similar measurement with one of the bins situated around
zS ¼ 0:7 would already allow us to detect the lensing
contribution.

Finally, we plot in Fig. 11 the angular power spectrum
integrated from the observer until a maximum redshift
zmax. This corresponds to the situation where the redshifts
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FIG. 9 (color online). The various terms as a function of zS for
a fixed value of ‘ ¼ 20 and smeared by a window function with
width �zS ¼ 0:1zS: density (red line), redshift-space distortion
(green line), the correlation of density with redshift-space dis-
tortion (blue line), lensing (magenta line), Doppler (cyan line),
and potential (black line); see Table I. Here the correlations
between the lensing and Doppler and the lensing and potential
are not negligible at large zS, and they are included in the
Doppler (cyan line), respectively, potential (black line) curves.
Solid lines denote positive contributions; dashed lines denote
negative contributions. Bottom panel: The ratio between the new
contributions (lensingþ potential) and the total angular power
spectrum, smeared by a window function with width �zS ¼
0:1zS, plotted as a function of zS for a fixed value of ‘ ¼ 20.
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FIG. 10 (color). Cross correlations between different redshift
bins C‘ðzS; zS0 Þ at ‘ ¼ 20 with a 10% window function and
plotted as a function of zS0 . From top to bottom zS ¼ 0:1, 0.5,
1, and 3. The standard term, i.e. CDD

‘ þ Czz
‘ þ 2CDz

‘ (blue line),

lensing (magenta line), Doppler (cyan line), and potential (black
line) are shown; see Table I. Solid lines denote positive contri-
butions whereas dashed lines denote negative contributions.
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of individual galaxies are unknown but obey a given red-
shift distribution. Consequently, only the integrated spec-
trum can be measured. We assume a flat distribution of
galaxies between zmin ¼ 0:1 and zmax ¼ 2 with Gaussian
tails at both ends. In Fig. 11 we see that the only relevant
contributions are the density and the lensing, more pre-
cisely the cross correlation between the lensing and the
density which is negative. The redshift-space distortion
contribution is, as expected, completely negligible when
the galaxy redshifts are unknown. The lensing contribu-
tion, however, is very relevant; it reduces the result by
roughly 40% of the contribution from the density alone.

IV. CONCLUSIONS

In this paper we have derived expressions for the
transversal and radial galaxy power spectra, C‘ðzSÞ and
C‘ðzS; zS0 Þ, taking into account not only redshift-space
distortions, which have also been studied e.g. in [20], but
also all other relativistic effects to first order in perturba-
tion theory. Within our accuracy we are in reasonable
agreement with the simulated results of Ref. [20] (their
Fig. 4) which analyzes the Sloan Digital Sky Survey data,
taking into account redshift-space distortion but not the
other terms, e.g. the lensing, appearing in our formula (31).
They also take into account nonlinearities in the matter
power spectrum by using HALOFIT [17]. This enhances
their results with respect to ours.

We have seen that by measuring C‘ðzS; zS0 Þ for different
redshift differences and different ‘’s, we can measure
different combinations of terms which depend on cosmo-
logical parameters in a variety of ways. Otherwise, one
may measure the C‘’s smeared over a given redshift
bin, �zS,

C‘ðzS;�zSÞ ¼
Z

dzdz0Wðz; z0ÞC‘ðz; z0Þ;

where W is a window function centered at zS with width
�zS. Without smearing, the density contribution and the
redshift-space distortion always dominate. When smearing
is included these terms are reduced and the lensing term
can dominate.
The method outlined in this paper represents a very

flexible new path to estimate cosmological parameters
and to test the consistency of the concordance model of
cosmology. Of course, to do this we must master possible
degeneracies, not only with biasing but also evolutionary
effects which have not been discussed in this work and
which may become relevant at redshifts larger than 1; see
[21] for a discussion. A detailed parameter estimation
forecast e.g. for Euclid is left as a future project.

ACKNOWLEDGMENTS

We thank Anthony Lewis and Anthony Challinor who
were accidentally working on a very similar project [21].
We compared our results with theirs, and although the
derivation is different, the analytical results completely
agree. Anthony Lewis also shared their numerical results
with us. This comparison helped us considerably, and we
also agree on the numerical part. We acknowledge useful
discussions with Francis Bernardeau, Chiara Caprini, Chris
Clarkson, Martin Kunz, Roy Maartens, and Francesco
Montanari. We thank the referee for useful suggestions.
R.D. is supported by the Swiss National Science
Foundation. C. B. is supported by a Herchel Smith
Postdoctoral Fellowship and byKing’s College Cambridge.

APPENDIX A: SOME DETAILS OF THE
DERIVATIONS FOR �ðn; zÞ

We consider a perturbed Friedmann metric,

ds2 ¼ a2ðtÞð�ð1þ 2AÞdt2 � 2Bidtdx
i

þ ½ð1þ 2HLÞ�ij þ 2HTij þ 2Hij�dxidxjÞ: (A1)

HereHij is the transverse traceless gravitational wave term

and A, Bi, HL, and HTij are scalar degrees of freedom, two

of which can be removed by gauge transformations. In

Fourier space Bi ¼ �k̂iB and HTij ¼ ðk̂ik̂j � �ij=3ÞHT .

Often one uses longitudinal (or Newtonian) gauge with
B ¼ HT ¼ 0, but we shall not use longitudinal gauge
here. This is useful if we want to determine whether a
given expression is gauge invariant. In a generic gauge,
the gauge-invariant Bardeen potentials � and � are
given by [22]

� � AþH
k

Bþ 1

k
_B�H

k2
_HT � 1

k2
€HT; (A2)

� � �HL � 1

3
HT þH

k2
_HT �H

k
B: (A3)

In longitudinal gauge they reduce to A ¼ �, HL ¼ ��.
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FIG. 11 (color online). Integrated power spectrum with a flat
distribution between zmin ¼ 0:1 and zmax ¼ 2 with Gaussian tails
at both ends. The density term is plotted in red and the lensing
term in magenta. Note that the lensing term is completely
dominated by its anticorrelation with the density and hence is
negative.
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From this we easily obtain the following expressions for
the redshift perturbation [1,11],

�z

1þ z
¼ �

��
HL þ 1

3
HT þ n � V þ�þ�

�
ðn; zÞ

þ
Z rS

0
ð _�þ _�þ _Hijn

injÞd�
�

(A4)

which leads to the density fluctuation in redshift space
given in Eq. (8). To determine the volume perturbation
we have to compute the derivative,

d�r

d�
¼ �ð�þ�Þ þ 1

k

dB

d�
þ 1

k2

�
d2HT

d�2
� 2

d _HT

d�

�

�Hijn
inj: (A5)

Here we made use of the fact that the Fourier transforms of
Bi and HTij are, respectively,

Biðk; tÞ ¼ � 1

k
@iB; (A6)

HTijðk; tÞ ¼ 1

k2
@i@jHT þ 1

3
�ijHT: (A7)

Using dX
d� ¼ _Xþ ni@iX ¼ _X � @rX, we then obtain

Bin
i ¼ � 1

k

dB

d�
þ 1

k
_B; Bie

i

 ¼ � 1

kr @
B;

HTijn
inj ¼ 1

k2

�
d2HT

d�2
� 2

d _HT

d�
þ €HT

�
þ 1

3
HT

¼ 1

k2
@2rHT þ 1

3
HT;

HTije
i

n

j ¼ @

k2r

�
dHT

d�
� _HT

�
þ @


ðkrÞ2 HT:

Similar relations hold for ei’. The angular volume pertur-

bation is�
�v

v

�
�
�ðcot
þ@
Þ�
þ@’�’

¼�1

rS

Z rS

0
d�

ðrS�rÞ
r

��ð�þ�Þ���HTðtSÞ
ðkrSÞ2

�
Z rS

0
d�

�ðrS�rÞ
rSr

��ðHijn
injÞþ2

r

�
ðcot
þ@
Þ

	ðHijn
iej
Þþ

1

sin

@’ðHijn

iej’Þ
��

: (A8)

Here �� denotes the angular part of the Laplacian.
The second integral in Eq. (A8) is the contribution from
gravitational waves which we shall not discuss further in
this work.

Putting it all together in Eq. (17), using also Eq. (29) for
the derivative of the perturbed redshift, we obtain the
volume perturbation at fixed conformal time t or fixed
background redshift �z. However, we need to evaluate the
volume fluctuation at a fixed, observed redshift which is
related to the latter by

�v

�v

��������z
¼ @z �v�zþ �vð�zÞ

�v

¼ �vð�zÞ
�v

þ
�

2

rSH
� 4þ

_H
H 2

�
�z

1þ z

¼ 3HL � v � nþ
�
�v

v

�
�
þ 2�r

rS
� d�r

d�

þ 1

H ð1þ zÞ
d�z

d�
þ

�
2

rSH
� 4þ

_H
H 2

�
�z

1þ z
:

(A9)

To simplify the expressions we combine the terms
ðd2HT=d�

2 � 2d _HT=d�Þ=k2 of d�r
d� and 2=ðk2rSÞdHT=d�

of 2�r=r with ��HT=ðkrSÞ2 of the angular volume pertur-
bation to

� 1

k2

�
d2HT

d�2
�2

d _HT

d�
� 2

rS

dHT

d�
þ��HT

r2S

�

¼� 1

k2
ð�HT� €HT� 2

rS
_HTÞ¼HTþ 1

k2

�
€HTþ 2

rS
_HT

�
:

We also use the gauge-invariant velocity potential [1,11]

V � v� 1

k
_HT (A10)

so that

v � n ¼ � 1

k
ni@iv ¼ V � n� 1

k2
ni@i _HT; (A11)

and the derivative of � along the light ray,

1

H
d�

d�
¼ � 1

H
d

d�

�
HL þHT

3

�
þ 1

k2

�
d _HT

d�
þ

_H
H

_HT

�

� 1

k

�
dB

d�
þ

_H
H

B

�
: (A12)

With the help of these identities, the volume density
perturbation reduces to the gauge-invariant expression
(30), where the gravitational wave contribution is omitted
for simplicity.

APPENDIX B: THE CONTRIBUTIONS TO THE
ANGULAR POWER SPECTRUM

In this appendix we express certain contributions to the
total C0

‘s which are of particular interest for the discussion
given in the text. We use the transfer functions for the
concordance model given in Eqs. (45)–(48).
Density fluctuation: Let us first consider the density

term. The term of TD in (46) proportional to k2T� largely
dominates the integral. Its contribution is
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CDD
‘ ðzSÞ ¼ 2A

�

�
9

10

�
2 4a2S
9�2

m

�
D1ðaSÞ
aS

�
2

	
Z dk

k

�
k

H 0

�
4
T2ðkÞj2‘ðkrSÞ: (B1)

This integral only converges since TðkÞ decays like 1=k2

for k > keq, where keq is the (comoving) horizon scale at

equal matter and radiation; see e.g. [1]. This integral is
always dominated by the fluctuations on this scale, even at
low ‘ � ‘eqðzSÞ ’ �keqrðzSÞ.

Redshift-space distortion: The term T2
VðkÞðj00‘ ðkrSÞÞ2

coming from @rðV � nÞ is the redshift-space distortion.
Since it is multiplied by k=H its dominant contribution
behaves like the density term and is of the same order,

Czz
‘ ðzSÞ ¼

2A

�

�
9

10

�
2 4a2S
9�2

m

�
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þ aS
d

daS
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aS

��
2

	
Z dk

k

�
k

H 0

�
4
T2ðkÞj002‘ ðkrSÞ: (B2)

Cross-term density-redshift-space distortion: Also this
term is of the same order as the previous two and even
dominates at low ‘.

CDz
‘ ðzSÞ ¼ � 2A

�
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�
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9�2
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T2ðkÞj‘ðkrSÞj00‘ ðkrSÞ:

(B3)

Lensing: The lensing contribution is, in principle, also of
the same order. But since it probes the power spectrum
truly at k ’ ‘=rðzSÞ, it is largely subdominant at low ‘ if
compared to the previous contributions.
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In the last equality we have used Limber’s approximation
[18],

Z yS

0
dyfðyÞJ�ðyÞ ¼ fð�Þ
ðyS � �Þ þO

�
1

�2

�
: (B5)

Cross-term density lensing:
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(B6)

The other terms are as follows.
Velocity:

CVV
‘ ðzSÞ ¼ 2A
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Cross-term redshift-space distortion velocity:

CzV
‘ ðzSÞ ¼ 2A
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Cross-term density velocity:

CDV
‘ ðzSÞ¼�2A
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In the regimes investigated in this work the gravitational
potential terms are always subdominant and we do not
write them down explicitly.
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