
Cosmological evolution of p-brane networks

L. Sousa1,2,* and P. P. Avelino3,2,†

1Centro de Fı́sica do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
2Departamento de Fı́sica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

3Centro de Astrofı́sica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
(Received 22 July 2011; published 1 September 2011)

In this paper we derive, directly from the Nambu-Goto action, the relevant components of the

acceleration of cosmological featureless p-branes, extending previous analysis based on the field theory

equations in the thin-brane limit. The component of the acceleration parallel to the velocity is at the core

of the velocity-dependent one-scale model for the evolution of p-brane networks. We use this model to

show that, in a decelerating expanding universe in which the p-branes are relevant cosmologically,

interactions cannot lead to frustration, except for fine-tuned nonrelativistic networks with a dimensionless

curvature parameter k � 1. We discuss the implications of our findings for the cosmological evolution of

p-brane networks.

DOI: 10.1103/PhysRevD.84.063502 PACS numbers: 98.80.Cq

I. INTRODUCTION

It is generally accepted that the Universe underwent a
phase of accelerated expansion in its early history. This
paradigm, usually denominated cosmological inflation
[1,2], explains the extreme flatness and homogeneity of
the observed universe, as well as the origin of the large
scale structure. In the context of the brane-world realiza-
tion of string theory, cosmological inflation could be driven
by the interaction between p-dimensional D-branes [3–5]
(which are, along with fundamental strings, the fundamen-
tal objects of the theory). Brane inflationary scenarios
typically end with a symmetry-breaking phase transition,
leading to the production of branes with lower dimension-
ality. The copious production of one-dimensional branes
(cosmic strings) is predicted for a large variety of brane
inflation models, while higher-dimensional p-branes might
also be produced [6–8]. Therefore, brane inflation may
lead to the production of p-brane networks, evolving in
higher-dimensional backgrounds.

Cosmic strings and domain walls are the only nontrivial
p-brane solutions allowed in 3þ 1-dimensional back-
grounds. The interest in cosmic strings has recently been
revived due to the possibility of detecting their cosmologi-
cal signatures observationally. In particular, they may leave
an observable imprint on the B-mode polarization [9,10]
and small-scale anisotropy [11] of the cosmic microwave
background which may be within reach of the Planck
mission. Moreover, there is also the prospect of the future
detection of the gravitational waves emitted by cosmic
strings with the LIGO2 and LISA probes [12] (see also
[13–15] for other examples of possible observational sig-
natures of cosmic strings). In order to make precise obser-
vational predictions it is necessary to understand the nature

of cosmic strings and their late-time evolution. While
standard cosmic string networks have been extensively
studied both using a semianalytical velocity-dependent
one-scale (VOS) model [16] and numerical simulations
[17], significantly less is known about the dynamics of
complex string networks with junctions. For example,
cosmic superstring networks may have a hierarchy of
tensions and junctions [18] and, consequently, their obser-
vational signatures are expected to be different from those
of ordinary cosmic strings [19,20]. Still, it is not yet clear
whether or not these differences prevent cosmic super-
string networks from attaining a linear scaling regime
and, therefore, the late-time evolution of these networks
is not yet completely understood [21–23].
A p-brane network, if frozen in comoving coordinates

(or frustrated), is characterized by a negative average
pressure. This property is particularly interesting in the
case of domain wall networks. There is compelling evi-
dence [24,25] which indicates that the universe is currently
undergoing a phase of accelerated expansion, caused by an
exotic energy component (dubbed dark energy) accounting
for more than two-thirds of the energy density of the
universe and whose nature is yet unknown. If domain walls
were the dominant energy component, and provided their
root-mean-square (RMS) velocity was small enough, they
could drive a phase of accelerated expansion. For this
reason, frustrated domain wall networks have been sug-
gested as a dark energy candidate [26]. The conditions
under which domain wall networks may frustrate as a
result of cosmological evolution were intensively studied
in [27–32] using a semianalytical VOS model and field-
theory simulations. These studies indicate that frustration
does not result naturally from the evolution of realistic and
cosmologically relevant domain wall networks.
The cosmological dynamics of generic p-brane net-

works has been studied in [33] using a VOS model char-
acterizing the evolution of their RMS velocity and
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characteristic length. As in the case of cosmic string [34]
and domain wall networks [30,35], in homogeneous and
isotropic universes with a decelerating power law expan-
sion, p-brane networks may evolve towards a linear scaling
solution in which the characteristic length grows propor-
tionally to the Hubble radius and the RMS velocity remains
constant [33]. This scale-invariant solution is an attractor
of the VOS equations, characterizing the late-time evolu-
tion of the networks in a frictionless regime.

In this paper, we derive the evolution equation for the
velocity of featureless infinitely-thin p-brane networks in
homogeneous and isotropic universes with an arbitrary
number of spatial dimensions, directly from the Nambu-
Goto action. This generalizes previous results obtained
using field-theory equations in the thin-brane limit, further
validating the VOS model for the evolution of p-brane
networks in N þ 1-dimensional homogeneous and iso-
tropic universes derived in [33]. We also consider the effect
of a generic interaction mechanism between the p-branes
and other cosmological components, studying its potential
role in the frustration of the networks.

Throughout the work, we will assume the metric signa-
ture ½þ;�; . . . ;�� and the calculations will be done using
units in which c ¼ 1. The Einstein summation convention
will be used when a Greek index variable appears twice in
a single term, once in an upper (superscript) and once in a
lower (subscript) position.

II. FEATURELESS p-BRANES:
EQUATION-OF-STATE

Consider a local inertial frame in which the p-brane is
instantaneously at rest. If the p-brane is locally flat, a set
of planar orthogonal coordinates ðt; x1; . . . ; xNÞ may be
chosen such that x1; . . . ; xp parameterize the brane and
xpþ1; . . . ; xN are perpendicular to it. Since the properties
of a featureless p-brane do not change along the parallel
directions, there is no component of the physical velocity
along these directions. Therefore, the components of the
energy-momentum tensor T�� must be invariant with re-
spect to Lorentz boosts in any direction along the brane.

Consider a boost along one of the parallel directions

x
~i (~i ¼ 1; . . . ; p throughout the paper). The energy-
momentum tensor, transforms as

T�0�0 ¼ �
�0
� ��0

�T
��; (1)

where

�00
0 ¼ �

~i0
~i
¼ �; �00

~i
¼ �

~i0
0 ¼ �v; (2)

�l0
l ¼ 1; for l � ~i; (3)

and all other components vanish. Here, l ¼ 1; . . . ; N.
Hence,

T00l0 ¼ �T0l þ �vT
~il ¼ T0l; (4)

T
~i0l0 ¼ �T

~il þ �vT0l ¼ T
~il; (5)

which leads to

T0l ¼ T
~il ¼ 0; (6)

for l � ~i. It is possible to show using similar arguments

that T0~i must also vanish. Moreover,

T0000 ¼ �2T00 þ �2v2T
~i ~i ¼ T00; (7)

which gives

T
~i ~i ¼ �T00: (8)

If the p-brane is maximally symmetric with respect to
the N � p perpendicular directions and its energy is local-
ized, then Derrick’s theorem [36] implies that a necessary
condition for stability is [37]Z

dDxTll ¼ 0; (9)

for l � pþ 1 (here D¼N�p and dDx¼ dxpþ1�����
dxN). Spherical symmetry with respect to the D perpen-
dicular directions implies that, at the core, we should also
have that Tlm ¼ 0, for l � pþ 1, m � pþ 1 and l � m.
In most situations of cosmological interest, the p-brane
thickness is very small compared to its curvature radii and
may therefore be neglected. Hence, if the p-brane is infi-
nitely thin, the nonvanishing components of the energy-
momentum tensor are

T00 ¼ �p

Z
dpx�Nðx� xpÞ; (10)

T
~i ~i ¼ ��p

Z
dpx�Nðx� xpÞ; (11)

where �p is the (constant) p-brane mass per unit

p-dimensional area, x is an N-vector whose components
are Cartesian coordinates, xp represents the p-brane pro-

file, and �NðxÞ is the N-dimensional Dirac delta function.
The equation-of-state parameter of a brane gas can be

obtained by performing a Lorentz boost to the energy-
momentum tensor of a single static flat p-brane and,
then, averaging over all possible orientations of the
brane [38]:

w ¼
�P
��
¼ 1

N
½ðpþ 1Þ �v2 � p�: (12)

Here, �v is the RMS velocity of the branes, �� ¼ V�1
R
�dV

is the average brane density, �P ¼ V�1
R
PdV is the aver-

age brane pressure and V is a large volume.
Note that Eq. (12) has two important limits. In the

relativistic limit, with �v ! 1, one has w ! 1=N in-
dependently of the value of p. In the nonrelativistic limit
( �v ! 0), one has w ¼ �p=N. Taking into account that
the Raychaudhury in a N þ 1-dimensional Friedmann-
Robertson-Walker (FRW) universe is given by
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€a

a
¼ � 8	GNþ1

NðN � 1Þ ððN � 2Þ�b þ NP bÞ; (13)

where �b is the background density, P b is the background
pressure, and GNþ1 is the N þ 1-dimensional Newton
constant, we conclude that only domain walls (p-branes
with p ¼ N � 1) or a cosmological constant (p-brane with
p ¼ N) could lead to an accelerated expansion of the
Universe.

III. p-BRANE DYNAMICS

In the zero-thickness limit, the world history in space-
time of a featureless p-brane may be represented by

x� ¼ x�ðu~�Þ; (14)

where u~� with ~� ¼ 0; 1; . . . ; p are the coordinates parame-
terizing the (pþ 1)-dimensional world sheet swept by the

p-brane, u0 is a timelike parameter and u
~i are spacelike

parameters. The action of the p-brane may be derived from
the underlying field theory

S ¼
Z

dNþ1x
ffiffiffiffiffiffi
jgj

q
L; (15)

where g ¼ detðg��Þ, g�� is the metric tensor, and L is the

Lagrangian of the model. In the vicinity of the p-brane, the
line element can be written as [39]

ds2 ¼ ~g ~� ~�dx
~�dx~� þ dr � dr; (16)

where ~g ~� ~� ¼ g��x
�
; ~�x

�
;~� is the world sheet metric with

x�; ~� ¼ @x�=@u ~� and ðdr � drÞ1=2 is the infinitesimal dis-

tance to the brane (p-dimensional) core. Therefore, the
volume element is given by

dNþ1x ¼
ffiffiffiffiffiffi
j~gj

q
dpþ1udDx: (17)

Since one is assuming that the p-brane is thin and feature-
less, the Lagrangian density can only vary along the per-
pendicular directions and, as a consequence, it depends
only on the xpþ1; . . . ; xN coordinates. Integrating the action
with respect to these coordinates, one obtains the Nambu-
Goto action for infinitely thin p-branes:

S ¼ ��p

Z
dpþ1u

ffiffiffiffiffiffi
j~gj

q
; (18)

where

�p ¼ �
Z

dDxL (19)

is the (constant) p-brane mass per unit p-dimensional area.

IV. EQUATION OF MOTION

By varying the Nambu-Goto action in Eq. (18) with
respect to x�, one obtains the equations of motion for the
dynamic variables x�:

1ffiffiffiffiffiffij~gjp � ffiffiffiffiffiffi
j~gj

q
~g ~� ~�x�;~�

�
; ~�
þ ��

�
~g
~� ~�x�; ~�x



;~� ¼ 0: (20)

In a (N þ 1)-dimensional flat FRW universe, the line ele-
ment is given by

ds2 ¼ a2ð�Þðd2�� dx � dxÞ; (21)

where a is the scale factor, � ¼ R
dt=a is the conformal

time, t is the physical time, and x is a N-vector whose
components are comoving Cartesian coordinates. Since the
Nambu-Goto action is invariant under world sheet param-
eterizations, one is free to impose temporal transverse
gauge conditions

u0 ¼ �; (22)

_x � x;~i ¼ 0: (23)

A dot represents a derivative with respect to conformal
time and x;~i ¼ @x=@u~i. These gauge conditions are chosen

so that the timelike world sheet coordinate is identified
with the conformal time and _x represents the physical
velocity, perpendicular to the p-brane itself. Moreover,
the local orthogonal coordinate system is chosen in such
a way that the coordinate lines coincide with the principal
directions of curvature. Equation (20) yields

€xþ ðpþ 1ÞH ð1� _x2Þ _x ¼ ��1
Xp
~i¼1

�
x;~i

�
�~j�~iðx;~jÞ2

�
;~i
;

(24)

_� ¼ �ðpþ 1ÞH � _x2; (25)

where

� ¼
�ðx;1Þ2 � � � ðx;pÞ2

1� _x2

�ð1=2Þ
; (26)

and H ¼ _a=a.
Let us define the unitary vectors

v̂ ¼ _x

v
; ê~i ¼

x;~i

jx;~ij
; (27)

where v ¼ j _xj is the velocity of the brane at a particular
point and ê~i (with ~i ¼ 1; . . . ; p) are the unitary tangent
vectors along the principal directions of curvature.
Differentiating Eq. (23) with respect to conformal time,
one finds

a ~i ¼ ð €x � ê~iÞê~i ¼ � v

jx;~ij
v;~iê~i; (28)

and, consequently, there is a component of the acceleration
parallel to the p-brane:

€x¼ ¼ Xp
i¼1

a~i: (29)

Using Eq. (24), one may show that
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€x� €x¼ ¼ �ðpþ 1ÞH ð1� v2Þvv̂þ 1

�2

Xp
~i¼1

k~i; (30)

where we introduced the comoving curvature vector along
the principal direction of curvature ~i defined by

k ~i ¼
@êi
@s~i

��������u~j¼constant
; (31)

with ~j � ~i. Here, we introduced the physical length along
the ~i direction ds~i ¼ jx;~ijdu~i. Using Eq. (30), taking into

account that €x ¼ _v v̂þv _̂v and that _̂v is perpendicular to v̂,
one finds that the tangential acceleration (parallel to the
velocity) is given by

a pþ1 ¼ €xk ¼ ð €x � v̂Þv̂

¼ v̂ð1� v2Þ
�Xp
~i¼1

k~ik � ðpþ 1ÞHv

�
; (32)

where we defined the tangential curvature as the projection
of the comoving curvature vectors along the velocity
direction k~ik ¼ k~i � v̂. This tangential acceleration allows

us to obtain an evolution equation for the velocity of the
p-brane,

_vþ ð1� v2Þ½ðpþ 1ÞHv� k� ¼ 0; (33)

where the total tangential curvature, k ¼ Pp
~i¼1

k~ik, was
introduced. This equation is identical to that obtained from
field-theory equations in Ref. [33].

There are N � p� 1 directions which are simulta-
neously perpendicular to the p-brane and to its velocity.
Let us denote the unitary vectors along these directions by
êl with l ¼ pþ 2; . . . ; N. The acceleration along these
directions is given by

a l ¼ ð €x � êlÞêl ¼ êlð1� v2ÞXp
~i¼1

k~i � êl ¼ êlð1� v2Þ?l;

(34)

where we have introduced the total comoving curvature
along the perpendicular direction l ?l ¼ Pp

~i¼1
k~i � êl.

Therefore, the total perpendicular acceleration is given by

€x? ¼ ð1� v2Þ XN
l¼pþ2

êl?l; (35)

with €x ¼ €x¼ þ €xk þ €x?.

V. VOS MODEL

Let us consider a network of p-branes in a (N þ 1)-
dimensional FRW universe and define the RMS velocity,

�v ¼ ffiffiffiffiffiffiffiffiffihv2ip
as

�v 2 ¼
R
v2�dpuR
�dpu

; (36)

where dpu ¼ du1 � � � � � dup. The characteristic length,
L, of the network is defined as

�� ¼ �p

LN�p ; (37)

where �� is the average brane density.
A unified VOS model for the dynamics of p-brane

networks in (N þ 1)-dimensional FRW universes was
derived in [33]. This model is described by the following
equations:

d �v

dt
þ ð1� �v2Þ

�
�v

‘d
� k

L

�
¼ 0; (38)

dL

dt
¼ HLþ L

D‘d
�v2 þ ~c

D
�v; (39)

where ‘�1
d ¼ ðpþ 1ÞH is the damping length scale,

H ¼ Ha is the Hubble parameter, D ¼ N � p, ~c � 0 is
the energy-loss parameter, k ¼ �kL=a is a dimensionless

curvature parameter,

� k ¼ hvð1� v2Þki
�vð1� �v2Þ ¼

R
vð1� v2Þk�dpu
�vð1� v2ÞR �dpu

; (40)

and the assumption that hv4i ¼ �v4 was made (see [34]). A
frictional force—caused by the interaction of the branes
with ultrarelativistic particles or other frictional sources—
may be included in Eq. (38), by introducing an additional
term in the damping length scale, ‘�1

d ¼ ðpþ 1ÞH þ ‘�1
f .

Consider the presence of an interaction mechanism be-
tween the p-branes and a component average density �int.
A very conservative upper limit to the total momentum per
unit volume transfered from that component to the
p-branes in one Hubble time,��������dp

dV

��������� ��

H

dv

dt
; (41)

is given by �int. In this case, one has��������d �vdt
��������int

& �H; (42)

where � ¼ �int= ��.
If a / t� (with 0<�< 1), and the friction scale is

negligible compared to the Hubble radius (‘f � H�1),

this model may admit linear scaling solutions of the form

L ¼ �t and �v ¼ constant: (43)

See [33] for a discussion of other scaling regimes.
If � ¼ constant, then

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� kðkþ ~cÞ
�ð1� �ÞDðpþ �þ 1Þ

��������
s

; (44)

�v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �ÞkD
�ðkþ ~cÞðpþ �þ 1Þ

s
: (45)
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The effects of this interaction mechanism may slow down
the branes slightly but, if the interacting component of
energy density �int is subdominant (that is � & 1), its
potential role on the frustration of the network (defined
by L � H�1 and v � 1) is very limited. Relaxing the
assumption that the p-brane network is the dominant
energy component may help frustration: if � � 1 (or
equivalently if �int � ��) the interaction mechanism may
decelerate the branes effectively, leading to the frustration
of the network. However, in this case, �int would be the
main contributor to the energy budget. Of course, assuming
that � is time-independent is unrealistic since one would
expect the expansion of the background to affect the effi-
ciency of any realistic interaction mechanism (in particu-
lar, the ratio � ¼ �int= �� is expected to be a function of a).
Nonetheless, Eq. (38) shows that considering a time-
varying � does not help much if its present value
�0 & 1. As a matter of fact, frustration might only occur,
under these circumstances, for networks which have k � 1
for v � 1. This generalizes a well-known result for do-
main walls [27,31,32] to arbitrary p-brane networks. In the
particular case of domain walls [31], there is very strong
analytical and numerical evidence that domain wall net-
works (with or without junctions) are unlikely to attain
k � 1 for v � 1, if they are the dominant energy compo-
nent. This effectively rules out domain walls as a cosmo-
logically relevant dark energy candidate: frustration can
only occur either if the network is designed to have
k � 1 in the nonrelativistic limit—which appears to be
unrealistic—or if � is much larger than unity—in which
case the domain wall energy density would be subdomi-
nant. For p < N � 1, the damping is less efficient, and
thus frustration is even less likely to result from the
natural evolution of the network. Therefore, unless there
is a natural mechanism that drives k towards zero in the
nonrelativistic limit (which seems unlikely) the
‘‘no-frustration conjecture’’ is also expected to apply to
any realistic and cosmologically relevant p-brane network.

In Ref. [40], the authors perform field-theory simula-
tions of a model with Z2 �Uð1Þ symmetry in (2þ 1)
dimensions. Their model has two discrete vacua, allowing
for domain walls and a conserved Noether charge. The

authors argue that the Noether charge and currents become
localized on the walls, forming kinky vortons and provid-
ing a possible mechanism for the frustration of domain
wall networks. However, the authors never calculate the
overall equation-of state of the network. Had they done
that, they would have found significant deviations with
respect to that of a frustrated featureless domain wall gas
(w ¼ �2=3).

VI. CONCLUSIONS

In this paper, we derived the equation of motion for
infinitely thin featureless p-branes, by computing the tan-
gential and normal components of the acceleration directly
from the Nambu-Goto action. Our results further validate
the semianalytical VOS model developed in [33] and its
use in dynamical studies of p-brane networks. The VOS
model unifies, in a single framework, the dynamics of
p-brane networks for any possible values of the pair
ðN; pÞ. While part of the dynamical dependency on the
parameters N and p is explicit in the equations of motion,
there is also an implicit dependency in the parameters ~c, ‘f
and k. In this paper, we demonstrated that, if the p-branes
are the dominant component of the Universe, then frustra-
tion is not possible except if the curvature parameter
is driven towards very small values for nonrelativistic
networks or if the expansion is accelerated. In the case
of domain walls there is very strong analytical and numeri-
cal evidence (both in two (N ¼ 2, p ¼ 1) and three
(N ¼ 3, p ¼ 2) spatial dimensions) that k never becomes
much smaller than unity (except deep into inflationary or
friction-dominated regimes), thus preventing frustration
from being attained, at least for realistic domain wall net-
works playing a dark energy role. We conjecture that this
may be a general result, valid for any realistic p-brane
network independently of the values of N and p with
1 	 p 	 N � 1.
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