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We examine models in which the dark energy density increases with time (so that the equation-of-state

parameter w satisfies w<�1), but w ! �1 asymptotically, such that there is no future singularity.

We refine previous calculations to determine the conditions necessary to produce this evolution. Such

models can display arbitrarily rapid expansion in the near future, leading to the destruction of all bound

structures (a ‘‘little rip’’). We determine observational constraints on these models and calculate the point

at which the disintegration of bound structures occurs. For the same present-day value of w, a big rip with

constant w disintegrates bound structures earlier than a little rip.
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I. INTRODUCTION

Observations indicate that roughly 70% of the energy
density in the Universe is in the form of an exotic, negative-
pressure component, dubbed dark energy [1,2]. (See
Ref. [3] for a recent review.) If �DE and pDE are the density
and pressure, respectively, of the dark energy, then the dark
energy can be characterized by the equation-of-state pa-
rameter wDE, defined by

wDE ¼ pDE=�DE: (1)

It was first noted by Caldwell [4] that observational
data do not rule out the possibility that wDE <�1. Such
‘‘phantom’’ dark energy models have several peculiar
properties. The density of the dark energy increases with
increasing scale factor, and both the scale factor and the
phantom energy density can become infinite at a finite t,
a condition known as the ‘‘big rip’’ [4–7]. It has even been
suggested that the finite lifetime for the Universe in these
models may provide an explanation for the apparent coin-
cidence between the current values of the matter density
and the dark energy density [8].

While wðaÞ<�1 as a extends into the future is a
necessary condition for a future singularity, it is not suffi-
cient. In particular, ifw approaches�1 sufficiently rapidly,
then it is possible to have a model in which �DE increases
with time, but in which there is no future singularity.
Conditions which produce such an evolution (specified in
terms of pDE as a function of �DE) were explored in
Refs. [9,10].

In this paper, we examine such models in more detail. In
particular, we will extend the parameter space discussed in
Refs. [9,10] in both directions, showing that there are
nonsingular models in which �DE increases more rapidly
than the nonsingular models discussed in those references,
and, conversely, that there are singular models with �DE

increasing less rapidly than the singular models discussed
in Refs. [9,10]. Models without a future singularity in
which �DE increases with time will nonetheless eventually

lead to a dissolution of bound structures at some point
in the future, a process we have dubbed the ‘‘little rip.’’
We discuss the time scales over which this process occurs.
Finally, we consider observational constraints on these
models.
In the next section, we examine the conditions necessary

for a future singularity in models withw<�1. In Secs. III
and IV, specific little-rip models and disintegration of
bound systems are studied. Finally, in Sec. V, there is
discussion.

II. THE CONDITIONS FOR
A FUTURE SINGULARITY

We limit our discussion to a spatially flat universe, for
which the Friedmann equation is�

_a

a

�
2 ¼ �

3
; (2)

where � is the total density, a is the scale factor, the dot
will always denote a time derivative, and we take ℏ ¼ c ¼
8�G ¼ 1 throughout. We will examine the future evolu-
tion of our Universe from the point at which the pressure
and density are dominated by the dark energy, so we can
assume � ¼ �DE and p ¼ pDE, and for simplicity we will
drop the DE subscript. Then the dark energy density
evolves as

_� ¼ �3

�
_a

a

�
ð�þ pÞ: (3)

The simplest way to achieve w<�1 is to take a scalar
field Lagrangian with a negative kinetic term, and the
conditions necessary for a future singularity in such models
have been explored in some detail [11–14]. Here, however,
we explore the more general question of the conditions
under which a dark energy density that increases with time
can avoid a future singularity, and the consequences of
such models.
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One can explore this question from a variety of starting
points, by specifying, for example, the scale factor a as a
function of the time t (an approach taken, for example, in
Refs. [15–18]). Alternately one can specify the pressure p
as a function of the density �, as in Refs. [9,10]. Note that
this is equivalent to specifying the equation-of-state pa-
rameter w as a function of �, since w ¼ p=�. Finally, one
can specify the density � as a function of the scale factor a.
Since we are interested specifically in nonsingular models
for which � increases with a, we shall adopt this last
approach, but we will briefly examine the other two start-
ing points. Of course, given any one of these three func-
tions, the other two can be derived uniquely, but not always
in a useful form.

For example, suppose that we specify aðtÞ. In order to
avoid a big rip, it is sufficient that aðtÞ simply be a non-
singular function for all t. Writing

a ¼ efðtÞ; (4)

where fðtÞ is a nonsingular function, the density is given

by Eq. (2) as � ¼ 3ð _a=aÞ2 ¼ 3 _f2, and the condition that �

be an increasing function of a is simply d�=da ¼
ð6= _aÞ _f €f>0, which is satisfied as long as

€f > 0: (5)

Thus, all little-rip models are described by an equation of
the form (4), with nonsingular f satisfying Eq. (5).

Now consider the approach of Refs. [9,10], who ex-
pressed the pressure as a function of the density in the form

p ¼ ��� fð�Þ; (6)

where fð�Þ> 0 ensures that the � increases with scale
factor. In order to determine the existence of a future
singularity, one can integrate Eq. (3) to obtain [9]

a ¼ a0 exp

�Z d�

3fð�Þ
�
; (7)

and Eq. (2) then gives [9]

t ¼
Z d�ffiffiffiffiffiffi

3�
p

fð�Þ : (8)

The condition for a big-rip singularity is that the integral in
Eq. (8) converges. Taking a power law for fð�Þ, namely

fð�Þ ¼ A��; (9)

we see that a future singularity can be avoided for � � 1=2
[9,10]. We examine this boundary in more detail below,
noting that one can have fð�Þ increase more rapidly than

�1=2 without a future singularity.
Now consider the third possibility: specifying the den-

sity � as an increasing function of scale factor a. We will
seek upper and lower bounds on the growth rate of �ðaÞ
that can be used to determine whether or not a big-rip
singularity is produced. Defining x � lna, we can rewrite
Eq. (2) as

t ¼
Z ffiffiffiffiffiffiffiffiffi

3

�ðxÞ

s
dx; (10)

and the condition for avoiding a future big-rip singularity isZ 1

x0

1ffiffiffiffiffiffiffiffiffi
�ðxÞp dx ! 1: (11)

The case p ¼ ��� A�1=2 from Refs. [9,10] corresponds
to

�

�0
¼

�
3A

2
ffiffiffiffiffiffi
�0

p lnða=a0Þ þ 1

�
2
; (12)

where w � �1 requires A � 0, and we take � ¼ �0 and
a ¼ a0 at a fixed time t0. Expressing this density as a
function of time rather than scale factor gives a much
simpler expression:

�

�0
¼ e

ffiffi
3

p
Aðt�t0Þ: (13)

The equation-of-state parameter w corresponding to
Eq. (12) can be derived from the relation ða=�Þðd�=daÞ ¼
�3ð1þ wÞ:

w ¼ �1� 1

3
2 lnð aa0Þ þ

ffiffiffiffi
�0

p
A

; (14)

and the corresponding expansion law is

a

a0
¼ eð2

ffiffiffiffi
�0

p
=3AÞ½eð

ffiffi
3

p
A=2Þðt�t0Þ�1�: (15)

However, we can find �ðaÞ for which � increases more
rapidly with a, but for which Eq. (11) is still satisfied.

For example, writing �1=2 � ðlnaÞðln lnaÞ as a ! 1 sat-
isfies Eq. (11). An example of such a �, with a free
parameter B, is

�

�0
¼ N

�
a

a0
; B

� ð1þ lnð aa0 þ BÞÞ2
ð1þ lnð1þ BÞÞ2

ðlnð1þ lnð aa0 þ BÞÞÞ2
ðlnð1þ lnð1þ BÞÞÞ2 ;

(16)

where the choice

N

�
a

a0
; B

�
¼ ð aa0 þ BÞ2

ð1þ BÞ2ð aa0Þ2
(17)

leads to a real, nonnegative � and an analytic form for the
behavior of aðtÞ:

a

a0
¼ eðelnð1þlnð1þBÞÞeðð

ffiffiffiffiffiffi
�0=3

p
ðt�t0ÞÞ=ðð1þBÞð1þlnð1þBÞÞ lnð1þlnð1þBÞÞÞÞ�1Þ � B:

(18)

This argument can be extended further. In general, if we
denote lnjðxÞ � ln ln ln� � � lnðxÞ, where the logarithm on

the right-hand side is iterated j times, then any function of
the form

FRAMPTON, LUDWICK, AND SCHERRER PHYSICAL REVIEW D 84, 063003 (2011)

063003-2



�� ðlnaÞ2ðln2aÞ2ðln3aÞ2 � � � ðlnmaÞ2 (19)

satisfies Eq. (11) as a ! 1 and avoids a big-rip singularity.
A density increasing as in Eq. (19) leads to an expansion
law of the form

a� expðexpðexp� � � ðexpðtÞÞ � � �ÞÞ; (20)

where there are mþ 1 exponentials. We have omitted the
constants in Eqs. (19) and (20) for the sake of clarity.
Equation (20), while growing extraordinarily rapidly, is
manifestly nonsingular. While an expansion law of this
sort might seem absurd, it is probably less so than a big-
rip expansion law, and in any case our goal is to try to
determine the boundary between little-rip and big-rip evo-
lution for �ðaÞ. In this spirit, consider the slowest growing
power-law modification to Eq. (19):

�� ðlnaÞ2ðln2aÞ2ðln3aÞ2 � � � ðlnmaÞ2þ�; (21)

where � > 0 is a constant. No matter how small � is, and
despite the fact that it modifies an extraordinarily slowly
growing nested logarithm function, the growth law in
Eq. (21) leads to a future big-rip singularity.

Note that the bounds specified by Eqs. (19) and (21) are
not sharp; we can always find forms for �ðaÞ that inter-
polate between these two behaviors and produce either a
little rip or a big rip. However, as we take m to be arbi-
trarily large, nearly any function of interest will increase
more rapidly than Eq. (19) or more slowly than Eq. (21),
allowing us a practical, if not a rigorously sharp, bound.
This lack of a sharp bound is due to the fact that there is no
bound on the fastest growing function aðtÞ which is non-
singular at finite t.

If one is willing to place other restrictions on the form of
�ðaÞ, then more stringent bounds apply. Barrow [19] dem-
onstrated that if �þ 3p is a rational function of a and t,
and aðtÞ is nonsingular at finite t, then aðtÞ can grow no
more rapidly than the double exponential of a polynomial
in t. Our Eq. (19) violates this condition because of the
logarithmic functions.

III. CONSTRAINING LITTLE-RIP MODELS

Here we shall examine in more detail the two specific
little-rip models given by Eqs. (12) and (16), which we will
call model 1 and model 2, respectively. Note that we do not
make use of Eqs. (15) and (18) here, as these are valid
only when the matter density can be neglected in compari-
son to the dark energy density. Model 1 is characterized by
a single free parameter A, and the scale factor behaves
asymptotically as a double exponential in t, as in Eq. (15):

aðtÞ ���!t!þ1
ee

t
: (22)

The parameter A is chosen to make a best fit to the latest
supernova data from the Supernova Cosmology Project

[20], and has the best-fit value A ¼ 3:46� 10�3 Gyr�1,
while a 95% C.L. fit can be found for the range
�2:74� 10�3 Gyr�1 � A � 9:67� 10�3 Gyr�1.
Model 2 is characterized by the free parameter B and has

a scale factor that behaves asymptotically as a triple ex-
ponential in t, as in Eq. (18):

aðtÞ ���!t!þ1
ee

et

: (23)

The parameter B is chosen to make a best fit to [20] as
well, and it has the value B ¼ 1:23. The confidence inter-
val for B at the 95% C.L. is 1:12 � B � 1:34. In
fitting both models, �m0

¼ 0:274, �x0 ¼ 1��m0
, and

H0 ¼ 70:1 km s�1 Mpc�1, which are consistent with
the best-fit ranges for these values given by WMAP [21].
The resultant Hubble and residual �CDM (w ¼ �1) plots
of distance modulus� versus redshift z for both models are
displayed in Fig. 1.
Not surprisingly, the best-fit models closely resemble

the �CDM model, which is known to be an excellent fit
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FIG. 1 (color online). Top panel: Hubble plot of distance
modulus � versus redshift z for the �CDM (w ¼ �1) model
(green) and models 1 (brown) and 2 (red). The lines are essen-
tially indistinguishable. Bottom panel: The �CDM model is
subtracted from models 1 (brown) and 2 (red). The �CDM
model is, by definition, represented by the �� ¼ 0 axis. As
can be judged by the size of the error bars of the data, all are
excellent fits to the supernovae data. (The color plots are in the
online version of the paper.)
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to the data [22]. To see this more clearly, note that our
models will resemble a cosmological constant at low red-
shift as long as �ðaÞ � constant for a� a0. For model 1,
this condition is satisfied when A=

ffiffiffiffiffiffi
�0

p 	 1 in Eq. (12),

while for model 2, we require B ’ 1:39 in Eq. (16). To see
that B should be close to this value, one should expand
Eq. (16) around a ¼ a0. The zeroth-order term is �0, and
the coefficient for the first-order term is 0 when B ¼ 1:39.
A comparison with our best-fit values indicates that these
conditions are, indeed, satisfied. Furthermore, in the limit
where these conditions are satisfied, these little-rip models
closely resemble, at low redshift, big-rip models close to
�CDM, i.e., models with constantw<�1 and j1þwj	1.
To see this, recall that constant-w big-rip models have a
density varying with scale factor as

� ¼ �0ða=a0Þ�3ð1þwÞ: (24)

For j1þ wj 	 1 and a=a0 not too far from 1, Eq. (24)
behaves as

� 
 �0½1� 3ð1þ wÞ lnða=a0Þ�: (25)

Equation (12) reduces to Eq. (25) for A=
ffiffiffiffiffiffi
�0

p 	 1, with

A=
ffiffiffiffiffiffi
�0

p ¼ �ð1þ wÞ.

IV. DISINTEGRATION

A feature of a big rip is that all bound-state systems
disintegrate before the final singularity [5]. Here we show
that little-rip models, despite not having a final singularity,
also produce the disintegration of bound structures. As a
first approximation, the disintegration time is when the
dark energy density equals the mean density of the system.
A more accurate method was presented in [7]. We shall
employ both methods to estimate the disintegration of the
Sun-Earth system.1 For the little-rip models 1 and 2, with
the best-fit parameters derived in the previous section, we
find the time t��� from the present time t0 until the Earth
(�)—Sun (�) system is disintegrated to be:

Model 1: t��� ’ 8 Tyrs (26)

Model 2: t��� ’ 146 Gyrs: (27)

Note that the disintegration time for model 2 is less than
that of model 1, which is expected since � for model 2
grows faster than � for model 1.

It is straightforward to estimate the corresponding t���
for big-rip models with constant w to be [6]

t��� ’
�
11 Gyrs

j1þ wj
�
; (28)

and it is almost identical to trip, which is about 1 yr later.

Clearly, little-rip models can produce this disintegration
either earlier or later than big-rip models, depending on the
exact parameters of each model. For example, by putting,
w ¼ �1–10�3 in Eq. (28), we find a value of 11 Tyrs
for t���, which is larger than that of models 1 and 2 in
Eqs. (26) and (27). In this case, disintegration occurs ear-
lier in the little-rip model than in the big-rip model.
The five energy conditions (weak, null, dominant, null

dominant, strong) (see, e.g., Ref. [24]) are all violated by
all little-rip and big-rip models. A simple way to see this is
that ifw<�1, which occurs for any rip, a boost is allowed
with ðv=cÞ2 >�w=c to an inertial frame with negative
energy density. Having said that, if general relativity itself
fails for length scales bigger than that of galaxies, we may
not be constrained by the same energy conditions.

V. DISCUSSION

In the big rip, the scale factor and density diverge in a
singularity at a finite future time. In the �CDM model,
there is no such divergence and no disintegration because
the dark energy density remains constant. The little rip
interpolates between these two cases; mathematically it
can be represented as an infinite limit sequence which
has the big rip and the �CDM model as its boundaries.
Such models can be represented generically by a density
varying with scale factor as in Eq. (19).
Physically, in the little rip, the scale factor and the

density are never infinite at a finite time. Nevertheless,
such models generically lead to structure disintegration at
a finite time. For models consistent with current supernova
observations, such disintegration can occur either earlier or
later in a little-rip model than in a big-rip model, depending
on the parameters chosen for the models. However, for a
given present-day value of w, the big-rip model with
constant w will necessarily lead to an earlier disintegration
than the little-rip model with the same present-day value
of w. This results from the fact that w increases monotoni-
cally in the little-rip models, resulting in a smaller value
for � at any given a than in the corresponding constant-w
big-rip model, and therefore, a lower expansion rate. Thus,
supernova bounds on the epoch of disintegration for
constant-w big-rip models also apply to little-rip models;
one cannot simultaneously satisfy supernova constraints
and hasten the onset of disintegration to an arbitrarily early
time simply by iterating exponentials in the expansion law.
Furthermore, supernova data force both big-rip and

little-rip models into a region of parameter space in which
both models resemble �CDM. In this limit, big-rip and
little-rip models produce essentially the same expansion
law up to the present, despite having very different future
evolution. Thus, current data already make it essentially

1When the Sun becomes a red giant in �5 Gyrs, it will
envelope Mercury and Venus, and (maybe) Earth [23]. Here,
for the sake of making a point, we assume the Earth will
continue to orbit the Sun until unbound by dark energy.
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impossible to determine whether or not the Universe will
end in a future singularity.

Finally, we remark that since the novel and speculative
cyclic cosmology proposed in Ref. [25] requires only dis-
integration and not a singularity, such cyclicity would seem
to be possible within a little-rip model instead of the big-rip
considered in [25]. This is one potentially fruitful direction
for future research [26].
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