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Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena

and exploring fundamental physics. The waves produced by binary black hole mergers will provide a

pristine environment in which to study strong-field dynamical gravity. Extracting detailed information

about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is

not described by general relativity, analyses that are based on waveforms derived from Einstein’s

field equations could result in parameter biases and a loss of detection efficiency. A new class of

‘‘parameterized post-Einsteinian’’ waveforms has been proposed to cover this eventuality. Here, we apply

the parameterized post-Einsteinian approach to simulated data from a network of advanced ground-based

interferometers and from a future space-based interferometer. Bayesian inference and model selection are

used to investigate parameter biases, and to determine the level at which departures from general relativity

can be detected. We find that in some cases the parameter biases from assuming the wrong theory can be

severe. We also find that gravitational wave observations will beat the existing bounds on deviations from

general relativity derived from the orbital decay of binary pulsars by a large margin across a wide swath of

parameter space.
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I. INTRODUCTION

Einstein’s theory of gravity has been subject to a wide
array of experimental tests and has passed them all with
flying colors [1]. None of these tests, however, has probed
the strong-field dynamical regime that pertains to the final
inspiral and merger of compact objects. The Hulse-Taylor
binary pulsar PSR B1913þ 16 [2] and the double binary
pulsar PSR J0737-3039A [3,4] have provided convincing
evidence for the existence of gravitational waves, and
have served as unique laboratories to test general rela-
tivity (GR), but these objects have relatively small
orbital velocities, v=c� 10�3, a mere factor of 10 faster
than the Earth’s orbit around the Sun. The parameter space
covered by black hole mergers, where orbital velocities
v=c � 10�3 and can approach v=c� 0:7, is currently
terra incognita—dragons may yet lurk there.

If not accounted for, the possibility that Einstein’s theory
of gravity may not correctly describe the production and
propagation of gravitational waves could have dire con-
sequences for gravitational wave astronomy. In the case of
ground-based detectors, the detection of weak signals
buried below the instrument noise requires accurate mod-
els of the gravitational waveforms. Errors in the modeling
of these waveforms can lead to a loss in detection effi-
ciency. When the signals are stronger, as will often be the
case with space-based observations of black hole mergers,
waveform templates will no longer be needed for detec-
tion, but a waveform model will be required to infer the
physical parameters of the system, such as the masses and

spins of the black holes, and the distance to the system.
Waveform models based on an incorrect theory of gravity
will lead to fundamental bias [5] in the recovered parame-
ters. Because these waveforms would not accurately de-
scribe nature, the parameters that maximize the fit of such a
waveform to data would not correspond to the true physical
values of the system. This bias is distinct from that caused
by imperfect modeling of GR, as explored in [6], as it
reflects a fundamental lack of knowledge about the true
nature of gravity, and not simply the use of inaccurate
physical assumptions—see [5] for more details.
Turning the problem around, the discovery that

Einstein’s theory is flawed would be the greatest result to
come out of gravitational wave astronomy [7]. This has
served as the motivation for the development of a wide
range of tests of GR that use gravitational wave observa-
tions. These tests can be broadly classified as ‘‘extrinsic’’
or ‘‘intrinsic.’’ Extrinsic tests are possible when there is
a concrete alternative theory, such as massive gravitons
[8–14], or Brans-Dicke theory [9,10,14–16]. Intrinsic tests
work within the confines of GR, and take the form of
internal consistency checks, such as measuring the multi-
polar structure of the metric [17,18], or multimodal spec-
troscopy of black hole (BH) inspiral and ringdown
waveforms [19,20]. These tests are valuable, but they do
not cover the full spectrum of possibilities. The existing
extrinsic tests are limited by the lack of viable alternative
models, while the intrinsic tests do not so much test GR, as
‘‘test the nature of massive compact bodies within GR’’ (to
quote [21]).
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Convincing alternative models to GR are hard to find
because none of the currently proposed alternatives can
satisfy key criteria that physicists would like to require.
On the observational front, one wishes that any GR alter-
native passes all Solar System and binary pulsar tests with
flying colors, only predicting deviations from GR in the
strong-field regime, where tests are currently lacking.
Many theories, such as Brans-Dicke theory [9,10,14–16],
are heavily constrained by this requirement [1]. On the
theoretical front, one would wish viable GR alternatives
to lead to well-posed theories, with a positive definite
Hamiltonian and free of instabilities. All perturbative
string theory and loop quantum gravity low-energy effec-
tive theories [22,23] currently lead to higher-derivative
theories, which might violate this theoretical criteria.

The paucity of concrete alternative models to GR [24]
has impacted other testing grounds, such as those based on
solar system observations, or the aforementioned binary
pulsar systems. In those instances, the standard approach
has been to develop models that parameterize a wide class
of possible departures from GR—the parameterized
post-Newtonian formalism [25–28] and the parameterized
post-Keplerian formalism [29]. It is natural to adopt the
same strategy when analyzing gravitational wave data,
which leads to the parameterized post-Einsteinian (ppE)
formalism introduced in Ref. [5].

To motivate this approach, consider the standard post-
Newtonian (PN) expression for the dominant contribution
to the stationary phase waveform describing the Fourier
transform of the time-domain gravitational wave strain
signal of the inspiral of two nonspinning black holes on
circular orbits (see e.g. [10]),

~h GRðfÞ ¼
ffiffiffiffiffiffi
5

24

s
C

�2=3
AðfÞM

5=6

DL

ei�ðfÞ; (1)

where f is frequency, M ¼ �3=5M is the chirp mass,
M ¼ m1 þm2 is the total mass, � ¼ m1m2=M

2 is the
dimensionless, symmetric mass ratio, DL is the luminosity
distance, and C is a geometric factor that depends on the
relative orientation of the binary and the detector [its
average for Laser Interferometer Space Antenna (LISA)

is �C ¼ 2=5]. The amplitude AðfÞ and phase �ðfÞ are

developed as a series in u ¼ �Mf ¼ �3=5v3, where v is
the relative velocity between the two bodies [30]:

A ðfÞ ¼ X1
k¼0

�ku
ð2k�7Þ=6 (2)

and

�ðfÞ ¼ 2�ftc ��c þ
X1
k¼0

½c k þ c kl lnu�uðk�5Þ=3: (3)

The coefficients �kð�Þ, c kð�Þ, and c klð�Þ are currently
known up to k ¼ 7 in the post-Newtonian expansion
of GR.

In the simplest proposal of Yunes and Pretorius [5], the
phase and amplitude are modified by only one ppE term
each, but as pointed out by the authors there is no reason to
believe that an alternative theory of gravity will predict
such a restricted deviation from GR. In view of this, Yunes
and Pretorius proposed four different parametrizations that
differed in their level of complexity, one of the most
complicated of which is (see Eq. (46) in [5])
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�
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�iu
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�GRðfÞ þ

X
i

�iu
bi

�
;

(4)

where the coefficients �i and �i may depend on the
symmetric mass ratio � (and in more general cases, also
on the spin angular momenta and the difference between
the two masses) and AGR and �GR are the standard
expressions in Eqs. (2) and (3). This is in essence the
ppE approach.
In an earlier study, Arun et. al. [31–33] considered what

can now be interpreted as a restricted version of the ppE
formalism in which the exponents ai and bi are required to
match those found in GR. This amounts to asking how well
the standard PN expansion coefficients could be recovered
from gravitational wave observations. They also developed
internal self-consistency checks based on the observation
that each coefficient c kð�Þ provides an independent esti-
mate of the mass ratio �. While interesting, these tests are
limited in scope as few of the well-known alternative
theories of gravity (Brans-Dicke [9,10,14–16], massive
graviton [8–14], Chern-Simons [22,34–37], Variable G
[38], TeVeS [39] etc.) have corrections with exponents ai
and bi that match those of GR [5]. The full ppE formalism
allows us to look for a much wider and realistic set of
possible departures from GR.
Our goal here is to study how the ppE formalism can be

used to search for waveform deviations from GR using data
from the next generation of ground-based interferometers
[advanced Laser Interferometer Gravitational wave
Observatory (aLIGO)/advanced Virgo (aVirgo)] and future
space-based interferometers (e.g. LISA). Bayesian model
selection is used to determine the level at which departures
from GR can be detected (See Ref. [40] for a related study
that uses Bayesian inference to study constraints on
massive graviton theories). Advanced Markov Chain
Monte Carlo (MCMC) techniques are used to map out
the posterior distributions for the models under considera-
tion. From these distributions, we are able to quantify the
degree of fundamental bias in parameter extraction, and in
particular, if the fundamental bias can be significant in
situations where there is no clear indication that there are
departures from GR.
Recently, Del Pozzo et al. [40] performed a similar study

that applied Bayesian model selection to estimate the
bounds that could be placed on massive graviton theory.
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As such, their work is a subcase of the ppE framework,
i.e. a particular choice of (b, �). Their implementation
differed from ours in that they used nested sampling while
we used MCMC techniques, but as we will show, our
results are in agreement with theirs for the relevant
subcase.

We find that gravitational wave observations will allow
us to extend the existing bounds derived from pulsar orbital
decay [41] into the region of parameter space that covers
strong-field departures from GR (ai > 0 and bi >�5=3Þ
(see Figs. 1 and 2 in Sec. IVA). As expected, we find that
the strength of the bounds on the ppE parameters is in-
versely proportional to the signal-to-noise ratio (SNR), and
the extent to which deviations between GR templates and
non-GR signals can be detected (the departure of the
‘‘fitting factor’’ from unity) scales as 1=SNR2. The loga-
rithm of the odds ratio used to decide if a signal is
described by GR or some alternative theory follows the
same 1=SNR2 scaling. A more surprising result is the
possibility of ‘‘stealth bias’’ whereby the parameters re-
covered using GR templates can be significantly biased
even when the odds ratio shows no clear preference for
adopting an alternative theory of gravity.

The remainder of this paper is organized as follows.
Section II introduces the analysis framework in more de-
tail, including a discussion of the waveform model, noise
spectrum, and Bayesian tools used. Section III describes in
detail the computational techniques used to implement the
analysis. Section IV presents the results of our analysis.
Section V closes with a discussion of how our results might
change as the degree of realism is increased, and identifies
key questions to be addressed in future work. Throughout
this paper, we use geometric units with G ¼ c ¼ 1.

II. ANALYSIS FRAMEWORK

A. Bayesian inference

Questions of model selection and parameter biases can
be addressed very naturally in the framework of Bayesian
inference. This approach is now well established in the
field of gravitational wave data analysis, as are the tools
used to carry out the analysis. To avoid unnecessary repe-
tition, wewill focus on those aspects of the analysis that are
new, and refer the reader to Ref. [42] for a detailed
description of the techniques used.

We are interested in comparing the hypothesis H 0 that
gravity is described by GR with the hypothesis H 1 that
gravity is described by an alternative theory belonging to
the ppE class. Here, we are dealing with nested hypotheses,
as the ppE models include GR as a limiting case. When
new data d becomes available, our prior belief pðH Þ in
hypothesis H is updated to give the posterior belief
pðH jdÞ. Bayes’ theorem tells us that

pðH jdÞ ¼ pðdjH ÞpðH Þ
pðdÞ ; (5)

where pðdjH Þ is the (marginal) likelihood of observing
the data d if the hypothesis holds, and pðdÞ is a normal-
ization constant. For hypotheses described by models with
continuous parameters, the likelihood pðdjH Þ is found by
marginalizing the likelihood pðdj ~�;H Þ of observing data

d for model parameters ~�,

pðdjH Þ ¼
Z

d ~�pð ~�;H Þpðdj ~�;H Þ; (6)

where pð ~�;H Þ is the prior distribution of the parameters.
The marginalized likelihood, pðdjH Þ, is also known as the
evidence for a given model. Hypotheses are compared by
computing the odds ratio, or Bayes factor,

BF ¼ O1;0 � pðH 1jdÞ
pðH 0jdÞ

¼ pðH 1Þ
pðH 0Þ

pðdjH 1Þ
pðdjH 0Þ

; (7)

which gives the ‘‘betting odds’’ of H 1 being a better
description of nature thanH 0. The normalization constant
pðdÞ cancels in the odds ratio. The prior odds ratio
pðH 1Þ=pðH 0Þ gets updated by the likelihood ratio,
pðdjH 1Þ=pðdjH 0Þ, which is also known as the evidence
ratio. In Bayesian analysis, ‘‘today’s posterior is tomor-
row’s prior’’ [43], and pðH jdÞ is used in place of pðH Þ in
subsequent analyses. While a single black hole inspiral
event may not yield strong evidence for a departure from
GR, several such observations can be combined to make a
more compelling case.
In addition to simply detecting deviations from GR, we

are also interested in studying how departures from GR
might affect parameter estimation. This can be assessed by

looking at the posterior distribution function pð ~�jd;H Þ,
which describes the probability distribution for parameters
~� under the assumption that the signals are described by
model H given data d. The posterior distribution is given
by the product of the prior and the likelihood, normalized
by the evidence:

pð ~�jd;H Þ ¼ pð ~�;H Þpðdj ~�;H Þ
pðdjH Þ : (8)

Once the prior distribution and the likelihood function have
been specified, we are left with the purely mechanical task
of computing the posterior distributions and odds ratio for
competing hypotheses.

B. Waveform model

The original ppE waveforms were for nonspinning,
equal mass binaries in quasicircular orbits, and included
a description of the dominant harmonic through inspiral,
merger, and ringdown. In the current analysis, we restrict
our attention to the inspiral portion of the waveform, but
our signals come from unequal mass binaries. We have
examined the generalization of the ppE framework for
unequal mass systems, and find that for a single detection
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it is indistinguishable from the equal mass case. Including
multiple detectors, and the merger and ringdown phases,
which increase the signal-to-noise ratio, can help break
parameter degeneracies that exist in the inspiral phase, but
these benefits come at the cost of having to consider addi-
tional ppE parameters. We will consider this in a separate
publication.

In the stationary phase approximation, our ppE wave-
forms are parameterized as follows:

~hðfÞ ¼ ~hGRðfÞ½1þ �ua�ei�ub f < fmax; (9)

where (�, a) are amplitude ppE parameters and (�, b) are
phase ppE parameters. As noted previously, both � and �
can depend on the spin angular momenta and mass differ-
ence of the two bodies, as well as the symmetric mass
ratio of the system. With a single detection, however, these
dependencies are impossible to determine, and so we defer

an analysis of them to future work. Here, ~hGRðfÞ is the
usual GR waveform quoted in Eq. (1). We set the maxi-
mum frequency cutoff at twice the innermost stable circu-
lar orbit frequency of a system described by GR. A more
consistent choice would be to use the minimum of the ppE
energy function, but the results were found to be fairly
insensitive to the choice of fmax. To simplify the analysis,
we restrict our attention to the lowest PN order in the
amplitude of Eq. (2), setting �k ¼ 0 for k > 0. The GR
phase terms in Eq. (3) are kept out to k ¼ 7. Furthermore,
we limit the range of the ppE parameters a and b to not be
greater than these corresponding highest order PN terms,
namely a < 2=3 and b < 1.1

As discussed in the Introduction, the ppE framework
introduces i sets of ppE theory parameters (�i, ai, �i, bi)
that modify the amplitude and phase, but we here work to
leading order, keeping only the i ¼ 0 set. This approach
will tend to overestimate how well the ppE parameters
ð�0; a0; �0; b0Þ � ð�; a;�; bÞ can be constrained by the
data. A better approach, which we intend to pursue in
future studies, is to marginalize over the higher-order
terms.

Table I lists the leading ppE corrections that have been
computed for several alternative theories of gravity.
Generally, the exponents a and b are pure numbers fixed
by the theory, while the amplitudes � and � are free
parameters that relate to the unknown coupling strengths
of the modified/additional gravitational degrees of
freedom.

C. Instrument response

The aLIGO/aVirgo analysis was performed using simu-
lated data from the 4 km Hanford and Livingston detectors
and the 3 km Virgo detector. The time delays between the
sites and the antenna beam patterns were computed using
the expression quoted in Ref. [47]. Since the detectors
barely move relative to the source during the time the
signal is in band, the antenna patterns can be treated as
fixed and the time delays �t between the sites can be
inserted as phase shifts of the form 2�f�t. For the instru-
ment noise spectral density, we assumed all three instru-
ments were operating in a wide-band configuration with

SnðfÞ ¼ 10�49

�
x�4:14 � 5x�2 þ 111

ð2� 2x2 þ x4Þ
2þ x2

�
;

(10)

and x ¼ ðf=215 HzÞ.
The space-based (LISA) analysis was performed using

the A and E time delay interferometry channels [48] in the
low frequency approximation [49,50]. It is known that this
approximation can lead to biases in some of the recovered
parameters, such as polarization and inclination angles.
This, however, is an example of a modeling bias introduced
by inaccurate physical assumptions, and not of a funda-
mental bias resulting from incomplete knowledge of the
theory describing gravity. In our current study, the model-
ing bias is avoided by using the same low frequency
response model to produce the simulated data and to
perform the analysis.
In contrast to the ground-based detectors, the signals

seen by LISA are in band for an extended period of
time, and the motion of the detector needs to be taken
into account. The time-dependent phase delay between the
detector and the barycenter and the time-dependent an-
tenna pattern functions are put into a form that can be
used with the stationary phase approximation waveforms
by mapping between time and frequency using tðfÞ ¼
ðd�=dfÞ=2�. Details of this procedure can be found in
Ref. [51]. The noise spectral density model includes

TABLE I. Leading ppE corrections in several alternative theo-
ries of gravity (GR corresponds to � ¼ � ¼ 0). In dynamical
Chern-Simons gravity, (�, �) are proportional to the spin-orbital
angular momentum coupling. For nonspinning binaries, the last
row would simplify to ð�;�Þ ¼ ð0; 0Þ, but we include it here for
completeness.

Theory a � b �

Brans-Dicke [9,10,14–16] � � � 0 �7=3 �
Parity-Violation [22,34–37] 1 � 0 � � �
Variable GðtÞ [38] �8=3 � �13=3 �
Massive Graviton [8–14] � � � 0 �1 �
Quadratic Curvature [23,44] � � � 0 -1/3 �
Extra Dimensions [45] � � � 0 �13=3 �
Dynamical Chern-Simons [46] þ3 � þ4=3 �

1It is certainly conceivable that the leading-order deviation
arising from an alternative theory comes in at some high order,
and has a much larger magnitude than the nearest exponent term
in the PN expansion. Thus, it is not a priori inconsistent to allow
a range of exponents outside of that of the PN expansion used for
the GR signal in the ppE waveforms, though this would require
more complicated priors on the amplitudes, and so for simplicity
in this study we restrict to the stated range.
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instrument noise and an estimate of the foreground con-
fusion noise from unresolved galactic binaries, matching
those quoted in Ref. [52].

D. Likelihood function

Under the assumption that the noise is Gaussian, the
likelihood that the data d would arise from a signal with

parameters ~� is given by

pðdj ~�Þ ¼ Ce��2ð ~�Þ=2; (11)

where C is a constant that depends on the noise level. Here,

�2ð ~�Þ ¼ ðd� hð ~�Þjd� hð ~�ÞÞ; (12)

and the brackets denote the noise-weighted inner product

ðajbÞ ¼ 2
Z ~aðfÞ~b�ðfÞ þ ~a�ðfÞ~bðfÞ

SnðfÞ df: (13)

For a theoretical study that assumes the noise is Gaussian
and has a known spectrum, there is no need to add simu-
lated noise to the data—the appropriate spread in the
parameter values and overall topography of the likelihood
surface follow from the functional form of the signal
and the noise weighting in Eq. (13). Thus, we may write

d ¼ hð ~�0Þ where ~�0 are the true source parameters.
Many alternative theories of gravity predict the exis-

tence of polarization states beyond the usual ‘‘plus’’ and
‘‘cross’’ polarizations of GR that complicate the treatment
of the instrument response, whose Fourier transform is

~hinst ¼ Fþ ~hþ þ F� ~h� þ FS
~hS þ FL

~hL

þ FV1
~hV1 þ FV2

~hV2: (14)

Here, ~hþ� are the usual plus and cross-polarization states,
~hS is a scalar (breathing) mode, ~hL is a scalar longitudinal

model, and ~hV1;V2 are two vectorial modes [53], while the

F’s are the detector antenna patterns [54], which depend on
the sky location (�, �) and polarization angle c of the
signal.

To simplify the analysis, we assume the usual polariza-
tion content for a circular binary viewed at inclination
angle 	 and neglect the other contributions:

~hþ ¼ ð1þ cos2	Þ<ð~hÞ þ 2 cos	=ð~hÞ;
~h� ¼ ð1þ cos2	Þ=ð~hÞ � 2 cos	<ð~hÞ:

(15)

In other words, we have assumed that the signal in the

detector has the form ~sðfÞ ¼ Fð�;�; c ; 	Þ~hðfÞ with the
function Fð�;�; c ; 	Þ given by the usual GR expression.
If additional polarization states were present, this assum-
ption would result in a reduction in detection efficiency
and biases in the recovery of the extrinsic parameters
(�, �, c , 	).

The justification for making this simplification is that
we are primarily interested in how well the intrinsic

parameters (�, a, �, b) can be constrained, and we expect
these parameters to be only weakly correlated with the
extrinsic parameters. The presence of additional polariza-
tion states will provide an additional handle on detecting
departures to GR [55–57], and we plan to explore this
possibility in the context of the ppE formalism in future
work.

Defining Aþ ¼ jFþ ~hþðf; ~�Þj and A� ¼ jF� ~h�ðf; ~�Þj,
and similarly for ~�0, the chi-squared goodness of fit of
Eq. (12) can be reexpressed as

�2ð ~�Þ ¼ 4
Z df

SnðfÞ ½A
2þ þ A2� þ A02þ þ A02�

� 2ðAþA0þ þ A�A0�Þ cos��
� 2ðA�A0þ � AþA0�Þ sin���; (16)

where �� ¼ �ð ~�Þ ��ð ~�0Þ. As noted in Ref. [58], in the
regime of interest where �2 is small, all the terms in the
above integrand are slowly varying functions of frequency,
so it is possible to compute the likelihood very cheaply
using an adaptive integrator.

E. Priors

As we shall see, the choice of priors on the ppE parame-
ters has a significant effect on the results, especially when
it comes to model selection. The natural priors on the ppE
parameters are those that come from existing data on
binary pulsars, but these turn out to range from very re-
strictive to wide open depending on what sector of the ppE
parameter space is being examined. To simplify the analy-
sis, we adopt uniform priors for the ppE parameters and
seek to determine where direct GW observations would
prove more constraining than the existing binary pulsar
observations.
The priors on the exponents a and b are taken to be uni-

form across the ranges a 2 ½�3; 2=3� and b 2 ½�4:5; 1�.
The upper end of the range is chosen so that the ppE
corrections to the amplitude and the phase do not go to
higher order in the expansion parameter u than the post-
Newtonian order of the reference GR waveforms. The
lower end of the range is chosen to cover all known
alternative theories, though in any case, the low end of
the range turns out to be far better constrained by binary
pulsar observations.
The priors on �, � are more difficult to set. Lacking any

theoretical or experimental guidance, we assign uniform
priors for the amplitudes �;� 2 ½�1000; 1000�. The
range in �, � is set such that it is sufficiently large that
at the most positive end of the prior ranges on a, b, the
exploration of possible values of �, � is not restricted by
prior bounds. That is, even in the most poorly constrained
region of the ppE parameter space, the constraints are not
due to an overly restrictive prior.
The parameters used to describe the black hole binary

were the log of the total mass M and the log of the chirp
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mass M, the sky location ( cos�, �), orbital plane orien-
tation ( cos�L, �L), merger phase �c, merger time tc, and
luminosity distance DL. The angular parameters are taken
to have uniform priors that covered their natural range.
For the aLIGO studies, we assign uniform priors:
lnðM=M	Þ 2 ½1:3; 5:3�; lnðM=M	Þ2½0:55;4:5�; tc=s 2
½1; 16�; DL=Mpc 2 ½0:1; 104�. For the LISA studies,
we assign uniform priors: lnðM=M	Þ 2 ½12:2; 16:8�;
lnðM=M	Þ 2 ½11:4; 16�; tc=s 2 ½1; 6� 107�; DL=Gpc 2
½0:01; 1000�. While we could use more physically moti-
vated priors for the black hole parameters (such as distance
priors that scaled with D2

L), these choices have little effect
on the model comparison between GR and ppEwaveforms.

III. COMPUTATIONAL TECHNIQUES

Posterior distribution functions for the alternative hy-
potheses were computed using the MCMC implementation
described in Ref. [42], additionally enhanced by adding
Differential Evolution[59,60] to the mix of proposal dis-
tributions. The evidence for the competing hypotheses was
calculated using the volume tessellation algorithm [61] and
cross-checked using thermodynamic integration [62].

The ppE waveforms introduce a number of com-
plications that make parameter estimation and model se-
lection challenging. These complications can be seen when

using the quadratic Fisher matrix approximation �ij ¼
�@i@jhlnpð ~�jdÞi to estimate the parameter correlation ma-

trix Cij ¼ h��i��ji 
 ��1
ij . When evaluated at the GR

limit point ð�;�Þ ¼ ð0; 0Þ, the quadratic approximation
to the Fisher matrix is singular, and it is necessary to
include higher-order derivatives to obtain a finite covari-
ance matrix. The situation is worse when a ¼ 0, as then �
is fully degenerate with DL, and when b ¼ 0, as then � is
fully degenerate with �c. Partial degeneracies also exist
whenever the a or b exponents match the exponents found
in the post-Newtonian expansion of GR.

The various degeneracies and parameter correlations
do not constitute a fundamental problem with the ppE
formalism, but they do demand that we use very effective
MCMC samplers that are able to fully explore the para-
meter space. The algorithm described in Ref. [42] uses
parallel tempering with multiple, coupled chains, with
each chain exploring a tempered likelihood surface

pðdj ~�Þ1=T . The high-temperature chains explore more
widely, and can communicate this information via parame-
ter exchange to the T ¼ 1 chain that is used for parameter
estimation. Parallel tempering helps the Markov chains
explore complicated posterior distributions, but conver-
gence can still be slow if the proposal distributions are
not well chosen.

The ultimate proposal distribution is the posterior dis-
tribution itself, but since that is unavailable in advance,
we have to make do with approximations to this ideal. The
covariance matrix Cij provides a local approximation to

the posterior distribution. It can be estimated semianalyti-
cally using the Fisher information matrix, or more directly
from the recent past history of the Markov chain itself.
The latter approach introduces hysteresis into the chains,
but so long as the covariance matrix is only updated occa-
sionally the chains are asymptotically Markovian. In the
present study, we continued to use the Fisher-matrix–based
proposal distributions described in Ref. [42], but found that
the convergence time of the chains was very long until we
augmented these techniques with proposals based on
Differential Evolution.
Differential Evolution (DE) provides an approximation

to the posterior distribution based on the past history of the
chains. Unlike methods based on the covariance matrix,
DE works extremely well with highly correlated parame-
ters. In its original formulation, DE [59] was designed to
work with a population of N parallel chains (all with
temperature T ¼ 1). The idea is very simple and can be
coded in a few lines: Chain i is updated by randomly
selecting chains j and k with j � k � i, forming the dif-

ference vector ~�j � ~�k and proposing the move

~y i ¼ ~�i þ �ð ~�j � ~�Þ: (17)

For D-dimensional multivariate normal distributions, the

optimal choice for the scaling is � ¼ 2:38=
ffiffiffiffiffiffiffi
2D

p
. Since

the difference vector points along the D-dimensional error
ellipse, the jumps are usually ‘‘in the right direction.’’ It is a
good idea to occasionally (e.g. 10% of the time) propose
jumps with � ¼ 1, which act as mode-hopping jumps
when the samples (j, k) come from separate modes of the
posterior.
The original formulation of DE is not very practical since

it requires N > 2D parallel chains for each rung on the
temperature ladder. A more economical approach is to use
samples from the past history of each chain [60]. It can be
shown that this approach is asymptoticallyMarkovian in the
limit as one uses the full past history of the chain. We have
implemented a variant of the DE algorithm as follows:
(i) Create a history array for each parallel chain.

Initialize a counter M. Store every 10th sample in
the history array and add to the counter each time
a sample is added. DE moves are more effective if
points during the burn-in phase of the search are
discarded from the history array.

(ii) Draw two samples from the history array: j 2
½1;M�, k 2 ½1;M� and repeat if k ¼ j. Propose the
move to

~y ¼ ~�þ �ð ~�j � ~�kÞ: (18)

Here, we draw � from a Gaussian of width

2:38=
ffiffiffiffiffiffiffi
2D

p
for 90% of the DE updates and set

� ¼ 1 for the rest.
The standard DE proposal seeks to update all the pa-

rameters at once, but it is often more effective to update
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smaller sub-blocks of highly correlated parameters. We did
this in �30% of the DE proposals.

The fraction of all proposed moves that use DE is a
tunable parameter. We used 60% DE proposals, 30%
Fisher-matrix–based proposals, 5% draws from the prior
distribution, and 5% uniform draws with width �10�6 of
the prior range. Notice that even though the Fisher matrix
might be singular in certain regions of the parameter
manifold, one can still propose jumps with it. In those
regions, the proposed jumps will not lead to a better like-
lihood, and will simply be rejected.

With the mix of proposal distributions described above,
and using �10 parallel chains geometrically spaced with
Tiþ1 ¼ 1:3Ti, our MCMC implementation converges
quickly to a stationary distribution. The chains are typi-
cally run for 500 000 samples, with the first 100 000 dis-
carded based on a conservative estimate of the burn-in
length.

The marginal likelihood, or evidence, pðdjH Þ is com-
puted using independent codes supplied by Martin
Weinberg and Will Farr that implement Weinberg’s vol-
ume tessellation algorithm (VTA) [61]. The VTA uses the
posterior samples from the Markov chain to assign proba-
bility to a partition of the sample space and performs the
marginal likelihood integral directly. The samples are par-
titioned using a kd-tree, and volume elements containingm
samples (we use m ¼ 32 or m ¼ 64) are used to provide a
discrete approximation to the integral in Eq. (6). The
integrand in each volume element is approximated using
either the average posterior density (Farr’s code) or the
median posterior density (Weinberg’s code) of the m
samples in the volume element. The VTA is applied to a
subsample of the full chain, and by repeating the calcula-
tion with different subsamples in a process called boot-
strapping, it is possible to compute statistical error bars on
the evidence caused by using finite length Markov chains.

There is a trade-off in the choice of the boxing number
m, with large values of m providing better estimates of
the average or mean posterior density in each cell, and
small values of m providing better resolution to features in
the posterior. In our experience, the statistical error found
from the bootstrap procedure is usually smaller than the
systematic error that we estimate by varying the boxing
size from m ¼ 16 to m ¼ 64.

As a cross-check, we applied thermodynamic integra-
tion [62] to a few test cases using the implementation
described in the appendix of Ref. [63]. In tests on distri-
butions where the evidence can be calculated analytically,
such as multivariate Gaussians, we found that thermody-
namic integration gave more accurate results. On the other
hand, thermodynamic integration requires many more
chains (upwards of 50 for the ppE studies) and a careful
tuning of the temperature ladder in order to resolve the
integrand. This tuning necessitates a long pilot run, or
complicated adaptive tuning of the temperature ladder.

So, while thermodynamic integration produces more accu-
rate results, it requires careful tuning and is far more
computationally intensive. Based on the tests described
in the Appendix, we estimate that the errors in the (natural)
log Bayes factors computed using the VTA algorithm are
of order �2.

IV. RESULTS

We explore a range of questions concerning the appli-
cation of the ppE formalism to detecting departures from
GR using gravitational wave observations from both LISA
and the three-detector network of aLIGO/aVIRGO inter-
ferometers. First, we derive simple estimates of how well
the ppE parameters can be constrained by gravitational
wave data by using ppE templates to detect GR signal
injections. The spread in the recovered ppE parameters
establishes the range that is consistent with GR, and values
outside of this range would point towards a departure from
GR. We then compare these simple bounds to the more
rigorous (and computationally expensive) bounds that can
be derived from Bayesian model selection. Finally, we
explore how searching for gravitational waves using GR
templates can lead to biases in the recovered parameters if
nature is described by an alternative theory of gravity. We
find that these biases can become significant before the
evidence disfavors GR.

A. Cheap bounds and comparison
with pulsar bounds

The first question we seek to address in this paper is how
well the four ppE parameters �, a, �, b can be determined.
One approach to answering this question is to examine how
a search using ppE templates would look when used to
characterize a signal that is consistent with GR. That is, if
the signal observed is described by GR to the given level of
accuracy of our detectors, what values for the ppE parame-
ters will be recovered from a search with ppE templates?
Because we know that in GR the values of � and � should
be 0 for all values of a and b, we wish to determine the
typical spread in the recovered value of (�, �), centered at
zero. The standard deviation in this spread then gives us a
constraint on the magnitude of the deviation that is still
consistent with observations, i.e. deviations that are
‘‘inside our observational error bars.’’
Cheap constraints will be defined as the ð3
Þ-bound on

the posterior distribution of ppE parameters � or �, while
keeping a or b fixed and marginalizing over all other
system parameters. These bounds are ‘‘cheap’’ because
we do not have to rerun a search with pure GR templates
and then compute the evidence, via integration of the
posterior, to compute the Bayes factor (the latter is par-
ticularly computationally expensive). These cheap bounds
are similar to constraints studied by looking at the (�,�) or
(�, �) elements of the variance-covariance matrix. Our
cheap constraints, however, are 3
 ones, in contrast to the
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more standard 1
 bounds quoted from variance-covariance
matrix studies.

Rough analytic estimates for the bounds on (�, �) can
be derived by considering how the ppE terms affect the
overall amplitude A and phase � of the signal:

�lnA ’�ðuamin�uamaxÞ; �� ’�ðubmin�ubmaxÞ: (19)

Here, umin and umax are the minimum and maximum
values of the u parameter. For the aLIGO sources, umin �
3� 10�3, while for the LISA sources, umin � 10�3.
The innermost stable circular orbit cutoff in the frequency
evolution sets umax � 3� 10�2 for moderate mass ratios.
Combining these estimates with a crude Fisher matrix
estimate for how well the amplitude and phase are con-
strained: � lnA���� 1=SNR yields the 3
 bounds

j�j� 3

SNRjuamin�uamaxj j�j� 3

SNRjubmin�ubmaxj
: (20)

These estimates reproduce the overall shape of the ex-
clusion plots in the (a, �) and (b, �) planes, but they
tend to overestimate the strength of the bounds as they
do not take into account covariances with other parameters.
The � bounds turn out to be a factor of�10 weaker due to
covariances between � and the distance and inclination,
while the bounds on � come out a factor of �100 weaker
due to covariances between � and the chirp mass and mass
ratio.

Figures 1 and 2 show these cheap constraints on the ppE
amplitude parameters as a function of the exponents a and
b for a variety of aLIGO/aVirgo and LISA detections. To
generate these plots, we injected GR signals and then
searched on them with ppE templates. For each search,
either a or b was held fixed at a specific value, while the
other three ppE parameters (and all other system parame-
ters) were allowed to vary. We then calculated the standard
deviation of the posterior distribution of the relevant am-
plitude parameter � or�, and used 3 times this value as the
cheap bound shown on the plots.

A natural course of action might seem to be the follow-
ing: marginalize over a and b as well, instead of keeping
them fixed, and calculate constraints on � and � this
way. Looking at Figs. 1 and 2, however, shows why this
analysis would not be particularly helpful. The uncertainty
in � and � is so much higher at the positive ends of the
prior ranges on a and b than at the negative ends that the
Markov chains would spend almost all of their iterations
exploring this area of parameter space if a and b were
allowed to change. Thus, to get any knowledge about the
uncertainties in � and � for negative values of a and b, we
need to fix a and b.

The aLIGO systems were chosen to have network
SNR ¼ 20, but different masses and sky locations. One
system had masses m1¼6M	, m2 ¼ 18M	 (� ¼ 0:1875),
DL ¼ 258 Mpc, while the other had m1 ¼ 6M	, m2 ¼
12M	 (� ¼ 0:2222), DL ¼ 462 Mpc. The LISA sources

were at different redshifts and had different masses and
SNRs. The system at redshift z ¼ 1 hadm1 ¼ 1� 106M	,
m2 ¼ 3� 106M	 (� ¼ 0:1875), and SNR ¼ 879, while
the system at redshift z ¼ 3 had m1 ¼ 2� 106M	,
m2 ¼ 3� 106M	 (� ¼ 0:24), and SNR ¼ 280.
Figures 1 and 2 are ‘‘exclusion’’ plots, showing the

region (above the curves) which could be excluded with
a 99.73% confidence. These figures also plot the bounds on
the ppE parameters that have already been achieved
through analysis of the ‘‘golden pulsar’’ system, PSR
J0737-3039 [41]. Observe that for the amplitude parameter
�, the pulsar bounds beat the aLIGO bounds through al-
most the entire range of a; LISA can improve upon the
pulsar bounds for a > 0. For the phase parameter �,
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FIG. 1. UPPER PANEL: Bounds on � for different values of
a, found using two different aLIGO sources. The two sources
had different mass ratios, total masses, and sky locations, but
were scaled to have a network SNR of 20. The rough estimate for
the � bound from Eq. (20) is shown for comparison. Also
included is the bound on � derived from the golden pulsar
(PSR J0737-3039) data. LOWER PANEL: Bounds on � for
different values of a, found using two LISA sources at redshift
z ¼ 1 and z ¼ 3. The pulsar bound is shown for comparison.
The sources injected had the same parameters as those from the
lower panel in Fig. 2.
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however, both aLIGO and LISA do better than the pulsar
analysis through a significant portion of the range. As
expected, gravitational wave observations tend to do better
in the strong-field regime, corresponding to high post-
Newtonian terms (b >�5=3 and a > 0), while the reverse
is true for binary pulsar observations.

Vertical lines in Figs. 1 and 2 can be mapped to bounds
on specific alternative theories, which we can then com-
pare to current Solar System constraints. For example,
consider the following cases:

(i) Brans-Dicke ½ð�; b; �BDÞ ¼ ð0;�7=3; �BDÞ�: The
tracking of the Cassini spacecraft [64] has

constrained !BD > �!BD � 4� 103, which then

forces �BD < ð5=3584Þ4�2=5ðs1 � s2Þ2= �!BD, where
s1;2 are the sensitivities of the binary components

(for BHs sBH ¼ 1=2, and for NSs sNS 
 0:2–0:3).
(ii) Massive graviton ½ð�; b; �MGÞ ¼ ð0;�1; �MGÞ�:

Observations of Solar System dynamics [65] have
constrained �MG > ��MG � 2:8� 1012 km, which
then forces �MG <�2ðD= ��MGÞMð1þ zÞ�1 km�2,
where D is a distance measure to the source [8].

The Solar System constraint on �MG is shown in Fig. 2
with a black circle.2 Observe that the constraints we could
place with aLIGO and particularly LISA can be orders of
magnitude stronger than Solar System constraints (below
the black circle). This is more easily seen by mapping our
projected constraints on �MG to constraints on �MG; with
the aLIGO source, we find �MG & 8:8� 1012 km, while
for the LISA source, we find �MG & 3:763� 1016 km.
This is consistent with results from previous Fisher
[8–16] and Bayesian studies [40]. Plotted for comparison
are the bounds from Del Pozzo et al. [40] on the upper
panel of Fig. 2 and from Stavridis and Will [11] on the
lower panel of Fig. 2 both labeled as ‘‘massive graviton.’’
We find that our bound on � for b ¼ �1 is quite compa-
rable to those found in these previous studies. Finally,
shown on the lower panel of Fig. 2 are the bounds found
in the study by Arun et al. [12], which allowed the PN
coefficients themselves to vary as parameters. Their
bounds on � are somewhat weaker than those we found
in our analysis, but this is an expected effect of the covari-
ance between the PN coefficients.
For all comparisons with previous studies, we took into

account differences in SNR between the systems we ana-
lyzed and those we were comparing to. We also chose
systems with the same or very similar total masses and
mass ratios as those explored in previous papers. For the
LISA systems, we compare the results from previous
papers to our results for redshift z ¼ 1.
These plots show several other features that deserve

further discussion. First, observe that all results show
very little dependence on the choice of system parameters.
This is quantitatively true for the aLIGO sources, shown in
the upper panels of Figs. 1 and 2, as these signals have the
same SNR. The LISA sources, shown in the lower panels
of Figs. 1 and 2, show a factor of �9 offset, since these
curves correspond to signals with different SNRs. The
SNR difference is a factor of �3, which is a bit surprising
as one would expect the spread on a parameter to scale with
the SNR, and not the square of the SNR. However, we are
working here in a region where the quadratic approxima-
tion to the Fisher matrix is singular, so the usual scaling
does not hold. The more rigorous bounds derived in the
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FIG. 2. UPPER PANEL: Bounds on � for different values of b
for a single SNR ¼ 20 aLIGO/aVirgo detection. Plotted here is a
ð3
Þ constraint, where 
 is the standard deviation of the �
parameter derived from the Markov chains. The sources injected
had the same parameters as those from the upper panel in Fig. 1.
Also included is the bound on � derived from the golden pulsar
(PSR J0737-3039) data, as well as bounds found from solar
system experiments and other aLIGO analyses for massive
graviton theory. LOWER PANEL: Bounds on � for different
values of b found using two LISA sources at redshift z ¼ 1 and
z ¼ 3. The pulsar bound is shown for comparison, as well as
bounds found from solar system experiments and other LISA
analyses for massive graviton theory. These other bounds are
scaled to a system with z ¼ 1.

2We do not show similar constraints for Brans-Dicke theory, as
here we consider binary BH inspirals, for which the Brans-Dicke
correction would vanish due to the no-hair theorem.
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next section do follow a linear scaling with SNR, which is
reasonable since they use ppE injections and have non-
singular Fisher matrix elements for the ppE parameters.

Another interesting feature in these plots is the spikes at
certain values of a and b. These spikes say that for those
values of a and b, gravitational wave observations can say
little about the magnitude of GR deviations. The reason for
such spikes is that for those values of a and b, � and �
become completely or partially degenerate with other pa-
rameters. For instance, when a ¼ 0, � is fully degenerate
with the luminosity distance, and when b ¼ 0, � is fully
degenerate with the initial orbital phase �c.

One can also develop cheap bounds that use ppE instead
of GR signal injections. For instance, one could start with
injections with a range of values for � and�, and then look
to see when the posterior distributions for these parameters
no longer show significant support at the GR values of
� ¼ � ¼ 0. These two types of cheap bounds are illus-
trated in Fig. 3. Given an observation of a nonzero �, a
cheap bound calculation as described in this section (solid-
line curve) would indicate a value j�j< 1:5 is still con-
sistent with GR. A similar study with ppE injections,
however, which produced the dashed-line curve posterior
distribution for �, would indicate a preference for the ppE
model over the GR model with a detection of �> 0:75.
Thus, the technique used in this section, which is a
variance-covariance study, answers an inherently different
question from a model selection study. In the next section,
we explore model selection in detail.

B. Rigorous bounds and model selection

In order to see how accurate the cheap bounds found in
the previous section are, we next performed a full Bayesian
model selection analysis on several different signals.
We injected a signal with a given set of ppE parameters
and ran a search using both GR and ppE templates. We then
calculated the Bayesian evidence for each model and from
this the Bayes factor. To compare these results to the cheap
bounds, we ran the analysis on several different ppE sig-
nals, each with the same injected value of a or b, but with
progressively larger values of � or �. This then allows us
to determine the values of ppE amplitudes � or � where
the evidence for the ppE hypothesis exceeds that of the GR
hypothesis by some large factor, which we took to be
Bayes factors in excess of 100 (in the Jeffery’s classifica-
tion [66], Bayes factors in excess of 100 represent decisive
evidence in favor of that model).
We do not expect the cheap bounds to agree precisely

with the more rigorous model selection bounds as they are
based on quite different reasoning. The cheap bounds
simulate what we would find if GR was consistent with
observations, and establishes the spread in the ppE ampli-
tude parameters that would remain consistent. If we were
to analyze some data and find ppE amplitude parameters
outside of this range, it would give us motivation to search
more rigorously for departures from GR. With the more
expensive model selection bounds, we start with non-GR
signals and seek to determine how large the departures
from GR have to be for the ppE hypothesis to be preferred.
In the first case, the distribution of � and � is known to be
centered around zero, but in the second case, they are not,
so the two analyses should not be expected to agree
precisely.
One can derive a more detailed connection between the

alternative form of the cheap bounds derived using ppE
injections (discussed at the end of the previous section) and
the more rigorous Bayesian evidence calculations using the
Savage-Dickey density ratio [67]. The latter states that for
nested hypotheses with separable priors, the Bayes factor is
equal to the ratio of the posterior and prior densities
evaluated at the parameter values that correspond to the
lower-dimensional model. If the posterior distribution was
a Gaussian with width 
 centered at � ¼ n
, and we were
using a uniform prior with widthN
, then the Bayes factor

would equal BF ¼ Ne�n2=2=
ffiffiffiffiffiffiffi
2�

p
, where this Bayes factor

shows the odds of the lower-dimensional model being
correct. For example, with N ¼ 100 and n ¼ 4 we get a
Bayes factor of BF ¼ 0:013, showing strong support for
the higher-dimensional model. While the cheap bounds
that can be derived using ppE signal injections will be
stronger than the cheap bounds that can be derived from
GR signal injections, the computational cost is higher as
multiple simulations have to be run to find the transition
point, and this approach is only moderately cheaper than
performing the full Bayesian model selection.

 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

1.6

1.8

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
α

FIG. 3. An illustration of the two approaches for calculating
cheap bounds on the ppE amplitude parameters. The solid curve
illustrates the bound that can be derived by looking at the spread
in the amplitude � when applying the ppE search to GR signals.
In this example, values of j�j> 1:5 would be taken as indicating
a departure from GR. The dashed-line curve shows the bound
that can be derived by starting with ppE signals and determining
how large the ppE amplitude needs to be for the posterior
distribution to have little weight at the GR value of � ¼ 0. In
this example, theories with �> 0:75 would be considered dis-
tinguishable from GR.
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Examples of the full model selection procedure
are shown in Fig. 4 for aLIGO/aVirgo detections with
SNR ¼ 20. Each panel shows Bayes factors for two types
of ppE search, one with a or b held fixed at the injected
value, and one in which all four ppE values were allowed to
vary. The Bayes factor, defined in Eq. (7), is here the odds
ratio between the ppE model and the GR model. A larger
Bayes factor indicates a stronger preference for the ppE
model. The search in which a or b was fixed provides the
closest comparison with the cheap bounds of the previous
section. The bounds on � derived by setting a Bayes factor
threshold of 100 are roughly 3 times larger than the cheap
bounds when b is held fixed and roughly 2 times larger
when b is free to vary. The bounds on � match the cheap
bounds when a is held fixed, and is slightly smaller when a
is allowed to vary.

We were surprised to find that the bounds are tighter for
the higher-dimensional models, with (a, b) free, than for

the lower-dimensional models, with (a, b) fixed. To ex-
plore this more thoroughly, we performed a study where
the prior on b was increased from a very small range to the
full prior range. Since holding a parameter fixed is equiva-
lent to using a delta-function prior, we expect the evidence
to interpolate between the values found when b was fixed
and when b was free to explore the full prior. Figure 5
confirms this expectation, and also provides an explanation
for the growth in the evidence.
To understand this plot, it is helpful to look at the Laplace

approximation to the evidence [68], which assumes that the
region surrounding the maximum of the posterior distribu-
tion is well approximated by a multivariate Gaussian. With
this assumption, the evidence is given by

pðdjH Þ 
 pðdj ~�;H ÞjMAP

�
�VH

VH

�
: (21)

The first term is the likelihood evaluated at the maximum
of the posterior, and the second term is the ratio of the
posterior volume �V to the prior volume V. The posterior
volume can be estimated from the volume of the error
ellipsoid containing 95% of the posterior probability.
The ratio O ¼ �V=V is termed the ‘‘Occam factor,’’ and
the quantity I ¼ log2ðV=�VÞ provides a measure of how
much information has been gained about the parameters
from the data.
Now, consider a situation where we have nested hypoth-

eses H 0 and H 1, with the second hypothesis involving
an additional parameter y. If the likelihood is insensitive
to y, then the first factor in the evidence stays the same, and
since y is unconstrained, �Vy ¼ Vy and the Occam factor

is also unchanged. Thus, both models have the same evi-
dence, even though one has more parameters than the
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other. Conversely, if the additional parameter is tightly

constrained by the data,
�Vy

Vy
can be a very small number.

In this case, the evidence for H 1 is much reduced by the
Occam factor, and the factor is referred to as an ‘‘Occam
penalty.’’

The growth in evidence for the ppE model as the prior
range for b gets larger is an effect of this Occam factor,
which is a ratio of the uncertainty in the recovered value of
an extra parameter to the prior volume for that parameter.
As the prior range on b expands, this leads to a greater
variance in the recovered values for �. Because the prior
volume of � remains unchanged, the large growth in its
variance as the prior range of b is expanded leads to a large
growth in the Occam factor—and thus a shrinking of the
Occam penalty. As the Occam factor gets larger, so does
the evidence for the ppE model. The evidence for the GR
model, of course, does not depend on the priors we use for
the ppE parameters, and so as the evidence for ppE grows,
the Bayes factor indicates a stronger preference for ppE.

Figure 6 shows Bayes factors between the GR and ppE
hypotheses for a z ¼ 1 LISA source. In the upper panel, the
injections where chosen with a ¼ 0, b ¼ �1, and variable
�, while in the lower panel the injections were chosen with
a ¼ 0:5,b ¼ 0, and variable�. Because LISA sources have
much higher SNR, the ppE parameters are more tightly
constrained, and the difference between the Bayes factors
when a or b are fixed versus freely varying is less pro-
nounced. The more rigorous bounds on � and � are both a
factor of�2 timesweaker than those predicted by the cheap
bounds, which is in line with what we found for the phase
correction� in the aLIGO example. In summary, the cheap
bounds provide a fair approximation to the bounds that can
be derived from Bayesian model selection, and can gener-
ally be trusted to within an order of magnitude.

C. Fitting factor

Another quantity of interest is the fitting factor, which
measures how well one template family can recover an
alternative template family. To define the fitting factor,
we must first define the match between two templates h
and h0 as

M ¼ ðhjh0ÞffiffiffiffiffiffiffiffiffiffiffiðhjhÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiðh0jh0Þp : (22)

The match is related to the metric distance between tem-
plates [69] by M ¼ 1� 1

2gij�x
i�xj, where the metric is

evaluated with the higher-dimensional model (appropriate
when dealing with nested models). The fitting factor FF is
then defined as the best match that can be achieved by
varying the parameters of the h0 template family to match
the template belonging to the other family, h.
Another interpretation for the fitting factor is as the

fraction of the true signal-to-noise ratio SNR ¼ ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp
that is recovered by the frequentist statistic � ¼
max½ðhjh0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiðh0jh0Þp �. The imperfect fit leaves behind a
residual ðh� h0Þ with SNR2

res ¼ �2, which can be mini-
mized by adjusting the amplitude of h0 to yield

SNR 2
res ¼ ð1� FF2ÞSNR2: (23)

Assuming that a residual with SNR� is detectable, and
working in the limit where FF� 1, we have

1� FF ’ SNR2�
2SNR2

: (24)

We see then that the ability to detect departures from GR
scales inversely with the square of the SNR, as given by
Eq. (24). On the other hand, the detectable difference
between the parameters in the two theories will scale
inversely with a single power of the SNR. This is because
this detectable difference is proportional to the square root
of the minimized match function and
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðgij�xi�xjÞ

q
’ SNR�

SNR
; (25)

and the metric is independent of SNR. This reasoning
applies to both the additional model parameters of the
alternative theory, e.g. �xi ¼ ð�;�Þ, and the physical
source parameters such as the masses and distance. We
then expect both the bounds on the ppE model parameters
and the biases caused by using the wrong template family
to scale inversely with SNR. This scaling is in keeping with
the usual scaling of parameter estimation errors that fol-
lows from a Fisher matrix analysis where h�xi�xji ’
ðh;ijh;jÞ�1 � SNR�2. Figure 7 shows that the errors in the

recovery of the ppE parameters follow the expected scaling
with SNR.

Alternative models that are not well fitted by GR will be
more easily distinguished than models that can be well
fitted. This suggests that there should be a correlation
between the fitting factor and the Bayes factor. The rela-
tionship can be established using the Laplace approxima-
tion to the evidence [Eq. (21)], from which it follows that
the log Bayes factor is equal to

logBF ¼ log
e��2ðH 1Þ=2

e��2ðH 0Þ=2
O1

O0

¼ �2
min

2
þ� logO

¼ ð1� FF2Þ SNR
2

2
þ� logO; (26)

where O is the Occam factor, defined in the discussion
following Eq. (21). Thus, up to the difference in the log
Occam factors, the log Bayes factor should scale as
2ð1� FFÞ when FF� 1. This link is confirmed in Fig. 8.

D. Parameter biases

If we assume that nature is described by GR, but in truth
another theory is correct, this will result in the recovery of
the wrong parameters for the systems we are studying.
For instance, when looking at a signal that has nonzero
ppE phase parameters, a search using GR templates will
return the incorrect mass parameters, as illustrated in
Fig. 9. Observe that as the magnitude of � is increased
(thus increasing the Bayes factor), the error in the chirp
mass parameter extraction grows well beyond statistical
errors.
Perhaps the most interesting point to be made with this

study is that the GR templates return values of the total
mass that are completely outside the error range of the
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(correct) parameters returned by the ppE search, even for
ppE signals that are not clearly discernible from GR. We
refer to this parameter biasing as ‘‘stealth bias,’’ as it is not
an effect that would be easy to detect, even if one were
looking for it.

As an example, consider stealth bias for nonzero ppE �
parameters, as illustrated in Fig. 10. As one would expect,
when a GR template is used to search on a ppE signal that
has nonzero ppE amplitude corrections, the parameter that
is most affected is the luminosity distance. We again see
the bias of the recovered parameter becoming more appar-
ent as the signal differs more from GR.3 For example, the
recovered posterior distribution from the search using GR
templates has zero weight at the correct value of luminosity
distance when the Bayes factor is �50. Even when the
Bayes factor is of order unity, the peaks of the posterior
distributions of the luminosity distance differ by approxi-
mately 10 Gpc.

V. CONCLUSION

The two main results of this study are that GW obser-
vations of binary compact object inspirals using ppE wave-
forms can constrain higher PN order (i.e. b >�5=3 and

a > 0) deviations from GR much more tightly than binary
pulsar observations, and that parameter estimates can be
significantly biased if GR templates are used to recover
signals when an alternative theory of gravity better de-
scribes the event. This latter bias can be significant even in
cases where it is not obvious that GR is not quite the correct
theory of gravity. We also see that the detection efficiency
of GR templates can be seriously compromised if they are
used to characterize data that is not described by GR.
The current study makes several simplifying assump-

tions about the waveforms: we consider only the inspiral
stage for nonspinning black holes on circular orbits, and
include just the leading-order ppE corrections to the wave-
forms. In future work, we plan to include a marginalization
over these higher-order corrections. Including this margin-
alization will be more realistic, as the ppE formalism
allows for many higher-order corrections to the waveform.
Marginalizing over the higher-order terms will weaken
the bounds on the leading-order ppE parameters, though
probably not by that much since they are subdominant
terms.
Another subject that we will examine in the future is the

effect on our analysis of multiple detections. Simul-
taneously characterizing several systems with different
mass ratios should allow us to examine the dependence
of the�=� parameters on spin, mass difference, mass ratio,
etc. Furthermore, looking at several systems simulta-
neously will break the degeneracies between the ppE pa-
rameters and the individual system parameters (masses,
distances, etc.), and will allow us to detect significantly
smaller deviations from GR.
We also plan to perform a study similar to that done by

Arun et al. [31–33], in which the exponents ai, bi are fixed
at the values found in the PN expansion of GR, and
compare their Fisher-matrix–based bounds to those from
Bayesian inference. We expect a full Bayesian inference
study to lead to significantly different conclusions, due to
the singularities in the Fisher matrix already observed in
the present study.
Finally, we will look at LISA observations of galactic

white-dwarf binaries to see if the brighter systems, which
may have SNRs in the hundreds, may allow us to beat the
pulsar bounds across the entire ppE parameter space. The
brightest white-dwarf systems will have u� 10�8 ! 10�7

(for comparison the ‘‘golden’’ double pulsar system, PSR
J0737-3039A has u ¼ 3:94� 10�9), and these small val-
ues for u make the ppE effects, which scale as ua and ub,
much larger than for black hole inspirals when a, b < 0.
The chance to test the validity of Einstein’s theory of

gravity is one of the most exciting opportunities that gravi-
tational wave astronomy will afford to the scientific com-
munity. Without the appropriate tools, however, our ability
to perform these tests is sharply curtailed. This analysis has
shown that the ppE template family could be an effective
means of detecting and characterizing deviations from GR,
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FIG. 10. Histograms showing the recovered values for lumi-
nosity distance from GR and ppE searches on a LISA binary at
redshift z ¼ 7. Both signals have a ¼ 0:5, and were injected
with a luminosity distance of 70.5 Gpc. The top plot has � ¼ 3:0
and the bottom has � ¼ 2:5. As the Bayes factor favors the ppE
model more strongly, the bias in the recovered luminosity
distance from the GR search becomes more pronounced.

3Here, the uncertainty in the recovered luminosity distance
changes considerably between the different systems, because we
held the injected luminosity distance constant instead of the
injected SNR.
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and also that assuming that our GR waveforms are correct
could lead to lessened detection efficiency and biased
parameter estimates if gravity is described by an alternative
theory (even when choosing parameters at the threshold of
what has already been ruled out by Solar System and
binary pulsar observations). We have identified several
areas of future investigation, and will continue to study
this area in depth.
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APPENDIX

As described in Sec. III, the VTA method for calculating
evidences involves two possible sources of error. One is
introduced by the fact that our Markov chains are of finite
length. To get an idea of the magnitude of this statistical
uncertainty, the implementation of the VTA that we used
calculates the evidence many times using different sub-
samples of the Markov chain. This process is called boot-
strapping, and we find that in general it results in an
uncertainty in the log Bayes factor of the order �0:5.

The second source of possible error in the VTA tech-
niques comes from the choice of boxing number. The
boxing number is the number of points from the chain
that is sorted into each volume element. A higher boxing
number will return a more accurate number for the mean or

median of the posterior in a given volume element, but at
the cost of having large volume elements that may not
resolve fine features in the posterior distribution. Lower
boxing numbers lead to greater variance in the estimate of
the posterior density in each cell, but allow for better re-
solution of sharp features in the posterior landscape. To
examine the systematic error in Bayes factors associated
with using different boxing numbers, we calculated the
Bayes factor between ppE and GR models for a source
with injected ppE parameters ða; �; b; �Þ ¼ ð0:5; 75; 0; 0Þ.
We first used thermodynamic integration with a run using
50 chains, and found the log Bayes factor to equal
logðBÞ ¼ 12:0� 1:0. Because thermodynamic integration
performs more accurately than the VTA when integrating
posterior distributions for which analytic answers are avail-
able, such as a multivariate Gaussian, we take this value as
our reference. We then calculated the log Bayes factor
using the VTA with boxing numbers of 16, 32, and 64.
The results, including the statistical uncertainty, are shown
in Table II.
The results show that the variation in logðBÞ between

different boxing sizes is similar to, but slightly larger than
the statistical variation introduced by the VTA within one
boxing size. The variation due to choice of boxing size is
roughly �1:5. We therefore use error bars indicating
logðBÞ � 1 on our Bayes factor plots. Further, we found
that a boxing size of 32 returned the most accurate value
for the Bayes factor, and so we used this size for the rest of
our analysis.
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