
Stable double-resonance optical spring in laser gravitational-wave detectors

Andrey A. Rakhubovsky,1 Stefan Hild,2 and Sergey P. Vyatchanin1

1Physics Department, Moscow State University, Moscow 119992 Russia
2SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, Q12 8QQ, United Kingdom

(Received 24 February 2011; published 6 September 2011)

We analyze the optical spring characteristics of a double pumped Fabry-Perot cavity. A double-

resonance optical spring occurs when the optical spring frequency and the detuning frequency of the

cavity coincide. We formulate a simple criterion for the stability of an optical spring and apply it to the

double-resonance regime. Double-resonance configurations are very promising for future gravitational-

wave detectors as they allow us to surpass the Standard Quantum Limit. We show that stable double

resonance can be demonstrated in middle scale prototype interferometers such as the Glasgow 10 m-

Prototype, Gingin High Optical Power Test Facility or the AEI 10 m Prototype Interferometer before

being implemented in future gravitational-wave detectors.
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I. INTRODUCTION

Currently the search for gravitational radiation from
astrophysical sources is conducted with the first-generation
Earth-based laser interferometers (LIGO in USA [1–3],
VIRGO in Italy [4,5], GEO-600 in Germany [6,7],
TAMA-300 in Japan [8,9], and ACIGA in Australia
[10,11]). The development of the second-generation
gravitational-wave (GW) detectors (Advanced LIGO
[12,13], Advanced Virgo [14], GEO-HF [15], and LCGT
[16]) is well underway.

The sensitivity of the first-generation detectors is limited
by noises sources of various nature: seismic and suspension
thermal noise at low frequencies (below�50 Hz), thermal
noise in suspensions, bulks and coatings of the mirrors
(� 50–200 Hz), photon shot noise (above �200 Hz). It is
expected that the sensitivity of the second-generation de-
tectors will be ultimately limited by the noise of quantum
nature arising due to Heisenberg’s uncertainty principle
[17–20] over most of the frequency range of interest. The
optimum between measurement noise (photon shot noise)
and back-action noise (radiation pressure noise) is called
the Standard Quantum Limit (SQL). This level is expected
to be reached in the forthcoming second generation of large-
scale laser-interferometric gravitational-wave detectors.
Third-generation detectors, such as the Einstein Telescope
[21] aim to significantly surpass the SQL over a wide
frequency range [22].

The most promising methods to overcome the SQL rely
on the implementation of optical (ponderomotive) rigidity
[20,23–25], which effectively turns the test masses of a
gravitational-wave detector into harmonic oscillators pro-
ducing a gain in sensitivity [26–31]. In order to understand
it, note that the formula for the sensitivity �ð�Þ of
Advanced LIGO interferometer (see Fig. 1) consists of
two terms:

�2ð�Þ ¼ Shð�Þ
h2SQLð�Þ

¼ 2

ℏm�2
ðSFð�Þ þ�2jKð�Þ ��2j2Sxð�ÞÞ: (1)

Here Sh is the total single-sided spectral density of the
noise recalculated to the strain density h of the gravita-
tional wave h2SQL ¼ 2ℏ=�L2�2—the value of Sh corre-

sponds to the SQL sensitivity for the case of free masses,�
is the observation frequency, L the arm length of the
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FIG. 1 (color online). Scheme of an Advanced LIGO interfer-
ometer pumped by two lasers. The main laser is detuned to give a
positive optical rigidity and negative damping (it is tuned on the
right slope of resonance curve), while the auxiliary laser is
detuned to give negative optical rigidity and positive damping.
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interferometer, � ¼ m=4 is the reduced mass, m is the
mass of each mirror of the arm cavities, Sx and SF are
the single-sided spectral densities of the measurement
noise and the back-action noise, respectively, and �Kð�Þ
is the optical rigidity. The relation between the Fourier
transforms of the position x and the force F can be
described as �ð��2 þ Kð�ÞÞxð�Þ ¼ Fð�Þ. For simplic-
ity we assume here that the measurement and the back-
action noise are not correlated. Then the uncertainty
relation is given by

SFð�ÞSxð�Þ � ℏ2: (2)

Substituting (2) in form SFð�Þ � ℏ2=Sxð�Þ into (1) we
can find the minimal value of the sensitivity �ð�Þ (after
optimization over Sx) which is better than the SQL

�2
minð�Þ ¼ j ��2 þ Kð�Þj

�2
< 1 (3)

in the bandwidth��, where jKð�Þ ��2j<�2, i.e. close
to optical spring resonance. In other words a harmonic
oscillator provides a gain in sensitivity for near-resonance
signals, equal to

�2 ¼ ��

�
< 1: (4)

Usually the two resonances are at two separate frequencies.
The gain in sensitivity by means of the optical rigidity was
examined in [28,29,32] for the wide-band regime under
conditions ���� and � * 1=2.

The case of so-called double resonance [27,30,31],
when an sophisticated frequency dependence of the optical
rigidity allows us to obtain two close or coinciding reso-
nance frequencies and to get better gain in sensitivity, is
described by the following formula:

�2 ¼ Sh
h2SQL

¼
�
��

�

�
2
: (5)

It is important to note that the oscillatory sensitivity gain,
described in Eq. (4), does not provide any gain in the signal
to noise ratio in case the signal has a bandwidth larger than
�� (because the signal to noise ratio scales as the sensi-
tivity gain multiplied by the bandwidth ��). However, for
a double-resonance configuration with a sensitivity de-
scribed by Eq. (5) the signal to noise ratio increases with
decreasing bandwidth proportional to ���1 [27,30,31].
Please note that in the Advanced LIGO configuration
optical rigidity can be created easily through microscopic
position changes of the signal recycling mirror [28–31] as
it is already being used in GEO 600 detector [6].

A single optical spring always causes instability (when
there is no intrinsic mechanical damping). This can quali-
tatively be explained [23–25] by taking into account that
the optical rigidity is not introduced instantaneously but
with a delay of the relaxation time �� of the optical
resonator. Therefore, the evolution of the free mass

position x with the optical rigidity K may approximately
be described by the equation

m €xðtÞ þ Kxðt� ��Þ ¼ 0: (6)

Expanding the second term in a series xðt� ��Þ ’
xðtÞ � �� _xðtÞ we can rewrite the previous equation in the
form

m €xðtÞ � K�� _xðtÞ þ KxðtÞ ¼ 0: (7)

Obviously, the term �K�� _x corresponds to a negative
damping force. Please note that in the opposite case of
negative optical rigidity a positive damping force is intro-
duced (the sign of the rigidity correlates with the sign of the
detuning).
The instability (negative damping) can be compensated

by incorporating a linear feedback control loop, and in the
ideal case (no additional noise is introduced by the feed-
back) it would not modify the noise spectrum of a GW
detector [29]. In practice, however, the need for control
gain at frequencies inside the detection band can cause
undesirable complexity in the control system or can intro-
duce additional classical noise.
An alternative way to suppress the instability was pro-

posed [33] and experimentally demonstrated [34] by in-
jecting a second carrier field from the bright port (see
Fig. 1) in order to create a relatively small additional
negative rigidity component, thus the total rigidity (of
both lasers together) remains positive, but at the same
time introduce a relatively large additional positive damp-
ing component to make total damping positive. The main
purpose of the second carrier is to create a second optical
spring that forms a stable optical spring together with the
first one—even though each individual optical spring, act-
ing alone, would be unstable. Both carriers are assumed to
have different polarizations, so that there is no direct
coupling between the two fields (although they both di-
rectly couple to the mirrors).
In this paper we further analyze the stability of an optical

spring created by a double pump. The regime of stable
double resonance analyzed in this paper provides the pos-
sibility to decrease the bandwidth of the resonance curve
dramatically and, hence, to increase the signal to noise
ratio even for signals with a wide bandwidth (as formula
(5) predicts). In Sec. II we formulate the simple criterion of
stability, and we apply it to the regimes of stable double
resonance in Sec. III. In addition we discuss the possibil-
ities to observe these regimes using the experimental set-
ups of the Gingin and Glasgow Prototype interferometers.

II. STABLE OPTICAL SPRING

In the following we use notations similar to the ones
introduced in [28,35]. We consider an Advanced LIGO
interferometer with a signal recycling mirror (SRM) hav-
ing an amplitude reflectivity � and a power recycling
mirror (PRM) as shown in Fig. 1. We assume the mirrors
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to be without any optical losses. In addition, we suppose
that both Fabry-Perot (FP) cavities in the east and
north arms are identical, each input mirror featuring an

amplitude transmittance T � 1 and an reflectivity R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

p
, while each end mirror is completely reflecting.

The end and input mirrors have an identical mass m and in
absence of the laser pumps they can move as free masses.
The PRM is used only to increase the average power
incident onto the beam splitter and we assume that no
fluctuational fields from the laser (west arm) reach the
detector in the south arm. The mean frequency of each
pump !1;2 is equal to one of the eigen-frequencies of the

FP cavities. L is the distance between the mirrors in the
arms (4 km for (Advanced) LIGO); l is the mean distance
between the SR mirror and the beam splitter. We also
introduce the following notations:

ei�L=c ’ 1þ i�L

c
; �0 ¼ cT2

4L
; (8)

�1;2 ¼ ð!1;2 þ�Þl
c

’ !1;2l

c
; (9)

�1;2 ¼ �0

1� �2

1þ 2� cos2�1;2 þ �2
; (10)

�1;2 ¼ �0

2� sin2�1;2

1þ 2� cos2�1;2 þ �2
: (11)

Here �0 is the relaxation rate of a single FP cavity, �1;2 are

the detunings introduced by the SR mirror, �1;2 are the

relaxation rates of the differential modes of the interfer-
ometer for each pump. The frequency of the differential
mode depends on the arm length difference z ¼ xE � yE �
ðxN � yNÞ and its bandwidth and detuning are controlled
by position of SR mirror, which is described by phase
advance �1;2 arising from differential mode detuning

(�1;2 ¼ 0 corresponds to resonance). We assume that

�1;2 do not depend on � due to the small length l of the
SR cavity: l � L. It is worthwhile noting that the detun-
ings �1;2 and relaxation rates �1;2 can differ for different

pumps.
The mechanical evolution of the differential arm length

z ¼ xE � yE � xN þ yN (see notations on Fig. 1) in the
frequency domain is described by

z¼�ð�ÞðF1þF2þFsÞ; Fs¼��2Lh; (12a)

�ð�Þ¼ 1

�½��2þK1ð�ÞþK2ð�Þ� ; �¼m

4
; (12b)

K1;2¼ 8I1;2!1;2�1;2

cmL½ð�1;2� i�Þ2þ�2
1;2�

; (12c)

where h is a dimensionless metric of a gravitational wave;
� is the mechanical susceptibility (K1;2 are the frequency

dependent spring coefficients created by the corresponding

laser pump); I1;2 are the average optical arm cavity powers

of the carrier 1 or 2 with the mean optical frequencies!1;2;

F1, F2 are the back-action forces caused by the first and
second pump.
The eigen frequencies are solutions of the characteristic

equation

�ð�Þ�1 ¼ 0: (13)

Roots corresponding to stable oscillations must have a
negative imaginary part (as we assume the time depen-
dence of position to be �e�i�t).
The Eq. (13) can be rewritten using the dimensionless

susceptibility � ¼ �mð�2
1 þ�2

1Þ=8 (here mð�2
1 þ�2

1Þ=8
is a convenient multilpier):

��1 ¼ Y

ð2�x2� igxÞð2��x2� i	gxÞ ; (14a)

Y¼Yrþ igxYi; (14b)

Yr ¼ x6�½2ð1þ�Þþ	g2�x4þð4�þPþQÞx2
�2�P�2Q; (14c)

Yi ¼ð1þ	Þx4�2ð�þ	Þx2þ	PþQ; (14d)

x�
ffiffiffi
2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1þ�2

1

q ; g� 2
ffiffiffi
2

p
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1þ�2

1

q ; (14e)

P� 32!1I1�1

mcLð�2
1þ�2

1Þ2
; Q� 32!2I2�2

mcLð�2
1þ�2

1Þ2
;

���2
2þ�2

2

�2
1þ�2

1

; 	��2

�1

: (14f)

We choose the dimensionless frequency x so that for a
single pump (i.e. Q ¼ 0) the double (unstable) resonance
would take place at x2 ’ 1 if P ¼ 1 [30] (in formal limit
g ! 0 when susceptibility is a pure real value).
In order to find the eigen-frequencies one has to solve

the equation YðxÞ ¼ 0 and to analyze for which conditions
the roots are stable. Undoubtedly the roots of this equation
can easily be obtained by applying numerical methods.
However, starting from a set of input parameters (powers
and detunings of each pump) the numerical solution will
provide a set of frequencies with arbitrary imaginary parts.
The problem is to identify the values of the system pa-
rameters that actually provide stable roots with negative
imaginary parts. In the following we formulate a criterion
which allows us in a quite easy way to properly estimate a
set of parameters fulfilling our requirements.
In the general case, Yr is a third order polynomial of x2,

so all of its roots (which we assume to be real) can be

written in the form of�xð0Þj (j ¼ 1, 2, 3). An example of Yr

as a function of x2 is plotted on Fig. 2.
In order to apply a successive approximation method we

assume that the values of the function Yi are small in the
regions close to the roots of Yr. If this is the case, then
the roots of the equation YðxÞ ¼ 0 can be found using the
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successive approximations method taking 6 roots �xð0Þj of

the equation YrðxÞ ¼ 0 as a zeroth order approximation. In
the first order approximation we add a small imaginary part
to each root:

xj ¼ xð0Þj þ i
j; xð0Þj ¼ �xð0Þ1 ; �xð0Þ2 ; �xð0Þ3 :

(15)

After substituting this into Eq. (14b) we find 
j:

Y0
rðxð0Þj Þ2xð0Þj i
j þ igxð0Þj Yiðxð0Þj Þ ¼ 0;


j ¼ �
�
g

2

� Yiðxð0Þj Þ
Y0
rðxð0Þj Þ< 00;

where Y0
rðxð0Þj Þ � dYr

dðx2Þ
��������x2¼ðxð0Þj Þ2

: (16)

In order to fulfill the condition for a stable oscillation, 
j

have to be negative as we required in (16) [recall, as we
assume the time dependence of position to be �e�i�t,
hence, eigen frequency (xj) corresponds to oscillations

�e�ixjt and negative imaginary part means damping].
Therefore, stable roots with 
j < 0 will be achieved in

the case when the functions Y0
r and Yi have the same signs

in the regions close to roots of Yr, i.e. their plots have to
relate to each other as shown on Fig. 2.

Wewould like to emphasize that the obtained criterion is
very simple and that it allows us to estimate whether a
certain set of input parameters can provide roots (complex
frequencies) with imaginary parts of the desired signs
without the need to solve the characteristic equation. The
proposed criterion is very close to the Routh-Hurwitz
criteria [36]; however, it is more obvious and more useful
for the particular analysis of optical spring stability.

The stability criterion described in Eq. (16) can easily be
generalized for a larger number of optical pumps. For
example, for three pumps the functions Yr and Yi are
parabolas of fourth and third order correspondingly (in
respect to x2), and the roots will be stable if the functions

Y0
r and Yi have the same sign at the regions close to the

roots of Yr as shown in Fig. 3.
Obviously, the regimes of stable optical spring consid-

ered in [33] fulfil the condition described in Eq. (16).
However, our criterion might be useful to identify configu-
rations that can be experimentally implemented avoiding
any feedback or for other interesting regimes such as
double resonance or negative inertia [37].

III. STABLE DOUBLE RESONANCE

Oscillators in the double-resonance regime have
interesting properties. The resonant force, with the time
dependence f ¼ F0 cos�rest, acting on such an oscillator
produces a displacement zdr ¼ �F0t

2=ð8mÞ cos�rest� t2,
which is much larger than the resonant displacement
zco ¼ �F0t=ð2mÞ sin�res � t of a conventional oscillator
under action of the same force [30]. In the frequency
domain the resonant gain of a conventional oscillator is
��res=�� (i.e. inverse proportional to the bandwidth ��
of the resonance curve), whereas the resonant gain of an
oscillator in the double-resonance regime is much larger:
�ð�res=��Þ2 (i.e. inverse proportional to the square of the
bandwidth ð��Þ2). This feature, as mentioned in the in-
troduction, is responsible for the wide bandwidth gain in
signal to noise ratio.
The double resonance takes place if the susceptibility

has a pole of second order [27,30]. In terms of our stability
criterion this means for the case of the double resonance
that the plot of Yr as function of x2 touches the horizontal
axis at the resonance frequency x20 and Yi is equal to zero at

this point. Figure 4 illustrates two possible ways of behav-
ior of Yi: in Fig. 4(a) and 4(b) Yi crosses and touches the
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FIG. 2 (color online). Roots correspond to a stable (slightly
damped) oscillation if Y0

r and Yi have the same signs near roots
of Yr, i.e. plots of Yr and Yi correspond to each other as shown
on plot.
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FIG. 3 (color online). For the case of 3 pumps the roots are
stable if in accordance with criterion (16) the plots of Yr and Yi

correspond to each other as shown.
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FIG. 4 (color online). ‘‘Ideal’’ double resonance: curve Yr

touches z axis in point z1: a) left root �z1 of Yi coincides with
z1; b) curve Yi touches z axis in the same point z1.

RAKHUBOVSKY, HILD, AND VYATCHANIN PHYSICAL REVIEW D 84, 062002 (2011)

062002-4



horizontal axis at x2 ¼ x20, respectively. However, it is

difficult to exactly realize the regimes shown in Fig. 4—
some discrepancies like shown on Fig. 2 are inevitable.

In general, double resonance takes place when any two

of three roots ½xð0Þ1 �2, ½xð0Þ2 �2, ½xð0Þ3 �2 coincide. In this section
we consider the particular case of close smaller roots

½xð0Þ1 �2, ½xð0Þ2 �2 of Yr (our preliminary analysis shows that

the other case of close roots ½xð0Þ2 �2, ½xð0Þ3 �2 can not provide a
stable set of roots):

½xð0Þ1;2�2 ’ x20 � �; � � 1; (17)

where x20 is a middle point between the roots ½xð0Þ1;2�2. Hence,
Yr may be presented in the form

Yr ¼ ðx2 � x20 � �Þðx2 � x20 þ �Þðx2 � ½xð0Þ3 �2Þ: (18)

In order to fulfill the criterion (16) one has to arrange the
parabolas along the x2 axis in such a way that the roots of
Yi would be placed close to roots of Yr (see Fig. 5). Shifting
Yi along the vertical axis allows us to manipulate the
damping at the resonant frequencies because the values
of Yi at the roots of Yr define the mechanical damping of
the oscillator (16). The problem of properly arranging this
two curves is solvable as there are enough parameters for
manipulation available: the two detunings and the two
powers of the two pumps (i.e. the dimensionless parame-
ters P,Q, �, 	). An example of a step by step calculation is

presented in Appendix A. For the following dimensionless
parameters

P’ 0:77; Q’�0:027; g¼ 0:6; d’ 1:39; (19a)

�’ 0:24; 	¼ 0:5; �¼ 0:05; (19b)

we get the eigen-frequencies

�1 ’ 532:3 s�1; 
1 ’ 16:8 s�1; (20)

�2 ’ 482:1 s�1; 
2 ’ 15:4 s�1; (21)

�3 ’ 961:8 s�1; 
3 ’ 314:2 s�1: (22)

Using Advanced LIGO parameters as listed in Table I
the set (19) can be recalculated, giving the following
results:

�1 ’ 230 s�1; �1 ’ 1063 s�1; I1 ’ 863 kW;

�2 ’ 115 s�1; �2 ’ �526 s�1; I2 ’ 61 kW;

ð�1 ’ 1:49; �2 ’ �1:39Þ:
Figure 6 shows the corresponding susceptibility ��1 as a
function of frequency f ¼ �=2� for the listed parameters.
It is worth emphasizing that it is possible to realize a stable
double resonance with arbitrary small damping by just
choosing smaller values for �. Figure 6 includes the sus-
ceptibility for several values of parameter �: � ! �=2, �=4,
as well as the susceptibility of the free masses as
comparison.

IV. Possibilities of experimental observation

It would be interesting to demonstrate and observe un-
usual high susceptibility in stable double-resonance regime
experimentally (it should be proportional to ���2 but not
to ���1 as in conventional resonance). For example, this
could be done in Gingin High Optical Power Test Facility
[38]. The initial formulas (14) are valid for the Gingin
topology with one exception. Only one arm of the

ε Yε

z

i

Yr

z
0

=x2
0

FIG. 5 (color online). Detailed plot of two close roots of Yr

(14c). The roots of Yi (14d) have to be shifted to the right relative
to the roots of Yr in order to fulfill the stability criterion (16).

TABLE I. Parameters of Advanced LIGO used in this paper.

Parameter Value

Arm length, L 4 km

Mass of each mirror, m 40 kg

IM amplitude transmittance, T
ffiffiffiffiffiffiffiffiffiffiffiffi
0:005

p
Relaxation rate of single FP cavity, �0 (8) 94 s�1

SRM amplitude reflectivity �
ffiffiffiffiffiffiffiffiffi
0:93

p
Optical wavelength, 
 1064 nm

FIG. 6 (color online). Trace 1: susceptibility j�ðfÞj as
function of frequency f ¼ �=2� for the parameters given in
Eq. (19). Traces 2,3: same as trace 1 but with � ! �=2 and with
� ! �=4. Trace 4: susceptibility of free mass (4=mð2�fÞ2).
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Michelson interferometer (with Fabry-Perot arm cavities)
is used in Gingin; hence, one has to define the power
parameters P and Q a factor 2 smaller:

P � 16k1I1�1

mLð�2
1 þ�2

1Þ2
; Q � 16k2I2�2

mLð�2
1 þ �2

1Þ2
: (23)

The Gingin facility features test masses ofm ¼ 0:8 kg and
arm length is L ¼ 80 m. Then, assuming �1 ¼ 400 s�1, it
is easy to recalculate the parameters (19) for Gingin:

�1 ’ 400 s�1; �1 ’ 843 s�1; I1 ’ 3:59 kW;

(24)

�2 ’ 200 s�1; �2 ’ �911 s�1; I2 ’ 0:254 kW:

(25)

It seems that these parameters may be relatively easy
realized using the Gingin facility.

Another experimental setup that can be used to observe a
stable double resonance is the Glasgow 10 m Prototype
[39,40]. In contrast to the balanced scheme of a full
Michelson interferometer such as Advanced LIGO, where
it is possible to pump the interferometer with the symmetric
mode tuned to resonance, while observing the optical
rigidity in the antisymmetric mode, in the Glasgow
Prototype (shown on Fig. 7) the same mode will have to
be used to pump and to observe rigidity. Recall that the
smaller the detuning the larger is the circulating power,
whereas optical rigidity requires a large detuning. How-
ever, it is possible to set the first cavity between PRM and
input mirror (IM) to antiresonance (the relaxation rates
�1 ¼ �2 ¼ TPRMTIMc=4L reach their minimum) and to
create the detuning by shifting the position of the end
mirror. In this situation the Eqs. (14) can be used with
	 ¼ 1. Taking into account that practically only the light
end mirror can move the power parameters P,Q have to be
redefined, reduced by factor 4:

P � 8k1I1�1

mLð�2
1 þ�2

1Þ2
; Q � 8k2I2�2

mLð�2
1 þ �2

1Þ2
: (26a)

Then we can apply the scheme presented in Appendix A.
In particular the stable double resonance is characterized
by the following set of dimensionless parameters:

P’ 2:43; Q’�0:51; g¼ 0:625; d’ 1:27; (27a)

�’ 0:71; 	¼ 1; �¼ 0:01: (27b)

Using the actual parameters of the Glasgow Prototype, as
presented in Table II, we can calculate the following set of
experimental parameters:

�1 ¼ �2 ’ 937 s�1;

�1 ’ 4138 s�1;

�2 ’ �3450 s�1;

I1input ’ 1:28 W;

I2 input ’ 0:33 W:

(28)

Here I1 input, I2 input are the input powers of the two pump

lasers.
Unfortunately, the observation of a stable double reso-

nance is more difficult for smaller scale experiments. For
example, one may consider an experimental setup as de-
scribed in [34] of a short Fabry-Perot cavity (without power
recycling) and a light-weight movable mirror: the power
transmittance of the input mirror is T2 ¼ 0:8	 10�3, the
distance between the mirrors is L ’ 0:9 m, and the mass of
the movable mirror is m ¼ 1 g. Then the dimensionless
parameters (27) can be recalculated as follows:

�1 ¼ �2 ’ 66:7	 103 s�1; (29)

�1 ’ 294	 103 s�1; �2 ’ �245	 103 s�1; (30)

I1 input ’ 2:64 kW; I2 input ’ 1:26 kW: (31)

Obviously these input power values are impermissibly huge
to be realized in an experiment. In order to find some
regularities concerning the experiment scale we can rewrite
the formula (26) in the following form using the value of
input power:

TT IM

FIG. 7 (color online). Scheme of the optical rigidity experi-
ment within the Glasgow Prototype Interferometer. Only the end
mirror can move, while the mirrors PRM and IM can be
considered as unmovable because their masses are 30 times
larger than that of the end mirror.

TABLE II. Parameters of Glasgow Prototype Interferometer.

Parameter Value

Arm length, L 10 m

Distance between PRM and IM, ‘ 5 m

Mass of movable mirror, m 100 g

Masses of PRM and IM, M 3 kg

PRM amplitude transmittance TPRM

ffiffiffiffiffiffiffiffiffi
0:05

p
IM amplitude transmittance, TIM

ffiffiffiffiffiffiffiffiffi
0:01

p
Input power, Iinput � 1 W,

Optical wavelength, 
 1064 nm
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P ¼
�
8k1L

2I 1 input

mc3ðTeff=4Þ4
�
	 �1=�1

ð1þ �2
1=�

2
1Þ3

/ L2I1 input

mT4
eff

; (32)

where we substitute �1 ¼ T2
effc=4L. For the Glasgow

prototype the effective transmittance is equal to Teff ¼
TPRMTIM=4.

In order to find out whether an experiment is realizable,
we emphasized in expression (32) only the proportionality
to the terms, which significantly change with changes of
the experiment scale. Decreasing the scale of the experi-
ment is usually represented by decreasing the mass m of
the movable mirror and the distance L between the mirrors,
which approximately compensate each others contribution
into P. That means that in order to achieve the needed
value of P and thus to observe the desired stable double
resonance one needs to keep the effective transmittance
roughly the same as in a bigger scale experiment due to the
strong dependence of P on Teff . This leads to the need for
the circulating power to be the same as for the bigger scale
experiment, which would be pretty difficult due to prob-
lems caused by absorption induced heating of the small
mirror.

V. CONCLUSION AND OUTLOOK

We developed a new criterion for the stability of an
optical spring and applied it to the double-resonance
scheme. Before such a concept can be realized in a large-
scale gravitational-wave detector it would be beneficial to
demonstrate it on a prototype scale experiment, such as the
Glasgow Prototype [39,40], Gingin High Optical
Power Test Facility [38], or the AEI 10 m Prototype
Interferometer [41].

It is worth noting that our criterion for optical spring
stability may also be applied to the negative inertia regime
recently proposed by F. Ya. Khalili and colleagues [37]
(the term ‘‘negative inertia’’ was proposed earlier by
H. Müller-Ebhardt [42]). This directly follows from the
fact that the negative inertia scheme formally corresponds
to a double-resonance configuration with a resonance fre-
quency of zero.

The formulated stability criterion is also valid for
gravitational-wave detectors pumped by more than two la-
sers. This may allow us to realize stable triple (or quadro)
resonance, i.e. regimes when three (or four) eigen-
frequencies coincide or are close to each other. In this case
the response to force at the resonance frequency is greater
than for a double-resonance configuration. In the frequency
domain the resonant gain for a triple resonance has to be
proportional to �ð�res=��Þ3 [i.e. inverse proportional to
the third power of the bandwidth ð��Þ3]. It will allow us to
further increase the gain in the signal to noise ratio for wide
bandwidth signals, mentioned in the Introduction, by a factor
�res=�� compared to the double resonance. In this paper no
sensitivity analysis for gravitational detectors was per-
formed, but we plan to do this in a future publication.

A stable double resonance featuring arbitrarily large
susceptibility may allow us to use it for the production of
squeezed light by means of the ponderomotive nonlinearity
[34,43]. However, the obtained squeezing will have spe-
cific features [33]: One would have to measure two optimal
quadratures, corresponding to each carrier, and squeezing
can only be observed by finding their correct combination
because they are correlated (entangled) through the me-
chanical degree of freedom.
Because of the combination of a uniquely large suscep-

tibility and a low noise level the stable double (or triple)
resonance may also be applied to macroscopic quantum
mechanics experiments with mirrors of relatively small
mass. In particular, it can be used for the observation of
quantum entanglement between an oscillator and an
electro-magnetic field [44,45] or for preparation of the
mechanical oscillator in a nongaussian quantum state [46].
In addition stable double resonance may be a useful

instrument in other precision measurements in order to
increase mechanical transduction. For example, double-
resonance regime may be applied to the measurements of
thermal noise of mirror coatings. In case the massm of one
cavity mirror is small enough compared to the other one,
the equation for the variation z of the optical distance
inside the cavity may be written in the frequency domain
as follows:

mð��2 þ Kð�ÞÞz ¼ Fba �m�2zth; (33)

where zth are the thermal fluctuations of the mirror surface
in respect to the mirror’s center of mass andFba is the back-
action force. Homodyne detection of the output wave
yields the information on z. One can obtain resonant gain
of the signal (in this case it is zth) inside the resonance
bandwidth (i.e. for � ¼ �res � ��=2) and in case of a
stable double resonance this gain is unusually large.
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APPENDIX A: DETAILS OF THE
DOUBLE-RESONANCE STABILITY

ANALYSIS

In this appendix we present the example estimation of a
set of input parameter values needed to realize the regime
of a stable double resonance. We will deal mainly with the
functions Yr and Yi in this section. As it was mentioned in
Sec. III we need to arrange these parabolas along the x axis
to achieve close stable frequencies and then arrange the
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parabola Yi along the y axis to obtain the desired values of
the imaginary parts of the frequencies or, other words, the
desired bandwidth of the double resonance.

First, we assume the two smaller roots of Yr to be close
enough to each other. That means that the function Yr can
be expressed in form (19)

Yr ¼ ðz� z0 � �Þðz� z0 þ �Þðz� z3Þ; z � x2;

(A1)

where 2� is the distance between the close roots (and � is
small). We also introduce the parameter d ¼ z3 � z0 which
is defined as the distance between the center of the two
close roots and the ‘‘lonely’’ root.

Proper substitution transforms this cubic function into
the reduced form Yr ¼ y3 þ pyþ q. In our case the sub-
stitution is z ¼ yþ ð2z0 þ z3Þ=3. The particular case of
this equation with z ¼ z0 and y ¼ y0 (y0 is the middle
of the close roots in terms of the shifted variable) leads us
to the following equation:

y0 ¼ � z3 � z0
3

¼ �d

3
: (A2)

After the substitution is done the parameters p and q are
expressed in terms of � and d as follows:

p ¼ � 1

3
d2 � �2; q ¼ � 2

27
dðd2 � 9�2Þ: (A3)

On the other hand the function Yr is expressed (14c) in
terms of the input parameters such as the pump powers and
the detunings (parameters P, Q, g, �, 	). Substitution of

y ¼ zþ 2ð1þ �Þ þ 	g2

3

transforms the function into the familiar form Yr ¼ y3 þ
pyþ q. However, this time the coefficients p and q are
expressed in terms of the above mentioned input
parameters.

Equating the pairs of expressions for p and q (expressed
in different terms) one can obtain the solutions for the
pump powers P and Q as functions of the remaining input
parameters as well as � and d.

At this step the x arrangement of the function Yr is
completed. Indeed, if we set a certain value of d we can
expect the middle of the close roots (in the shifted varia-
bles) to be equal to �d=3. Setting a certain value of �
results in the close roots to be separated by 2�.

The next step is to arrange Yi thus it provides stability of
the complex frequencies. According to the stability crite-
rion (16) frequencies are expected to be stable if the roots
of Yr ðz1; z2Þ and Yi ð�z1; �z2Þ are located in the same way as
is shown on Fig. 8:

z1 < �z1; z2 < �z2: (A4)

The values z1;2 can be estimated using Cardano’s formulae

(see Appendix B), and �z1;2 are the roots of a quadratic

equation:

z1;2 ’ �
�
�q

2

�
1=3 þ 2ð1þ �Þ þ 	g2

3

 �;

�z1;2 ¼ 	þ �

1þ 	



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
	þ �

1þ 	

�
2 � 	PþQ

1þ 	

s
:

After properly arranging Yi thus it complies with the
condition (A4) the second step is completed. We obtained
three stable frequencies, two of which are separated by the
desired distance of 2�.
It is obvious that in order to obtain a single resonance

peak, one should choose a distance between the close
frequencies smaller than the mean imaginary part of
these roots 
j. Since z ¼ x2, the distance between the

close frequencies can be estimated as x2 � x1 � �=
ffiffiffiffiffi
z0

p
.

Equation (16) gives an estimate for 
. Summing this up one
can write

�ffiffiffiffiffi
z0

p &

��������gYiðz1;2Þ
2Y0

rðz1;2Þ
��������’

��������gYiðz1;2Þ
4�d

��������;
or

jYiðz1;2Þj � 4�2d

g1
ffiffiffiffiffi
z0

p : (A5)

For us regimes with infinitely close frequencies, i.e.
with � ! 0, are of interest. Along with decreasing the dis-
tance between frequencies we can also decrease the band-
width of the double resonance or in other words the values
of 
j, which is possible by decreasing the values of Yi.

Equation (A5) is the only condition these values should
obey.
To ensure this we apply the following conditions to the

values of Yi:

Yiðz1Þ ¼ s1
4�2d

g1
ffiffiffiffiffi
z0

p ; Yiðz2Þ ¼ �s2
4�2d

g1
ffiffiffiffiffi
z0

p ; (A6)

where the variables s1 and s2 are subject to fitting and
should be approximately equal to unity. This is the final
step, resulting in a set of three stable frequencies, two of

z

ε Yε

0 z

i

Yr

FIG. 8 (color online). Detailed plot of the two close roots of Yr

(14c): z1;2 ¼ z0 � �. The roots of Yi (14d) are separated by the

same distance 2�, but the trace of Yi itself is shifted by the
distance �1.
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which form the resonant peak of the desired bandwidth in
the susceptibility.

It is worth noting that the parameter � is proportional
to distance the between the roots of Yr, and, hence, � is
proportional to the bandwidth of the resonance. The pa-
rameters g, 	 are free and can be used to vary the resonance
frequencies or the values of the pumping powers.

APPENDIX B: CUBIC EQUATION:
CARDANO’S FORMULA

The cubic equation

x3 þ ax2 þ bxþ c ¼ 0 (B1)

may be written in the depressed cubic form by substitution
of x ¼ y� a=3 [36]:

0 ¼ y3 þ pyþ q; (B2)

p ¼ �a2

3
þ b; q ¼ 2

�
a

3

�
3 � ab

3
þ c: (B3)

The roots of this depressed cubic equation are given by

y1;2¼�AþB

2
� i

ffiffiffi
3

p A�B

2
; y3¼AþB; (B4a)

whereA¼
�
�q

2
þ ffiffiffiffi

D
p �

1=3
; B¼

�
�q

2
� ffiffiffiffi

D
p �

1=3
; (B4b)

D¼
�
p

3

�
3þ

�
q

2

�
2
: (B4c)

For A and B one should choose any cubic roots from the
corresponding expressions, which fulfill the following
equation:

AB ¼ �p=3: (B5)

In case this equation has real coefficients one should take
the real values of the roots (if possible).
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