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We derive a gauge-invariant low-energy effective model of the Yang-Mills theory. We find that the

effective gluon propagator belongs to the Gribov-Stingl type and agrees with it when a mass term that

breaks nilpotency of the BRST symmetry is included. We show that the effective model with gluon

propagator of the Gribov-Stingl type exhibits both quark and gluon confinement: the Wilson loop average

has the area law and the Schwinger function violates reflection positivity. However, we argue that both

quark and gluon confinement can be obtained even in the absence of such a mass term.
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It is well known that the area law of the Wilson loop
average is a gauge-invariant criterion for quark confine-
ment. However, a gauge-invariant criterion for gluon con-
finement and color confinement is not yet achieved. In
several recent years, nevertheless, great endeavors have
been made to clarify the deep infrared behavior of propa-
gators for gluon and the Faddeev-Popov ghost in specific
gauges, e.g., Landau, Coulomb, and maximally Abelian
(MA) gauges. This research is motivated by a hope that
color confinement might be attributed to the deep infrared
behavior of the gluon and ghost propagators [1,2].

In the most common Landau gauge, especially, it is
still under debate to discriminate two different types of
propagators, i.e., scaling [3] (an infrared suppressed gluon
propagator with a finite or even vanishing dressing function
at zero momentum, and a ghost propagator more diver-
gent in the infrared than its tree-level counterpart) and
decoupling [4] (an infrared finite gluon propagator and a
ghost propagator with a finite dressing function at zero
momentum). The scaling solution is in accordance with
the Kugo-Ojima color confinement criterion [1] and the
Gribov-Zwanziger (GZ) confinement scenario [2]. On the
other hand, the decoupling solution is supported by recent
results of numerical simulations on the lattice with very
large volumes [5]. See e.g., [6,7] on the present status of
development.

It is demonstrated [8] that there is a one-parameter
family of solutions for the ghost and gluon propagators
of Landau gauge Yang-Mills theory and that it is only a
matter of infrared boundary conditions whether infrared
scaling or decoupling occurs. Here the scaling solution is
the only one member of this family that satisfies the Kugo-
Ojima/Gribov-Zwanziger property with a globally well-
defined BRST charge. The remaining solutions are of a
decoupling type and cannot maintain global color symme-
try and Becchi-Rouet-Stora-Tyutin (BRST) symmetry
simultaneously. Moreover, both types of solutions violate
the reflection positivity, which is a necessary condition for
gluon confinement, suggesting that neither type of solution
can be associated with a massive gluon characterized by a
gauge-independent pole mass.

On the other hand, both types of solutions in the Landau
gauge have been shown to satisfy quark confinement cri-
terion [9]. However, this result is valid for nonzero tem-
perature T below the deconfinement temperature Tc

(0< T < Tc), since the vanishing Polyakov loop average
at a finite temperature was used as a gauge-invariant crite-
rion for quark confinement [10,11].
In this paper, we examine whether there is a specific

infrared behavior of the gluon propagator, which is compat-
ible with both quark confinement and gluon confinement at
zero temperature, irrespective of the gauge choice. For this
purpose, we derive a gauge-invariant low-energy effective
model of the Yang-Mills theory at zero temperature in the
gauge-independentmanner.We show that the resulting low-
energy effective gluon propagator belongs to the Gribov-
Stingl type [12] in the low-energy region. In theMA gauge,
especially, the effective model is confining in the sense that
the Wilson loop average has the area law and the gluon
Schwinger function violates the reflection positivity. In our
model, an effective gluon propagator agrees with the
Gribov-Stingl form only when one includes a certain mass
term violating the nilpotent BRST symmetry. However, we
argue that such a mass term is not necessarily indispensable
to obtain quark and gluon confinement simultaneously,
since both the area law and positivity violation can be
obtained even in the absence of such a mass term.
This paper is organized as follows.
(Step 1) [Reformulating the Yang-Mills theory in terms

of new variables] In a path-integral quantization for the
Yang-Mills theory, we decompose the Yang-Mills field
A�ðxÞ into two pieces V�ðxÞ and X�ðxÞ, i.e., A�ðxÞ ¼
V�ðxÞ þX�ðxÞ, and rewrite the action SYM½A� and the

integration measure ½dA� in terms of new variables re-
lated to V�ðxÞ and X�ðxÞ, according to [13–19].

(Step 2) [Deriving an effective model by eliminating
high-energy modes] We integrate out the X� field as the

high-energy mode (p2 � M2) with a certain mass scale M
of the field A�. Therefore, the resulting model SeffYM½V �
is written in terms of V�ðxÞ, and is identified with a

low-energy effective model for describing the low-energy
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regime p2 � M2. A physical reasoning behind this step is
explained below. The full gauge invariance of the original
Yang-Mills theory SYM½A� is retained also for SeffYM½V �.

However, from the physical viewpoint of clarifying the
mechanism for confinement, we modify Step 1 and Step 2
as follows.

(Step 10, 20) We introduce an antisymmetric tensor field
�B�� of rank 2 [20–22], which is interpreted as a composite

field of the Yang-Mills field. Then we repeat the same
procedures as before to obtain the effective model
SeffYM½V ; B� by integrating out the X field.

By integrating out the B field in SeffYM½V ; B�, another
effective theory ~SeffYM½V � is obtained in the gauge-
independent manner.

(Step 3) [Converting the Wilson loop to the surface-
integral] In the new formulation using new variables, we
can exactly rewrite the Wilson loop operator WC½A�
originally defined in terms of A�ðxÞ by making use of

V�ðxÞ alone without any reference toX�ðxÞ, according to
[23–25]. This fact suggests that ~SeffYM½V � is suitable as a
low-energy effective model for quark confinement.

Until now, all the results are gauge-independent. In what
follows, we choose a gauge to simplify the calculations.

(Step 4) [Calculating the Wilson loop average to show
area law: quark confinement] The Wilson loop average
hWC½A�iYM, i.e., the vacuum expectation value of the
Wilson loop operator WC½A� is evaluated by using the ef-

fective model ~SeffYM½V � as hWC½A�ieffYM. We show that the
Wilson loop average has the area law for sufficiently large
loop C, leading to the nonvanishing string tension � in the
linear part �R for the static quark-antiquark potential VðRÞ.

Although the area law of the Wilson loop average is
obtained also in the original model SeffYM½V �, the modified
model SeffYM½V ; B� has the advantages:

(Step 5) [Calculating the Schwinger function to show
positivity violation: gluon confinement] The effective gluon
propagator for V of another effective theory SeffYM½V �
(obtained by integrating out the B field in SeffYM½V ; B�) has
the Gribov-Stingl form [12]. The Schwinger function cal-
culated from the effective gluon propagator of the Gribov-
Stingl form [12] exhibits positivity violation suggesting
gluon confinement [1,2].

Thus the derived effective model exhibits both quark
confinement (area law) and gluon confinement (positivity
violation).

In this paper, we consider only the SUð2Þ gauge group
[16–18]; the extension to SUðNÞ based on [19] will be
given in a subsequent paper.

(Step 1) The explicit transformation from the original
variables A� to the new variables V�, X� are given by

V�ðxÞ ¼ c�ðxÞnðxÞ þ ig�1½nðxÞ; @�nðxÞ�;
c�ðxÞ :¼ A�ðxÞ � nðxÞ;
X�ðxÞ ¼ ig�1½D�½A�nðxÞ;nðxÞ�:

(1)

Here nðxÞ is the Lie-algebra suð2Þ-valued field nðxÞ ¼
nAðxÞTA (A¼1, 2, 3) with a unit length, i.e., nAðxÞnAðxÞ¼
1. The so-called color direction field n must be ob-
tained in advance as a functional of the original variable
A� by solving the reduction condition [16], e.g.,

½nðxÞ; D�½A�D�½A�nðxÞ� ¼ 0.

The new variable V�ðxÞ as an suð2Þ-valued field

V�ðxÞ ¼ V A
�ðxÞTA (A ¼ 1, 2, 3) is constructed so that

(i) V� has the same gauge transformation as the origi-

nal field A�, i.e., V�ðxÞ ! �ðxÞV�ðxÞ�ðxÞy þ
ig�1�ðxÞ@��ðxÞy and hence its field strength

F ��½V � :¼ @�V � � @�V� � ig½V�;V �� trans-
forms as F ��½V �ðxÞ ! �ðxÞF ��½V ��ðxÞy, and

(ii) F ��½V � is proportional to n, i.e., F ��½V �ðxÞ :¼
nðxÞG��ðxÞ.

Consequently, G�� ¼ n �F ��½V � is gauge-invariant,

since the field n is constructed so that it transforms as
nðxÞ!�ðxÞnðxÞ�ðxÞy. Remarkably, G�� has the same

form as the ’t Hooft-Polyakov tensor for magnetic mono-
pole

G�� ¼ @�c� � @�c� þ ig�1n � ½@�n; @�n�: (2)

(Step 10) We can introduce a gauge-invariant antisym-
metric tensor field ð�BÞ�� of rank 2 by inserting a unity into

the path-integral [20–22]

1 ¼
Z

DB exp

�
�
Z

dDx
�

4
fð�BÞ�� � ð�n �F ��½V �

� �n � ig½X�;X��Þg2
�
; (3)

where � is the Hodge dual operation. Here (too many)
parameters �, �, � are introduced to see the effects of

each term. When � ¼ ��1 ¼ ~G and � ¼ 0, indeed,
ð�BÞ�� is regarded as a collective field for the composite

operator n � ig½X�;X�� with the propagator ~G obtainable

in a self-consistent way [26] according to the Wilsonian
renormalization group (RG) [27].
Then the Euclidean Yang-Mills Lagrangian is rewritten

and modified into

LYM½V ;X; B� ¼ 1þ ��2

4
G2

�� þ �

4
ð�BÞ2��

� ��

2
ð�BÞ��G�� þ 1

2
X�AQAB

��X�B

þ 1þ ��2

4
ðig½X�;X��Þ2; (4)

where we have defined

QAB
�� :¼ SAB��� þ ð2þ ���Þg�ABCnCG��

� ��g�ABCnCð�BÞ��;

SAB :¼ �ðD	½V �D	½V �ÞAB;
(5)
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with the covariant derivative D� in the adjoint repre-

sentation with V� :¼¼ V C
�TC, ðTCÞAB ¼ ifACB: DAB

� :¼
@��

AB � gfABCV C
� ¼ ½@�1� igV��AB.

[On the effect and the role of the gluon mass term] The
gluon ‘‘mass term’’ for the X field,

1

2
M2X2

�; (6)

is gauge-invariant in the new formulation [18]. Therefore,
we can include this mass term in calculating the low-
energy effective action. But we do not introduce this
mass term explicitly. On the other hand, the inclusion of
the gluon mass term for the V field,

1

2
m2V 2

� ¼ 1

2
m2c2� þ 1

2
m2ð@�nÞ2; (7)

breaks gauge invariance and BRST invariance after taking
specific gauges. However, we can modify the BRST such
that the modified BRST is a symmetry of the Yang-Mills
theory with the mass term at the cost of nilpotency.

(Step 20) We identifyX� with the ‘‘high-energy’’ mode

in the range p2 2 ½M2;�2� and proceed to integrate out the
‘‘high-energy’’ modes X�. Here M is the infrared (IR)

cutoff and � is the ultraviolet (UV) cutoff as the initial
value for the Wilsonian RG. In the derivation of our
effective model, we neglect quartic self-interactions
amongX�, i.e., ðig½X�;X��Þ2.1 In these approximations,

we can integrate out X� by the Gaussian integration and

obtain a gauge-invariant low-energy effective action
SeffYM½V ; B� without mass terms (6) and (7)

SeffYM½V ; B� ¼
Z �

1þ ��2

4
G2

	� þ �

4
ð�BÞ2	�

� ��

2
ð�BÞ	�G	�

�
þ 1

2
ln detQAB

	�

� ln detSAB; (9)

where
R ¼ R

d4x, the functional logarithmic determinant
1
2 ln detQAB

	� comes from integrating out the X field, and

the last term comes from the Faddeev-Popov-like determi-
nant term [17] associated with the reduction condition [16]

1

2
ln detQAB

	�� ln detSAB

¼
Z g2 ln�

2

M2

ð4
Þ2
�
1

6
G2

	��1

2
fð2þ���ÞG	����ð�BÞ	�g2

�

þ
Z g2

ð4
Þ2
1

M2

1

6
ð@�fð2þ���ÞG	����ð�BÞ	�gÞ2

þOð@4=M4Þ: (10)

The gauge fixing is unnecessary in this calculation. In-
deed, the resulting effective action (9) with (10) is mani-
festly gauge-invariant. This is one of the main results.

The correct RG � function at the one-loop level �ðgÞ :¼
�dgð�Þ

d� ¼�b1g
3þOðg5Þ, b1 ¼ 22

3 =ð4
Þ2 is reproduced in

a gauge-invariant way when ��� ¼ 0, which follows
from, e.g., � ¼ 0 (mentioned above) or � ¼ 0 (in the
case of no B�� field).

To obtain (10), we used the heat kernel to calculate the
regularized logarithmic determinant. Instead of using
the standard regulator function RM of the functional
RG approach [27], we restrict the integration range of
� to � 2 ½1=�2; 1=M2�, which corresponds to the
momentum-shell integration p2 2 ½M2;�2�

ln detO ¼ �
Z

dDx lim
s!0

d

ds

�
�2s

�ðsÞ
�

Z 1=M2

1=�2
d��s�1trhxje��Ojxi

�
; (11)

where tr denotes the trace over Lorentz indices and group
indices and � is the renormalization scale. The limit
� ! 1 should be understood in what follows. These
results should be compared with previous works
[20,21,30,31]. We can show that the mass term (6) plays
the same role as the IR regulator mentioned above (see
[22]).
(Step 3) We use a non-Abelian Stokes theorem [23–25]

to rewrite a non-Abelian Wilson loop operator

WC½A� :¼ tr

�
P exp

�
ig

I
C
dx�A�ðxÞ

��
; (12)

into the area-integral over the surface � (@� ¼ C)

WC½A� ¼
Z

d��ð
Þ exp
�
ig

1

2

Z
�: @�¼C

G

�
; (13)

where the product measure d��ð
Þ :¼ Q
x2�d�ð
xÞ is

defined with an invariant measure d� on SUð2Þ normal-
ized as

R
d�ð
xÞ ¼ 1, 
x 2 SUð2Þ. In the 2-form G :¼

1
2G��ðxÞdx� ^ dx�, G�� agrees with the field strength (2)

under the identification of the color field nðxÞ with a

normalized traceless field nðxÞ :¼ 
xð�3=2Þ
y
x . See

also [32].

1However, we can take into account an effect coming from
the quartic interaction, which influences our effective model. In
fact, it is shown [18,28] that the quartic gluon interaction
ðig½X�;X��Þ2 among X� gluons can induce a contribution to
the mass term (6) 1

2M
2X2

� through a vacuum condensation of
‘‘mass dimension-2’’ (the BRST-invariant version was proposed
in [29]),

hXB
� ðxÞXB

� ðxÞi � 0; (8)

which leads to the mass term (6) withM2 ’ hXB
� ðxÞXB

� ðxÞi up to
a numerical factor. This result is easily understood by a Hartree-
Fock argument. This effect is included in the heat kernel calcu-
lation through the infrared regularization, see Eq. (11).
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(Step 4) We proceed to evaluate the Wilson loop aver-
age WðCÞ ¼ hWC½A�iYM by using the effective action
SeffYM½V ; B�, i.e., hWC½A�iYM ’ hWC½A�ieffYM with the aid
of (13).

We demonstrate that the simplest way to obtain the
area law is to use the low-energy effective action
SeffYM½c; B� retained up to terms quadratic and bilinear in
c and B:

SeffYM½c; B� ¼
Z �

1þ ��2

4
G2

	� þ �

4
ð�BÞ2	� � ��

2
ð�BÞ	�G	�

�
þ

Z g2 ln�
2

M2

ð4
Þ2
�
1

6
G2

	� � 1

2
½ð2þ ���ÞG	� � ��ð�BÞ	��2

�

þ
Z g2

ð4
Þ2
1

M2

1

6
ð@�½ð2þ ���ÞG	� � ��ð�BÞ	��Þ2 þ

Z 1

2
m2c2� þOð@4=M4Þ; (14)

if we include an optional mass term (7).2

To obtain the propagator or correlation functions, we
need to fix the gauge. For instance, in the Landau gauge,
@�A� ¼ 0, correlation functions for new variables have

been computed on a lattice by numerical simulations using
the Monte-Carlo method in [34] based on [35,36]. This
justifies the identification of X� as the high-energy mode

negligible in the low-energy regime below M ’ 1:2 GeV.
In what follows, we take the unitary-like gauge

nAðxÞ ¼ �A3; (15)

which reproduces the same effect as taking the MA gauge
[37] in the original Yang-Mills theory. In this gauge,XA

�ðxÞ
reduces to the off-diagonal component Aa

�ðxÞ (a ¼ 1, 2),

while V A
�ðxÞ reduces to the diagonal one A3

�ðxÞ ¼ a�ðxÞ,
i.e.,XA

�ðxÞ¼Aa
�ðxÞ�Aa,V A

�ðxÞ¼A3
�ðxÞ�A3¼c�ðxÞ�A3.

In this gauge, the field strength reads

G��ðxÞ!F��ðxÞ :¼@�c�ðxÞ�@�c�ðxÞ; F¼dc; (16)

where d denotes the exterior differential. The gauge (15)
forces the color field at each spacetime point to take the
same direction by gauge rotations. Hence, the field c con-
tains singularities (of hedgehog type) similar to the Dirac
magnetic monopole after taking the gauge (15). Therefore,
dF ¼ ddc � 0, even if F ¼ dc. If we do not fix the gauge,
such a contribution is contained also in the part ig�1n �
½@�n; @�n� to make a gauge-invariant combination G��

given by (2) (see [35,36]).

By integrating out the B field, we obtain the effective

action ~SeffYM½c�. Then we find that the effective propagator
Dcc has the Gribov-Stingl form

~D FFðpÞ ¼ p2 ~DccðpÞ; ~DccðpÞ ¼ 1þ d1p
2

c0 þ c1p
2 þ c2p

4
;

(17)

where c0 ¼ m2, c1 ¼ 1þ ��2

3
g2

ð4
Þ2
m2

M2 , c2 ¼ g2

ð4
Þ2
1
M2

½ð2 þ ���Þ2 þ ð1 þ ��2Þ��2 þ 2ð2 þ ���Þ����=3,
and d1 ¼ ��2

3
g2

ð4
Þ2
1
M2 . The precise values of the parameters

m, �, �, �, and M are to be determined by the functional
RG [27] following [11], which is a subject of future study.
In the unitary-like gauge (15), the Wilson loop operator

is reduced to

WC½F� ¼ exp

�
ig

1

2

Z
�: @�¼C

F

�
¼ exp

�
ig

1

2
ð��; FÞ

�
;

(18)

where �� is the vorticity tensor defined by ���
�
ðxÞ ¼R

� d2S��ðxð�ÞÞ�Dðx� xð�ÞÞ, which has the support on

the surface � whose boundary is the loop C. Here, ð�; �Þ
is the L2 inner product for two differential forms:
ð��; FÞ ¼

R
dDx 1

2�
��
�
ðxÞF��ðxÞ. By integrating out B,

we obtain the effective model SeffYM½c� ¼ 1
2 ðc;D�1

cc cÞ ¼
1
2 ðF;D�1

FF FÞ in terms of c or F. Then the Wilson loop

average WðCÞ is evaluated by integrating out F ¼ dc:

WðCÞ ¼ exp

�
� 1

8
g2ð��;DFF��Þ

�
; (19)

where DFF ¼ �Dcc and its Fourier transform ~DFFðpÞ ¼
p2 ~DccðpÞ. For concreteness, we choose �� for a planar
surface bounded by a rectangular loop C with side lengths
T and R in the x3 � x4 plane. Then we find that the Wilson
loop average has the area law for large R

WðCÞ � exp½��RT�; (20)

with the string tension given by the formula

2The optional mass term (7) is not contained in the original
action of Yang-Mills theory. But, there is a possibility that such a
mass term could be induced in a nonperturbative manner in the
effective theory for the deep infrared region. In the full non-
perturbative treatment, it is important to avoid the Gribov copies
to achieve complete gauge fixing. We observe that, in the
modified version of the GZ model [2] called the refined GZ
[33], the similar effect to our optional mass term is generated by
the horizon term, which plays the role of restricting the range of
the functional integral to the first Gribov region. The horizon
term breaks the nilpotent BRST symmetry, and so does the
optional mass term (7). This issue is skipped here.
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� ¼ 1

8
g2

Z
p2
1
þp2

2
�M2

dp1dp2

ð2
Þ2
~DFFðp1; p2; 0; 0Þ> 0; (21)

where the momentum integration is restricted to the two-
dimensional space (the dimensional reduction by two [38])
and is cut off at the upper limit M. A positive and finite
string tension 0<�<1 follows from the condition of no

real poles in the effective gluon propagator ~DccðpÞ in the

Euclidean region, 0< ~DFFðpÞ ¼ p2 ~DccðpÞ<1, which is
connected to the gluon confinement below. This is another
one of the main results.

According to numerical simulations in the MA gauge
[39–41], the diagonal gluon propagator is well fitted to
the form (17): e.g., [41] gives c0 ¼ 0:064ð2Þ GeV2,
c1¼0:125ð9Þ, c2¼0:197ð9ÞGeV�2, d1¼0:13ð1ÞGeV�2,
and M ’ 0:97 GeV, where M is the mass of off-diagonal
gluons obtained in the MA gauge. This value ofM is a little
bit smaller than the values of other groups [39,40].
This indeed leads to a good estimate for the string tension
� ’ ð0:5 GeVÞ2 according to (21) for �ð�Þ ¼ g2ð�Þ=
ð4
Þ ’ 1:0 at � ¼ M. The next task is to study how the
results are sensitive to the deep infrared behavior of the
diagonal gluon propagator (17) and the actual value of M
for the off-diagonal gluon propagator.

The Gribov-Stingl form is obtained only when c0 � 0
(i.e., m � 0) and d1 � 0 (B�� is included). Even in the

limit m2 ! 0 ðc0 ! 0Þ, the area law survives according to

(21), provided that ~DFFðpÞ remains positive and finite:
~DFFðpÞ ! 1þd1p

2

c1þc2p
2 , while ~DccðpÞ behaves unexpectedly

as ~DccðpÞ ! 1þd1p
2

p2ðc1þc2p
2Þ . Hence, we argue that it does not

matter to quark confinement whether m ¼ 0 or m � 0.
(Step 5) The positivity violation is examined. In the

case of c2 ¼ 0, there is no positivity violation, as far as

c0=c1 > 0. In the case of c2 � 0, ~DccðpÞ has a pair of com-
plex conjugate poles at p2 ¼ z and p2 ¼ z�, z :¼ xþ iy,

x :¼ �c1=ð2c2Þ, y :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0=c2�ðc1=ð2c2ÞÞ2

p
. We find that

the Schwinger function �ðtÞ :¼Rþ1
�1

dp4

2
 eip4t ~Dccðp¼0;p4Þ

is oscillatory in t and is negative over finite intervals in the
Euclidean time t > 0:

�ðtÞ ¼ 1

2c2jzj3=2 sinð2’Þ
e�tjzj1=2 sin’½cosðtjzj1=2 cos’� ’Þ

þ d1jzj cosðtjzj1=2 cos’þ ’Þ�; (22)

where z ¼ jzje2i’ with jzj ¼ ðc0=c2Þ1=2, cosð2’Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21=ð4c0c2Þ

q
, and sinð2’Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21=ð4c0c2Þ

q
. There-

fore, the reflection positivity is violated for the gluon

propagator (17), as long as 0<
c21

4c0c2
< 1, irrespective of

d1. When c0 ¼ 0 (or m ¼ 0),

�ðtÞ ¼ � t

2c1
� 1

2c1

ffiffiffiffiffi
c2
c1

s �
1� c1

c2
d1

�
e�t

ffiffiffiffiffiffiffiffiffi
c1=c2

p
: (23)

Hence, the special case c0 ¼ 0 also violates the positivity,
if c1 > 0 and c2 > 0. Thus, the diagonal gluon in the MA
gauge can be confined.
In summary, we have derived a novel low-energy effec-

tive model of the SUð2Þ Yang-Mills theory without fixing
the original gauge symmetry. It is remarkable that the
effective model respects the SUð2Þ gauge invariance of
the original Yang-Mills theory, which allows one to take
any gauge fixing in computing physical quantities of inter-
est in the low-energy region. The effective gluon propaga-
tor belongs to the Gribov-Stingl form. In MA gauge, the
model exhibits both quark confinement and gluon confine-
ment simultaneously in the sense that the Wilson loop
average satisfies the area law (i.e., the linear quark-
antiquark potential) and the Schwinger function violates
reflection positivity. More results and full details will be
given in a subsequent paper.
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