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In this paper we discuss the possibility that chiral phase transitions, analogous to those of QCD, occur in

the vicinity of a black hole. If the black hole is surrounded by a gas of strongly interacting particles, an

inhomogeneous condensate will form. We demonstrate this by explicitly constructing self-consistent

solutions for the condensate. We discuss the relevance of our results in relation to the possibility of

chromosphere formation. We argue that this is not expected, rather the configuration will be similar to the

shock produced by stellar wind.
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According to the theory of quantum fields in curved
space, black holes radiate energy at a temperature inversely
proportional to their mass [1]. As the black hole evapo-
rates, its temperature rises, and at some point a bubble of a
high temperature phase surrounding the horizon may form,
if a phase transition occurs. This was a particularly inter-
esting phenomena in connection with the Higgs model of
electroweak symmetry breaking and its study requires
the inclusion of interactions, being an essential feature of
the phase transition. A method to deal with this situation
was proposed, but the indication was that, in the Higgs
model, the associated high temperature phase would be
too localized around the black hole, so that symmetry,
effectively, would not be restored [2]. The same problem
has been reconsidered by Moss taking into account the
effect of trapped particles, i.e. particles emitted by the
black hole and reflected back by the walls of the bubble.
He indicated that, for some class of bag models, the picture
may change and lead to a transient equilibrium configura-
tion of restored symmetry phase, localized around the
black hole [3].

A field in which a similar problem of understanding the
phase structure is nowadays very topical is that of QCD at
finite temperature and density, in which phenomena like
chiral symmetry breaking and confinement/deconfinement
transitions are known to take place. In this context, the
natural way of addressing the problemwould be to use ‘first
principle’ nonperturbative lattice methods, but already in
flat space, and especially at high densities, things become
prohibitive. In lack of a first principle approach, approxi-
mating QCD with a strongly interacting fermion effective
field theories comes in handy. The price to pay is that we
have towork with a nonrenormalizable effective theory, but
with the bonus of dealing with a simpler one that shares
many of the essential properties ofQCD.As amatter of fact,
a great deal of attention is currently paid on mapping
various phases on the temperature-density diagram within
such an effective field theoretical approach, in order to gain
understanding of the vacuum structure of strongly interact-
ing matter (see Ref. [4] for a recent review).

The aim of this work is to use the same simplification of
degrading QCD to a nonrenormalizable, strongly interact-
ing fermion effective field theory, and study the inter-
play with black holes. To begin with, we wish to consider
a little more in detail the issue of phase transitions that
would break or restore chiral symmetry. In the context of
strongly interacting fermionic systems, it is well known
that chiral symmetry breaking takes place, and this fact is
discussed in terms of the appearance of a fermion conden-
sate. One aspect particularly important to us is that the
ground state is believed to develop inhomogeneous phases
when the density becomes large. For instance, the authors
of Refs. [5] discussed the issue of chiral symmetry break-
ing and the related condensate formation, and mapped the
phase diagram for models of the Nambu-Jona Lasinio
class. The description of Refs. [5] indicated that the fer-
mion condensate at high densities resembles a lattice of
domain walls.
In the present case, we are lifting the situation to curved

space, where new effects kick in. In a constant curvature
space, the effect of the nontrivial geometry is something
similar to adding chemical potential. The condensate may
or may not be spatially homogeneous. By contrast, in a
black hole spacetime inhomogeneous configurations for
the condensate are inevitable. To keep the situation as
simple as possible, let us concentrate on the case in which
a Schwarzschild black hole of mass m is surrounded by
strongly interacting fermions in thermal equilibrium with
the asymptotic temperature given by TBH ¼ ð8�mÞ�1.
Then, the local (Tolman) temperature is given by Tloc ¼
TBH=

ffiffiffi
f

p
with f ¼ 1� 2m=r. In flat space, the strongly

interacting fermionic theory has a critical temperature, Tc,
that marks the phase transitions of chiral symmetry break-
ing (in QCD Tc ’ 200 MeV). Therefore it seems evident
that in the asymptotic region chiral symmetry is restored
when TBH > Tc while broken for TBH < Tc. When TBH <
Tc, Tloc crosses the critical temperature at a certain radius.
Within this radius, the symmetry will be restored. This
indicates the possibility that a domain wall structure of the
condensate surrounding the black hole will arise.
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We will now make the above picture quantitative by
using a strongly interacting fermion effective field theory
of the Nambu-Jona Lasinio type. The prototype action can
be written as

S ¼
Z

d4x
ffiffiffi
g

p �
�c i��r�c þ �

2N
ð �c c Þ2

�
:

In the above expression c is a spinor field, � is the
coupling constant, g ¼ jDetg��j is the determinant of the

metric tensor, and �� are the gamma matrices in curved

space. The number of fermion degrees of freedom (equal to
the number of flavors times the number of colors) is N and
summation over color and flavor indices is understood. The
background spacetime is that of a spherically symmetric
and asymptotically flat black hole,

ds2 ¼ fdt2 þ f�1dr2 þ r2ðd�2 þ sin2�d’2Þ: (1)

The formulas we will present below generally apply for
any function fðrÞ, but the numerical analysis will be car-
ried out for the Schwarzschild case.

To analyze the breaking/restoration of chiral symmetry,
we will use the finite temperature effective action in the
large-N approximation. The effective action (per fermion
degree of freedom), �, can be expressed, after bosoniza-
tion, as

� ¼ �
Z

d4x
ffiffiffi
g

p �
�2

2�

�
þ Tr lnði��r� � �Þ;

where the composite operator � � � �
N
�c c was intro-

duced and the determinant acts both on field and coordinate
spaces. Chiral symmetry is broken dynamically when �
acquires a nonzero vacuum expectation value and then a
fermion mass term appears.

The computation of the effective action can be per-
formed using the method described in Ref. [6], although
some modifications are necessary to include the case of
black holes. Because black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be ultra-
static, dŝ2 ¼ f�1ds2. We will use a hat to indicate the
quantities evaluated in this conformally related spacetime.
After the conformal transformation, one can use the
method of [6] to evaluate the effective action in the re-

scaled spacetime, �̂, and add a correction term, ��, some-
times called cocycle function, to compensate the effect of
the conformal transformation [7,8]. Assuming the conden-
sate to be spherically symmetric, � ¼ �ðrÞ, and squaring
the Dirac operator, we obtain

� ¼ �
Z

d4x
ffiffiffi
g

p �
�2

2�

�
þ �̂þ ��; (2)

where

�̂ ¼ 1

2

X
	¼�

Tr ln½ĥþAþ f�2
	�: (3)

In the above expression ĥ is the D’Alembertian in the

conformally rescaled spacetime and �2
	 :¼ �2 þ 	f1=2�0.

The quantity AðnÞ ¼ fððn� 2Þ� lnf=4� ðn� 2Þ2
ðr lnfÞ2=16Þ is determined so that ĥþAðnÞ ¼
f�ðnþ2Þ=4hfð2�nÞ=4 is satisfied, where n is the spacetime

dimensions. In (3) we have used the notation A � Að4Þ.
Notice that A ¼ R̂=6. Imposing the periodicity in the
Euclidean time with the period 
 ¼ 2�=TBH, we express

�̂ as

�̂ ¼ 1

2

X
	¼�

X1
n¼�1

Tr ln½��̂þ!2
n þAþ f�2

	�;

with �̂ being the Laplacian in the conformally rescaled
space and !n :¼ 2�=
ðnþ 1=2Þ.
Using zeta regularization gives

�̂ ¼ 1

2

Z
d3x

ffiffiffî
g

p ½�ð0Þ ln‘2 þ � 0ð0Þ�;

where ‘ is a renormalization (length) scale and

�ðsÞ :¼ 1

�ðsÞ
X
n;	

Z
dtts�1 Tre�tð��̂þ!2

nþAþf�2
	Þ:

The quantities �ð0Þ and � 0ð0Þ are the analytically continued
values of �ðsÞ and its derivative to s ¼ 0. The computation
of the effective action is rather involved, but it can be
performed in a straightforward manner following the
method developed in Ref. [6]. Here we use a resummed
form for the heat-trace and retain all terms that contains a
specified number of spatial differentiations. We invite the
reader to consult Ref. [6] for details and further references.
In the present case, the result is

�̂ ¼ 


2ð4�Þ2
X
	

Z
d3x

ffiffiffî
g

p �
3�4

	

4
�

�
�4

	

2
þ a	

�
ln

�
f�2

	

‘2

�

þ 16
�2

	

f
2
$2ðf1=2�	Þ þ 4a	$0ðf1=2�	Þ

�
; (4)

where we have defined

$�ðuÞ :¼
X1
n¼1

ð�1Þnn��K�ðn
uÞ;

a	 :¼ 1

180
ðR̂2

��� � R̂2
�� � �̂ R̂Þ þ 1

6
�̂ðf�2

	Þ:

The other term to compute is the cocycle contribution that
compensates the difference due to the conformal trans-
formation to recover the result in the original spacetime.
The cocycle function can be expressed in terms of the heat-
kernel coefficients associated with the operator O in n
dimensions:

�� ¼ lim
n!4

ðCð2Þ
n ½ĝ� � Cð2Þ

n ½g�Þ=ðn� 4Þ:
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For an operator of the form O ¼ hþ V, the part of the
heat-kernel coefficient, relevant for our computation, is

Cð2Þ
n ½g� ¼ 1

ð4�Þn=2
1

2

Z
dnx

ffiffiffi
g

p �
V2 � 1

3
RV þ � � �

�
;

where the dots represent terms that do not depend on V or
disappear upon integration by parts. In the present case,
V ¼ �2

	 in the original spacetime while V ¼ Aþ f�2
	 in

the conformally rescaled spacetime. Simple computations
give

�� ¼ 


2ð4�Þ2
X
	¼�

Z
d3x

ffiffiffi
g

p �
�4

	

2
lnf� 2�2

	

f
lim
n!4

d�n

dn

�
;

where �n ¼ AðnÞ � ðR̂ðnÞ � fRðnÞÞ=6 and R̂ðnÞ and RðnÞ
are the n-dimensional Ricci scalars in the conformally
rescaled and original spacetimes, respectively. Using
limn!4d�n=dn ¼ ðf02 � 2ff00 þ 4ff0=rÞ=24, one arrives
at the expression for the cocycle function. Combining (4)
with the above expression gives the effective action � for
the condensate �.

The problem is now reduced to finding extrema of
the effective action � with respect to the condensate �.
Ignoring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate as a
nonlinear Schrödinger-like equation of the form

�00 þ �1�
0 þ �2�

02 þK ¼ 0; (5)

where the coefficients �i and K are functions of � but
independent of its derivatives. The explicit expressions are
rather long and will not be reported here.

Before finding the explicit solution for the condensate,
we will discuss the critical temperature in the asymptotic
region r ! 1. Denoting the minus of the action with
�0 ¼ 0 as the potential Uð�Þ, the derivative of the asymp-
totic value can be computed exactly as

@�Uas¼�3�ð4��ð4$�1ð�Þþ
�lnð�=‘Þ�2�
�2þ
Þ
2�
ð�4
�$1ð�Þ�6$0ð�Þþ3lnð�=‘Þ�2Þ :

The critical temperature is determined by the equation
@2�Uasð�Þ ¼ 0. Thus, expanding the Bessel functions con-
tained in $� for small �, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one

arrives at Tc ¼
ffiffiffi
3

p
��1=2. The thermodynamic potential

obtained by numerically integrating @�U with respect to
� is shown in Fig. 1.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set of
parameters for which asymptotically the potential has a
nonvanishing minima, as we move towards the hole, the
minima of the potential will gradually shift towards a
configuration with vanishing �. We confirm the above
picture by solving Eq. (5) for the condensate with regular

boundary conditions at the horizon. Solving Eq. (5) can be
handled by standard numerical techniques, but it requires
some caution. First of all, we notice that the coefficients of
Eq. (5) for � depend on infinite summations over Bessel
functions, whose argument is proportional to the conden-
sate. When the value of the condensate is not small, these
sums can be truncated due to the exponential falloff of the
Bessel functions. However, when the condensate is small,
fully resummed expressions have to be used. Once we

FIG. 1 (color online). The figure illustrates how, asymptoti-
cally, the potential Uasð�Þ changes and symmetry gets restored
as temperature increases [The top (red) curve corresponds to
TBH=Tc ¼ 1:75, while the bottom (orange) curve corresponds to
TBH=Tc ¼ 0:03. The second curve from top (blue) corresponds
to T=Tc ¼ 1]. We set ‘ ¼ 106 and � ¼ 10�2.

FIG. 2 (color online). Condensate profile found by solving
Eq. (5), for four indicative values of the black hole temperature
[Left to right: TBH=Tc ¼ 0:50 (blue), 0.54 (green), 0.58 (red),
0.61 (black)]. The values of the other parameters are set to
‘ ¼ 103, � ¼ 10�2. As we increase the black hole temperature,
the region of restored symmetry phase expands, and the bubble
becomes larger and thicker. The asymptotic value of the
condensate becomes smaller as the asymptotic temperatures
increases, and tends to zero for T ! Tc. The small box super-
posed illustrates for the rightmost curve (T=Tc ¼ 0:61), the
corrected solution (red, dashed line) when fourth order derivative
terms are included.
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expand the Bessel functions for small values of their argu-
ments, we can perform the full resummation over n. In
the region r < r� where � is small up to a value r�, we
integrate Eq. (5) using this resummed form, and then we
switch to the truncated form for r > r�, matching the value
of � and its derivative at the junction. The boundary
conditions in the vicinity of the horizon and in the asymp-
totically far region are set by requiring that the condensate
is at a minima of the potential.

We present the results for the condensate profile in
Figs. 2 and 3 for sample values of the parameters. The
kink-type configurations of Figs. 2 and 3 are bubbles that
separate a region of restored symmetry near the black hole
from a region of broken symmetry surrounding it. The size
of the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble � rs=ð1� T2
BH=T

2
c Þ;

which approximately agrees with the numerical results.
Higher order corrections can be treated systematically in

the present scheme by iteratively including higher order
terms in the heat-kernel expansion. We expand � around
the solution already obtained in the lower order approxi-
mation, ��, as � ¼ ��þ ��. Substituting this form into the
equation of motion, and suppressing all derivatives higher
than three acting on ��, we obtain a second order differ-
ential equation for �� with a source term. We carried out
this iteration to forth order and verified that higher order
corrections only produce small distortions compared with
the solution truncated at second order. In fact, higher order
terms become less and less relevant as the black hole
temperature gets closer to the critical one, due to the fact
that the kink becomes increasingly thicker. In Fig. 2 we
have shown the perturbed solution superposed to the one
truncated at second order for an illustrative set of the
parameters.

The computation presented here considers a situation of
thermal equilibrium, as in the case of a primordial black
hole surrounded by a gas of expanding interacting matter in
approximately local thermal equilibrium. To analyze this
problem, we have used the Hartle-Hawking vacuum state.
The case of evaporating black holes requires, instead, the
use of the Unruh vacuum. In that case, there is a net
outgoing flux at infinity, the asymptotic energy density
will decay like 1=r2, and the effective temperature vanishes
asymptotically. Although a technically complete analysis
is necessary to finely describe the properties of the con-
densate, on the basis of the present results, we can argue
that, since the critical temperature is always larger than the
asymptotic one, a bubble of restored symmetry is expected
to form for black holes of any mass.
Recent attention has been drawn to the possibility of a

chromosphere formation around primordial black holes,
and the problem has been debated, for instance, in
Refs. [9–11]. Although the phase transition considered
here is a phenomena largely different from that of chromo-
sphere formation and has not been discussed in the above
references, it might be natural to ask whether the formation
of a bubble has any effect on the formation of a chromo-
sphere. Within the context of the Nambu-Jona Lasinio
approximation discussed in this paper, it is the gradient
of the effective local temperature caused by redshift that
plays an essential role. In the case of the Unruh vacuum,
geometrical dilution of particles assists this tendency, and,
as long as backreaction effects are ignored, the asymptotic
particles will simply freely stream away to infinity, reduc-
ing their velocity due to gravitational attraction due to the
black hole. In the present situation, scattering will occur
coherently in the radial direction and the angular quantum
numbers do not change. Since inside the bubble particles
stay almost massless, scattering will occur only near the
bubble wall, and inside the bubble processes that random-
ize the particle motion will not be important. Such a
configuration will not be a chromosphere, rather more
similar to the shock produced by stellar wind. We stress
that this is simply a statement that within the approxima-
tion encoded in the Nambu-Jona Lasinio model used in this
paper, a chromosphere is not expected to form. Whether
the situation may change within a more complete descrip-
tion is left for future work.
Several other interesting generalizations of the present

work include the case of charged/rotating black holes.
Analyzing the case of higher dimensional black holes
would also be interesting in view of the possibility that
microscopic black holes may form at the LHC.
Here we considered the simplest class of models and

completely ignored the role of gauge degrees of freedom or
other types of condensates, such as pseudoscalar ones.
Improving the description in this direction is essential
and may help us to gain insight into possible confine-
ment/deconfinement transitions. Again, the analogy with

FIG. 3 (color online). Condensate profile for values of the
black hole temperature much smaller than Tc. The curves refer
to (left to right): TBH=Tc ¼ 0:34 (red), 0.35 (orange), 0.37
(yellow).
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QCD turns out to be of use and, in the context of the
effective theory approach adopted here, one natural possi-
bility is to couple the model to the Polyakov loop [12].
While adding a pseudoscalar condensate does not produce
significant changes, the inclusion of gauge fields requires
some additional efforts. Work in this direction is in
progress.
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