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We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel

unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building

blocks of the scheme are the � and N octets, the � nonet and the � decuplet. We identify poles in this

unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness

S ¼ 0,�1,�2,�3 and spin J ¼ 1
2 ,

3
2 and

5
2 . Many of the poles generated can be associated with known N,

�, �, �, � and � resonances with negative parity. We show that most of the low-lying three and four star

odd-parity baryon resonances with spin 1
2 and

3
2 can be related to multiplets of the spin-flavor symmetry

group SU(6). This study allows us to predict the spin-parity of the �ð1620Þ, �ð1690Þ, �ð1950Þ, �ð2250Þ,
�ð2250Þ and �ð2380Þ resonances, which have not been determined experimentally yet.
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I. INTRODUCTION

To understand the structure of existing baryons has been
a challenging task for many years and different approaches
have been used. (See e.g. [1–11].) The interpretation of
baryons as three quark states works for ground state bary-
ons but fails in the description of many resonances. Some
examples of resonances better described by other ap-
proaches are the �ð1405Þ which can be interpreted as a
meson-baryon system [12–15] or the Roper resonance [16].

Since the pioneering works of Refs. [17,18], the
Goldstone boson–baryon scattering, using for the dynam-
ics constraints from chiral symmetry, has been studied in
several papers. From the study of the scattering of pseu-
doscalars with the JP ¼ 1

2
þ baryons in the strangenessless

sector, two poles that can be associated with the Nð1535Þ
and the �ð1620Þ resonances were found in [19]. The
SðstrangenessÞ ¼ 0, IðisospinÞ ¼ 1

2 subsector has also

been studied in [20], where in addition to the Nð1535Þ
pole, the Nð1650Þ resonance was also dynamically gener-
ated. A follow up of this work [14] analyzed the S ¼ �1,
I ¼ 0 sector where poles associated with the �ð1405Þ and
�ð1670Þ states were found and some of the findings of
previous works [12,13] were also confirmed.

In [21,22] the interaction of the baryon decuplet with the
pseudoscalar mesons was first studied and signatures of

various JP ¼ 3
2
� baryon resonances were obtained. Some

of these resonances are the �ð1820Þ, �ð1520Þ and the
�ð1670Þ. More recently the interaction of vector mesons
with baryons is being also studied within the formalism of
the hidden gauge interaction for vector mesons [23,24]. In
[25] the �� interaction is studied and the authors find an
explanation of why there are JP ¼ 1

2
�, 32

�, 52
� deltas nearly

degenerate around 1900 MeV. Later, this work was ex-
tended in order to study all possible sectors in the interac-
tion of the baryon decuplet with the vector meson
octet [26] and many poles are obtained that can be asso-
ciated with known experimental states. Also the inter-
action of vector mesons with the baryon octet has been
studied [27,28] and again signatures of various states were
found.
In principle there is no reason to expect that the inter-

action of pseudoscalar mesons with baryons and the inter-
action of vector mesons with baryons should be decoupled
for channels which share S, I, and JP (spin-parity) quan-
tum numbers. In this work we want to explore the con-
sequences of coupling these sectors that have been treated
independently in previous works. In order to do that we
use an SU(6) framework which combines spin and flavor
symmetries. Thus, we will study the s-wave meson-baryon
interaction, where the hadrons belong to the 35 (� octetþ
� nonet) and the 56 (N octet þ � decuplet) SU(6) multip-
lets. We will use an enlarged Weinberg-Tomozawa (WT)
meson-baryon Lagrangian to accommodate vector mesons
and decuplet baryons, which guarantees that chiral
symmetry is recovered when interactions involving

*daga1@upvnet.upv.es
†g_recio@ugr.es
‡jmnieves@ific.uv.es
§salcedo@ugr.es

PHYSICAL REVIEW D 84, 056017 (2011)

1550-7998=2011=84(5)=056017(29) 056017-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.056017


pseudoscalar Nambu-Goldstone bosons are being
examined.1 Chiral symmetry constraints the pseudoscalar
octet-baryon decuplet interactions, and the interactions
derived here coincide with those employed in
Refs. [21,22]. However, the interaction of vector mesons
with baryons is not constrained by chiral symmetry, and the
model presented here differs from previous ones [26,28],
based in the hidden gauge formalism.

As a result of the present work, we show that most of the
low-lying three and four star odd-parity baryon resonances
with spin 1

2 and
3
2 can be related to multiplets of the spin-

flavor symmetry group SU(6). This can be seen in Fig. 1,
which summarizes the better theoretically founded set of
dynamically generated resonances obtained in this work.
The spin-parity of the �ð1620Þ, �ð1690Þ, �ð1950Þ,
�ð2250Þ, �ð2250Þ and �ð2380Þ resonances, not experi-
mentally determined yet,2 can be read off the figure. The

classification is qualitative. Actually, each resonance dis-
plays mixing of SU(6) and SU(3) configurations (see
below).
In the next section we briefly explain the SU(6) theo-

retical model and the mathematical framework needed in
order to calculate the T matrix and identify its poles. Also
in that section, we devote a few words to clarify the
differences between our scheme and that used in
Refs. [26,28]. In Sec. III we present and discuss our results
and in the last section we summarize our conclusions.
There are also two appendices. The first one includes tables
with the elementary amplitudes of the model, while in the
second one, we discuss the predictions of the present model
for �N phase-shifts and inelasticities in the S11 sector.

II. FRAMEWORK

A. The SU(6) structure of the interaction

We follow here the spin-flavor symmetric model intro-
duced in [31–33] for meson-baryon resonances. The model
is an SU(6) extension of the Weinberg-Tomozawa
Lagrangian for meson-baryon interactions which assumes
that the quark interactions are approximately spin and

PJ  =
2

3

SU(6): 70
PJ  =

2

1 SU(6): 56
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FIG. 1. Qualitative SU(6) classification derived from this work for the experimental low-lying 1
2
� and 3

2
� baryon resonances. This

classification is made attending to the relation of each resonance with the different SUð6Þ=SUð3Þ multiplets that appear in the spin and/
or flavor symmetric scenario described in Sec. III. Most of the odd-parity three and four star resonances of the PDG are included. Few
two star (�ð1620Þ, �ð2250Þ, and �ð2380Þ) and one star (�ð1620Þ) resonances complete the SU(6) multiplets. The only exception is
the missing� state in the 1

2
� octet of the 56. The classification predicts the experimentally not yet known spin-parity of five resonances:

�ð1620Þ, �ð1690Þ, �ð1950Þ, �ð2250Þ, �ð2250Þ, and �ð2380Þ. Most of the resonances have large SU(6) and SU(3) mixing.

1A similar study for the case of the scattering of two mesons of
the 35-plet was carried out in Ref. [29].

2The BABAR collaboration finds some evidence that the
�ð1690Þ has spin-parity 1=2� in [30]. Our model corroborates
this assignment.
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SU(3) independent. As shown in [34] (see also [29]), spin-
flavor and chiral symmetries are consistent, as they can be
naturally incorporated into a larger symmetry group, cor-
responding to the Feynman–Gell-Mann–Zweig algebra
[35]. Moreover, in the presence of heavy quarks the analo-
gous scheme automatically embodies heavy quark spin
symmetry, another well established approximate symmetry
of QCD. The model has been extended to the charm sector
in [36,37] and to the study of meson-meson light reso-
nances in [29].

In this SU(6) scheme, the baryons are represented by
a 56-plet and the mesons by a 35-plet plus a singlet.
The Lagrangian is a contact interaction obtained by cou-
pling the mesonic current (35 � 35) to the baryonic one
(56 � 56�). Such coupling takes place through an implicit
35-like (i.e. adjoint representation) exchange in the t
channel:

L SUð6Þ
WT / ½½My �M�35a � ½By � B�35�1: (1)

The 56-plet of baryons in SU(6) contains the spin 1
2
þ and

3
2
þ ground state baryons while the 35-plet of mesons con-

tains the pseudoscalar and vector mesons. To visualize this,
we show the SUð3Þ � SUð2Þ content of each one of these
multiplets:

56! 82 � 104 (2)

35! 81 � 83 � 13: (3)

In these equations the left-hand side indicates the SU(6)
content of a multiplet and the right-hand side displays the
SUð3Þ � SUð2Þ pattern into which it breaks. As it is stan-
dard, the regular case number indicates the SU(3) multiplet
while the subindex indicates the number of spin states (the

SU(2) content). So 82 for example is a spin 1
2 (two spin

states) SU(3) octet, while 81 represents a pseudoscalar
(a single spin state) SU(3) octet.
From the point of view of SU(6), the meson-baryon

interaction is represented by the product:

56 � 35 ¼ 56 � 70 � 700 � 1134: (4)

Therefore the single 35-like coupling in the t channel
(cf. Eq. (1)) corresponds to four s channel couplings.
These are proportional to the following eigenvalues
[31,32]:

�56 ¼ �12; �70 ¼ �18;
�700 ¼ 6; �1134 ¼ �2:

(5)

Under SUð3Þ � SUð2Þ these four SU(6) multiplets break
as follows:

56! 82 � 104; (6)

70! 12 � 82 � 102 � 84; (7)

700! 82 � 102 � 10�2 � 272 � 84 � 104 � 274 � 354 � 106 � 356; (8)

1134! 12 � 3� 82 � 2� 102 � 10�2 � 2� 272 � 352 � 14 � 3� 84 � 2� 104 � 10�4 � 2� 274 � 354 � 86 � 106 � 276: (9)

The SU(3) multiplets interacting for each possible value of
J are displayed in Table I.

With our conventions for the potential a negative sign
implies attraction. So, attending to the eigenvalues in
Eq. (5), there are two strongly attractive multiplets (56
and 70), a weakly attracting one (1134) and a repulsive
multiplet (700). The attractive sectors are candidates for
dynamically generated resonances. This can be analyzed in

terms of SU(3) multiplets and further in terms of sectors
with well defined strangeness, isospin and spin.
For JP ¼ 1

2
�, the attractive SU(3) multiplets are the

35-plet, two 27-plets, one 10�-plet, three 10-plets, five
octets and the two singlets. In the JP ¼ 3

2
� sector one has

one 35-plet, two 27-plets, one 10�-plet, three 10-plets,
four octets and a singlet attractive and for JP ¼ 5

2
� there

is one 27-plet, one 10-plet and one octet attractive. These

TABLE I. SU(3) reduction of interacting multiplets.

J ¼ 1
2

82 � 81 ¼ 12 � 82 � 82 � 102 � 10�2 � 272
82 � 83 ¼ 12 � 82 � 82 � 102 � 10�2 � 272

104 � 83 ¼ 82 � 102 � 272 � 352
82 � 13 ¼ 82

104 � 13 ¼ 102

J ¼ 3
2

104 � 81 ¼ 84 � 104 � 274 � 354
104 � 83 ¼ 84 � 104 � 274 � 354
104 � 13 ¼ 104
82 � 83 ¼ 14 � 84 � 84 � 104 � 10�4 � 274
82 � 13 ¼ 84

J ¼ 5
2

104 � 83 ¼ 86 � 106 � 276 � 356
104 � 13 ¼ 106
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attractive multiplets account for the attractive ones from
the 56-plet, 70-plet and 1134-plet of Eqs. (6), (7), and (9).
In Table II we show a counting of the number of states that,
in principle, one can expect to generate based on the
attractive multiplets of the model. As usual the particle
label assigned to the state refers to its flavor quantum
numbers. The states without a label in Table II are exotic
in the sense that they require SU(3) irreducible representa-
tions (irreps) not present in 3 � 3 � 3 ¼ 1 � 8 � 8 � 10.
All exotic states are placed in the weakly attracting 1134
irrep, together with all spin 5

2
� and most of the 1

2
� and 3

2
�

nonexotic N, �, �, �, � and � ones. From Table II one
expects that the model generates a very rich spectrum. This
is actually the case, but not all candidate multiplets result
in poles that can be associated with physical states. Some
poles appear in the wrong Riemann sheet and, therefore,
can not be associated with physical states. In addition,
though SU(6) symmetry is the driven ingredient to fix the
interaction, it is broken in the kinematics. Indeed, we
implement some source of spin-flavor symmetry breaking
first by using physical masses3 for all the mesons and
baryons and second by the use of different meson decay
constants. Both types of symmetry breaking terms induce
SU(6) violations not only at the level of kinematics, but
also in the interactions. The values for the decay constants

of the mesons we use are as follows (see Table II of
Ref. [37]):

f� ¼ 92:4 MeV; fK ¼ 113 MeV;

f� ¼ 111 MeV; f� ¼ fK� ¼ 153 MeV;

f! ¼ 138 MeV; f� ¼ 163 MeV:

(10)

We assume an ideal mixing in the isoscalar vector meson

sector, namely, !¼
ffiffi
2
3

q
!1þ 1ffiffi

3
p !8 and � ¼

ffiffi
2
3

q
!8 � 1ffiffi

3
p !1.

B. Coupled channels and unitarization

All meson-baryon pairs coupled to the same SIJ quan-
tum numbers span the coupled channel space. The s-wave
tree level amplitudes between two channels for each SIJ
sector are given by:

VSIJ
ij ¼ �SIJ

ij

2
ffiffiffi
s
p �Mi �Mj

4fifj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þMi

2Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej þMj

2Mj

s
; (11)

where
ffiffiffi
s
p

is the center of mass (C.M.) energy of the
system, Ei and Mi are, respectively, the C.M. energy and
mass of the baryon in the channel i, fi is the decay constant
of the meson in the channel i, finally �SIJ

ij are coefficients

coming from the SU(6) group structure of the couplings.
That is,

�SIJ
ij ¼

X
r

�r½Pr�SIJij ; (12)

where r ¼ 56, 70, 700, 1134, Pr denotes the projector on
the SU(6) irreducible representation r and the eigenvalues
�r are given in Eq. (5). Tables for the coefficients � can be
found in Appendix A.
We use the matrix VSIJ as a kernel to calculate the T

matrix:

TSIJ ¼ ð1� VSIJGSIJÞ�1VSIJ; (13)

whereGSIJ is a diagonal matrix containing the two particle
propagators for each channel. Explicitly

GSIJ
ii ¼ 2Mið �J0ð

ffiffiffi
s
p

;Mi;miÞ � �J0ð�SI;Mi;miÞÞ: (14)

mi is the mass of the meson in the channel i. The loop
function �J0 can be found in the appendix of [20] for the
different relevant Riemann sheets. The two particle propa-
gator diverges logarithmically and to make it finite we have
adopted the prescription of [38,39] which we now describe.
The loop is renormalized by a subtraction constant such
that

GSIJ
ii ¼ 0 at

ffiffiffi
s
p ¼ �SI: (15)

To fix the subtraction point�SI, all sectors with a common
SI and different J and all corresponding channels are

considered. Then �SI is taken as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

th þM2
th

q
, where mth

and Mth, are, respectively, the masses of the meson and
baryon producing the lowest threshold (minimal value of

TABLE II. Expected number of states generated by the model
in each sector. Here, SIJP stands for strangeness, isospin and
spin-parity, respectively.

S I state 56 � 70 � 1134 56 � 70
JP JP

1
2
� 3

2
� 5

2
� 1

2
� 3

2
� 5

2
�

0 1=2 N 8 7 2 2 1 0

0 3=2 � 6 6 2 1 1 0

�1 1 � 12 11 3 3 2 0

�1 0 � 9 7 2 3 1 0

�2 1=2 � 11 10 3 3 2 0

�3 0 � 4 4 1 1 1 0

1 0 1 1 0 0 0 0

1 1 2 2 1 0 0 0

1 2 1 1 0 0 0 0

0 5=2 1 1 0 0 0 0

�1 2 3 3 1 0 0 0

�2 3=2 4 4 1 0 0 0

�3 1 3 3 1 0 0 0

�4 1=2 1 1 0 0 0 0

3For the physical masses of the mesons we use,
m� ¼ 137:5 MeV, mK ¼ 496 MeV, m� ¼ 548 MeV, m� ¼
775 MeV, mK� ¼ 894 MeV, m! ¼ 783 MeV and m� ¼
1019 MeV and for the physical masses of the baryons we use,
MN ¼ 939 MeV, M� ¼ 1116 MeV, M� ¼ 1193 MeV, M� ¼
1318 MeV, M� ¼ 1210 MeV, M�� ¼ 1385 MeV, M�� ¼
1533 MeV and M� ¼ 1672 MeV.
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mth þMth). Therefore the subtraction point takes a com-
mon value for all sectors SIJ with equal SI. Results from
this renormalization scheme (RS), but involving only the
mesons and baryons of the pion and nucleon octets were
already obtained in [15].

With all these ingredients we look for the poles of the
T matrix on the

ffiffiffi
s
p

complex plane. Following extended
practice, the poles on the first Riemann sheet on the real
axis and below threshold will be called bound states. Poles
on the second Riemann sheet (SRS) below the real axis and
above threshold will be called resonances. Poles on the
SRS on or below the real axis but below threshold will be
called virtual states. Poles appearing in different positions
than the ones mentioned can not be associated with physi-
cal states and are, therefore, artifacts. The real part of the
pole position on the

ffiffiffi
s
p

complex plane is associated with
the mass of the state, and the imaginary part is associated
with minus one half of its width. Further information that
can be extracted from the poles of the T matrix is the
residue, related to the couplings of the states to their
coupled channels. Close to a pole the T matrix can be
written as:

TSIJ
ij ðzÞ �

gigj
z� zR

; (16)

where zR is the pole position in the
ffiffiffi
s
p

plane and the gk is
the dimensionless coupling of the resonance to channel k.
So, by calculating the residues of the T matrix at the pole,
one obtains the product of the couplings gigj.

Some of the channels considered have mesons or bary-
ons which are themselves resonances. The meson-baryon
resonances with large couplings to these channels and with
mass close to these thresholds may have their width en-
hanced by the decay of its components. Following [40,41],
we take this effect into account by convoluting the loop
function GSIJ of these channels with the spectral function
of the unstable particles in the channel. We use for the
width of the unstable particles the values:

�� ¼ 150 MeV; �K� ¼ 50 MeV;

�� ¼ 120 MeV; ��� ¼ 35 MeV:
(17)

C. SU(6) spin flavor vs hidden gauge formalism
for vector interactions

As mentioned in the introduction, the s-wave interaction
of vector mesons with the octet of stable spin-parity 1

2
þ

baryons and with the resonances of the �ð1232Þ decuplet
has been previously studied in Refs. [26,28]. Both works
are based on the local hidden gauge formalism for vector
interactions and use a coupled channel unitary approach. In
this subsection, we devote a few words to clarify the main
theoretical differences between the schemes based on the
hidden gauge approach and the scheme based on spin-
flavor employed here. Namely

(i) Dynamics: As we commented above and explained
in more detail in Ref. [31], the interaction in our
model is of the form ½ð35 � 35Þ35a � ð56� � 56Þ35�1
in the t channel. This can be regarded as the zero-
range t-channel exchange of a full 35 irreducible
representation of SU(6), carried by an octet of spin
0 and a nonet of spin 1 even parity mediators.
In Refs. [26,28], the interaction mechanism is the
t-channel exchange of vector mesons (see diagram
(b) of Fig. 2). Contributions from u- and s-channel
mechanisms are neglected as they are argued to be
small at threshold. Furthermore, the t-channel vector
exchange is evaluated with certain approximations,
which amount to neglect of both q2=m2

V and the

three-momentum of the external vector mesons ver-
sus their masses. In these circumstances, the inter-
action becomes one of contact type and it depends
only on the vector meson energies, and it does not
depend on three-momenta (see Eq. (9) of Ref. [26] or
Eq. (12) of Ref. [28]). Actually, it is originated by the
t exchange of the time component of vector mesons,
which has certain resemblance with our zero-range
exchange of 0þ mediators.
More specifically, consider the diagram (a) of Fig. 2
near threshold where only s-wave couplings survive.
Then, in any scheme, parity and angular momentum
conservation implies that the pseudoscalar meson
can only exchange a 0þ mediator with the baryon.
This is effectively simulated by the time component
of the exchanged vector meson in the hidden gauge
scheme. Our interaction and that derived from the
hidden gauge Lagrangians [21,22] turn out to be
identical in the pseudoscalar-baryon decuplet sector.
Of course, both approaches also reduce to the SU(3)
WT term in the pseudoscalar-baryon octet sector.
Indeed, the interaction of soft pions with heavy
sources (octet and decuplet baryons) is completely
fixed by the WT theorem [42,43] (leading order in
the chiral expansion) and that should be accom-
plished by all schemes.
Consider now the diagram (b) of Fig. 2 near thresh-
old. In this case parity and angular momentum
conservation implies that the vector meson and the

BB

(b)

P

B B

(a)

P

V

B

V

B

V V

VV

FIG. 2. Diagrams contributing to the (a) pseudoscalar-baryon
or (b) vector- baryon interaction via the exchange of a vector
meson leading to the effective vector-baryon contact interaction.
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baryon can exchange 0þ, 1þ and 2þ mediators in the
t channel. The 2þ exchange is absent in our model
and in that of Refs. [26,28]. The 0þ exchange is not
absent but it is similar in both schemes. The main
differences between the two models arise because of
the 1þ exchange, which is present in our scheme, as
required by SU(6) symmetry, while it is not present
in the hidden gauge formalism adopted in
Refs. [26,28]. We do not see a priori any compelling
reason to favor either of the two approaches. It is
interesting to point out that the hidden gauge vector
mesons are naturally of the Proca type and so with
off-shell content (1�, 0þ). Vector mesons in the
antisymmetric tensor formulation have instead a
(1�, 1þ) off-shell content. Such a formulation would
naturally allow a 1þ exchange in schemes based on
vector meson exchange mechanisms, however, the
0þ exchange mechanism is missing and ought to be
added as a contact term. The scheme analyzed in the
present work does not rely on explicit meson ex-
change mechanisms, instead it is based on using the
minimal low energy effective interaction consistent
with both chiral and spin-flavor symmetries. This
yields 0þ and 1þ t-channel exchange mechanisms
simultaneously. Nevertheless, it should be noted that
chiral symmetry combined with spin-flavor favors
low-lying vector mesons of the 35 of SU(6) of the
antisymmetric tensor type [29,34].

(ii) Coupled channel space: Though the pseudoscalar
meson-decuplet baryon ! pseudoscalar meson-
decuplet baryon interactions used here are the same
as those employed in [21] or [22], our results will not
necessarily coincidewith those obtained in these two
references. This is not only due to possible differ-
ences in the adopted RS or in the adopted pattern of
flavor symmetry, that we will address next, but also
because the coupled channel spaces are different as a
consequence of the overall different dynamics.
Actually, in the works of Refs. [21,22], the space
does not contain channels with JP ¼ 3

2
� that can be

constructed out of vector-decuplet or vector-octet
baryon pairs. This can be extended to all sectors,
for instance, interactions of the type �N ! ��, that
will connect the coupled spaces used in [26,28] are
ignored in these two references. This has some ef-
fects that we will address in the next section (see for
instance the discussion of the Nð1650Þ or Nð1520Þ
resonances). A similar situation occurs in the context
of even parity low-lying meson resonances, where
the hidden gauge scheme also prevents mixings
among vector-vector, vector-pseudoscalar and
pseudoscalar-pseudoscalar sectors [29]. Such for-
biddenmixings in coupled channel space are beyond
general QCD requirements and are idiosyncratic of
the hidden gauge model.

(iii) Renormalization: The RS used here fixes for
each IS sector the subtraction constant to some
specific quantity determined by the masses of
the hadrons (see Eq. (15)). This is in contrast
with the RS advocated in other works
[12,14,19,20,22,26,28,44], which allows for some
free variations in the subtraction constants of each
of the coupled channels that enter in any JIS sector.

(iv) Symmetry breaking: We use fV � fP for those
channels which involve vector mesons, while a
universal 1=f2 coupling is assumed for all channels
in Refs. [26,28]. Therefore the interaction involving
vector mesons is weakened in our model (since
fV > fP).

III. DYNAMICALLY GENERATED POLES

In order to attach each pole to definite SU(6) and SU(3)
multiplets we use the following prescription. We start from
an SU(6) symmetric scheme by setting the masses of all
particles belonging to the same SU(6) multiplet to a com-
mon value. In this SU(6) limit we use the following values
for the masses, which are approximately the average value
of the mass in each multiplet, m35 ¼ 0:575 GeV for the
mesons and M56 ¼ 1:2 GeV for the baryons. To gradually
break SU(6) symmetry down to flavor SU(3) we write the
mass of the hadrons as a function of a parameter x such that

mðxÞ ¼ �mþ xðmSUð3Þ � �mÞ; (18)

where �m ¼ m35,M56 is the mass of the hadron in the SU(6)
limit and mSUð3Þ is the mass of the particle in an SU(3)

flavor symmetric scheme (m81 ¼ 0:3 GeV and m83 ¼
m13 ¼ 0:85 GeV for the mesons and M82 ¼ 1 GeV and

M104 ¼ 1:4 GeV for the baryons). In this way, we vary x

between 0 and 1, 0 being the SU(6) limit and 1 the SU(3)
limit. (Note that the modified hadron masses are also used
for the subtraction points, cf. Eq. (15).) In the SU(6) limit,
we also use a common value of �f ¼ 125 MeV for all
pseudoscalar (fP) and vector (fV) meson decay constants,
and change fV to gradually deviate from fP when x in-
creases towards 1. Namely,

fðxÞ ¼ �fþ xðfSUð3Þ � �fÞ; (19)

with fSUð3Þ ¼ fP, fV , that in the flavor limit take the values

fP ¼ 100 MeV and fV ¼ 150 MeV. Next, we break the
SU(3) symmetry down to isospin SU(2), and now write the
mass of the hadrons as a function of a parameter y 2 ½0; 1�
such that

mðyÞ ¼ mSUð3Þ þ yðmphys �mSUð3ÞÞ; (20)

where mphys is the physical mass of the particle. We also

change fP and fV to gradually approach the physical
values of Eq. (10) when y reaches 1. Some states of
Table II are lost (do not show up as poles in the appro-
priated Riemann sheets) when we move from the fully
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SU(6) symmetric model to our scheme, which incorporates
a certain symmetry breaking pattern. This occurs espe-
cially for states that belong to the 1134-plet.

The procedure just described is a prescription to assign
SU(6) and SU(3) labels to the states. Within this prescrip-
tion the only ambiguity could come from the choice of
symmetric points. In any case this assignment is qualitative
since the SU(6) and SU(3) symmetries are approximated
ones and some mixing between irreps necessarily exists.

The WT term is a first-order s-wave potential and there-
fore our results could be modified to some extent by higher
order terms and higher order even waves. The strong
interacting multiplets, belonging to the 56-plet and
70-plet of SU(6), are tightly bound and the poles generated

from these multiplets should be rather robust against per-
turbations caused by higher order terms. On the other hand,
the poles coming from the weakly bound 1134-plet might
be subject to larger relative corrections or even disappear
by the consideration of such terms. In addition, resonances
well above their decay threshold could receive important
corrections from d-wave interactions and therefore such
predictions should be less reliable. Resonances with a large
d-wave component cannot be properly described within
this model.
Tables III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV,

XV, XVI, XVII, XVIII, XIX, and XX show the position of
the resonances generated by the model in nonexotic sec-
tors. Other properties displayed are the SU(3) and SU(6)

TABLE III. Properties for JP ¼ 1
2
� nucleon resonances generated by the model. The value in brackets is the new pole position after

inclusion of the width of the unstable particles in the channels. An up arrow indicates the position of the pole; channels at the left of the
up arrow are open for decay. The channels with largest couplings are highlighted with boldface. A question mark symbol expresses our
doubts on the assignment, while states highlighted in boldface stem from the strongly attractive 70 and 56 SU(6) irreps.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �N �N K� K� �N !N �N �� K�� K�� K��� status PDG

27 2160–70i 0.2 0.5 0.7 0.4 0.3 0.4 0.9 0.6 0.7 0.2 " 3:5 Nð2090Þ ?
(1134) ?

8 2082–30i 0.1 0.1 0.5 0.2 0.1 0.2 1:2 0.2 0.8 2:6 " 0.7 Nð2090Þ ?
(1134) [2070–109i] ?

8 1795–80i 0.1 0.6 0.6 1:9 0.5 0.4 " 1.1 3:4 1.5 1.5 0.9

(1134) [1793–98i]

8 1706–70i 1.0 2.0 1.5 1.1 " 1.9 3:2 1.5 3:0 2.1 1.2 0.8

(1134) [1693–105i]

8 1639–38i 1.2 0.8 0.6 " 1.7 0.2 2:9 0.7 2:6 1.2 0.4 1.1 Nð1650Þ
ð70Þ ? ? ??

8 1556–47i 0.6 2:1 " 1.7 2:4 0.6 0.9 0.3 2:6 1.9 0.9 1.4 Nð1535Þ
ð56Þ ? ? ??

TABLE IV. Same as Table III for 3
2
� nucleon resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �� �N !N K�� �N �� K�� K�� K��� status PDG

27 2228–41i 0.2 0.1 0.2 0.2 0.8 0.5 0.9 0.1 " 3:0 Nð2080Þ ?
(1134) [2232–94i] ??

10� 2083–4i 0.1 <0:1 0.2 0.1 0.2 0.3 0.3 " 1:8 0.1 Nð2080Þ ?
(1134) ??

8 1895–72i 0.4 1.4 0.9 1.6 " 1.0 3:1 1.1 1.1 0.3 Nð1700Þ ?
(1134) [1894–106i] ? ? ?

8 1832–106i 0.7 2:1 0.8 " 1.1 0.3 3:3 0.3 1.0 1.0 Nð1700Þ ?
(1134) [1829–158i] ? ? ?

8 1348–20i 2:4 " 1.2 0.3 0.3 <0:1 1:8 <0:1 0.7 0.3 Nð1520Þ
ð70Þ [1373–43i] ? ? ??
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TABLE VII. Same as Table III for 3
2
� �. The (*) denotes a virtual state.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �� �N �� K�� �� !� K�� �� K��� status PDG

10 2226–17i <0:1 <0:1 0.2 0.2 <0:1 <0:1 1.0 " 1:9 1:6
(1134) [2214–68i]

35 2172–49i <0:1 <0:1 0.5 1.2 0.1 <0:1 <0:1 " 1:9 2:8
(1134) [2170–65i]

10 1915–40i 0.8 0.2 1.0 0.4 " 1:6 2:8 0.5 0.2 0.1 �ð1940Þ ?
(1134) [1912–88i] ?

27 1712–46i (*) 1:1 " 0.5 2:3 2:5 0.9 1.3 2:9 0.3 2.0

(1134)

10 1426–75i 2:3 " 2:5 0.1 0.8 1.3 0.5 1.0 1.6 0.7 �ð1700Þ ?
ð56Þ [1439–80i] ? ? ??

TABLE VI. Same as Table III for 1
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �N K� �N �� !� K�� �� K��� status PDG

35 2244–18i 0.1 0.1 0.1 0.5 0.4 0.4 0.8 " 2:7 �ð2150Þ ?
(1134) [2243–45i] ?

10 2187–50i 0.1 0.8 0.1 0.3 0.3 1:4 " 2:6 1:8 �ð2150Þ?
(1134) [2178–104i] ?

27 2025–88i 0.1 1.7 0.1 0.7 0.6 " 2:7 2:2 1.5 �ð2150Þ ?
(1134) [2028–101i] ?

10 1935–51i 0:8 0:3 1:3 " 1:7 2:8 0:4 0:3 0:3 �ð1900Þ ?
(1134) [1929–144i] ??

27 1732–91i 1.0 0.8 2:1 " 2:5 2:7 1.4 0.8 1.6 �ð1900Þ ?
(1134) [1763–144i] ??

10 1472–77i 1.7 " 1.3 2:4 3:7 1.5 0.7 0.2 1.2 �ð1620Þ
ð70Þ ? ? ??

TABLE V. Same as Table III for 5
2
� nucleon resonances. The (*) denotes a virtual state.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �� K��� status PDG

27 2264 0 " 2:1 Nð2200Þ ?
(1134) [2259–28i] ??

8 1981(*) " 1:6 0 Nð2200Þ ?
(1134) [1994–392i] ??
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multiplets assigned to them and the coupling of the reso-
nance to each channel calculated through the residues of
the poles.

For the poles which are strongly affected by the consid-
eration of the width of unstable particles in the channels
(K�, �, � or ��) we show in squared brackets the new pole
position when this effect is taken into account. For each
resonance an up arrow is used to indicate the position of the
pole, so channels before (i.e., at the left of) the up arrow are
open for decay. The main channels are indicated using
boldface.

We have assigned to some poles a tentative identification
with known states from the PDG [45]. This identification is
made by comparing the data from the PDG on these states
with the information we extract from the poles, namely, the

mass, width and, most important, the couplings. The cou-
plings give us valuable information on the structure of the
state and on the possible decay channels and their relative
strength. It should be stressed that there will be mixings
between states with the same SIJP quantum numbers but
belonging to different SU(6) and/or SU(3) multiplets, since
these symmetries are broken both within our approach and
in nature. Additional breaking of SU(6) (and SU(3)) is
expected to take place not only in the kinematics but also
in the interaction amplitudes. This will occur when using
more sophisticated models going beyond the (hopefully
dominant) lowest order retained here. No such explicit
symmetry breaking has been included in our model in
the interaction. Also no refitting of subtraction points is
made to achieve better agreement in masses and widths of

TABLE VIII. Same as Table III for 5
2
� �. The (*) denotes a virtual state.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �� !� �� K��� status PDG

27 2229 0 0 " 0:7 0:5 �ð2350Þ?
(1134) [2238–115i] ?

10 1974–15i (*) " 3:5 3:6 0 0 �ð1930Þ ?
(1134) [1994–311i] ? ? ?

TABLE IX. Same as Table III for 1
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �� �� �KN �� K� �K�N �� �� !� �K�����!��K�� �� ���K��� status PDG

35 2369–16i 0.1 0.1 0.1 0.2 0.1 0.1 0.1 <0:1<0:1 0.5 0.5 0.3 <0:1<0:1 " 2:2 1:7
(1134)

10 2277–66i 0.1 <0:1<0:1 0.6 0.4 0.1 <0:1 0.5 0.4 0.3 0.6 0.4 0.7 0.9 " 2:1 2:7
(1134)

27 2144–55i 0.1 0.1 0.1 0.8 1.2 0.1 0.2 0.1 0.1 0.2 " 1:1 1:0 1:6 2:1 1:5 1,2

(1134) [2141–68i]

10 2093–48i 0.6 0.3 0.6 0.2 0.4 0.6 0.8 0.4 0.1 " 0:3 1:7 2:8 0.4 0.6 0.4 0.6

(1134) [2090–65i]

8 1972–31i 0.3 0.2 0.2 0.6 0.5 0.9 0.4 0.5 " 2:3 1:2 0.3 0.5 0.8 0.8 0.5 0.5

(1134) [1969–167i]

8 1895–63i 0.4 0.7 0.4 1.1 0.5 1.1 0.8 " 0:7 1.0 2:0 2:1 1.5 2:3 0.9 0.9 1:9
(1134) [1870–153i]

8 1867–36i 0.3 0.6 0.9 0.5 0.2 0.3 " 1.5 0.5 1.2 3:0 1:8 0.9 1.1 0.5 0.9 1.0

(1134) [1873–53i]

10� 1754–74i 1.1 0.9 1.1 0.9 " 1:7 1:8 1.3 1.0 2:4 0.9 1.3 0.8 1:9 0.7 0.2 0.7

(1134)

10 1599–61i 1.3 0.2 1.1 " 1.3 0.8 1:9 1.2 1.2 0.5 3:1 2:4 0.6 0.3 0.5 0.9 1.2 �ð1750Þ
ð70Þ ???

8 1489–117i 1.4 1.9 1.0 " 0.9 1.4 1.3 2:3 2:7 0.7 2:1 0.4 0.4 1.8 0.1 0.5 0.1 �ð1620Þ
ð70Þ ??
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the resonances or in phase-shifts and inelasticities (we will
briefly address this issue in Appendix B).

In the following we comment on the identifications
made in each sector separately.

A. Nucleons (N)

Results for the nucleonlike resonances are summarized
in Tables III, IV, and V, for JP ¼ 1

2
�, JP ¼ 3

2
�, and JP ¼ 5

2
�

respectively.
(i) In the PDG there are three JP ¼ 1

2
� resonances,

namely, Nð1535Þ, Nð1650Þ and Nð2090Þ. The
existence of the first two is firmly established, while
the latest George Washington University (GWU)
partial-wave analysis of �N data [46] finds no evi-
dence for the one star resonance placed above 2 GeV.

Experimentally there is no information on branching

fractions for the decays of this state and there is a

huge uncertainty in its mass. Some analysis suggests

that it could be as small as 1822� 43 MeV [47] or

as large as 2180� 80 MeV [48]. Any of the two

poles in Table III located in the region of 2 GeV

might have some relation with this Nð2090Þ, if it

exists. From the theoretical point of view these two

poles come from the weakly attracting 1134 irrep

and we have already expressed our concerns on the

real existence of states stemming from this SU(6)

part of the interaction. Nonetheless in both cases, the

couplings of these two poles to the open light chan-

nels are small, in special to�N, which might explain
the lack of evidence of their existence in the GWU

TABLE XI. Same as Table III for 5
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �K�� ��� !�� ��� K��� status PDG

27 2394 0 0 0 " 1:5 1:6 �ð2250Þ ?
(1134) [2390–9i] ? ? ?

10 2159–0.0i 0.1 " 0:9 0:7 0 0.4

(1134) [2162–151i]

8 2100 (*) " 1:8 0.6 1:3 0 0

(1134) [2128–178i]

TABLE X. Same as Table III for 3
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] ��� �K� �K�N �� ��� �� !� K�� �K�� ��� !�� K�� �� ��� K��� status PDG

10 2352–38i 0.1 0.2 0.2 0.1 <0:1 0.1 0.1 0.1 0.5 0.2 0.2 1.0 0.6 " 2:2 2:1
(1134)

35 2295–48i <0:1<0:1<0:1<0:1 0.7 <0:1<0:1 1.0 0.1 0.1 0.1 0.1 0.1 " 2:4 2:5
(1134)

8 2207–2i <0:1 0.1 0.1 <0:1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 " 1:1 1:3 0.1 0.1

(1134) [2210–10i]

27 2150–24i 0.1 <0:1 0.6 0.9 0.2 0.3 0.1 0.1 0.2 " 2:0 1:3 <0:1 0:2 <0:1 0.1

(1134) [2132–107i]

10 2070–46i 0.6 0.6 0.2 0.2 0.9 0.3 0.4 0.6 " 0.7 1:5 2:7 0.4 0.8 <0:1 0.1

(1134)

8 2015–46i 0.4 0.9 0.5 0.3 0.5 0.6 0.8 " 0.9 3:0 0.1 0.7 0.5 1:1 0.6 0.4

(1134) [2001–72i]

8 1932–50i 0.9 0.3 1.0 1.2 1.2 " 0.8 0.9 1:5 0.7 1.2 1:4 1.0 0.4 0.3 1.1

(1134) [1929–82i]

10 1605–55i 2:3 " 1.2 1:5 1.9 0.7 0.9 0.3 1.1 1.1 1.3 0.6 0.7 0.6 0.5 1.0 �ð1940Þ ?
ð56Þ ???

8 1571–8i 1.1 " 3:1 1.5 0.9 1.2 0.2 0.2 0.4 2:7 0.8 0.5 0.3 1.0 0.9 0.4 �ð1670Þ
ð70Þ ????
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analysis. Moreover, they are placed very close to the
K��� and K�� thresholds, respectively, but, pre-
cisely these poles strongly couple to these channels,
having the largest couplings among all showed in

Table III. From this perspective, these two poles
might point out the actual existence of some physical
states at these energies. The works of Refs. [26,28]
also find similar states.

TABLE XII. Same as Table III for 1
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �� �KN �� K� �K�N !� �� �� ��� K�� K��� status PDG

27 2254–74i 0.2 0.2 0.6 0.6 0.6 0.3 0.2 1:0 0.8 0.3 " 3:6
(1134)

27 2182–27i 0.2 0.1 0.2 0.4 0.3 0.3 0.8 0.5 0.3 " 2:8 0.8

(1134) [2177–52i]

8 2104–56i <0:1 0.1 1.2 1.0 0.4 0.1 <0:1 " 2:9 0.3 1.3 2:1
(1134)

8 1929–44i 0.2 0.3 1.0 1.0 0.1 0.2 " 1:4 0.3 3:4 0.2 1:4
(1134) [1914–57i]

8 1870–27i 0.8 0.2 0.5 0.5 0.1 " 2:4 1:8 0.2 1.4 1.3 1.0 �ð1800Þ?
(1134) ? ? ?

1 1826–42i 0.2 1:4 0.2 0.4 " 2:5 1:4 1:4 0.8 0.6 0.4 1.2 �ð1800Þ?
(1134) [1824–115i] ? ? ?

8 1691–26i 0.5 0.9 0.8 " 2:8 1.0 0.2 2:5 0.3 1.2 1.4 1.2 �ð1670Þ
ð56Þ ????

8 1430–3i 0.5 " 1:8 0.9 0.1 2:2 0.5 0.3 0.9 0.4 0.2 0.1 �ð1405Þ
ð70Þ ????

1 1374–85i 2:6 " 1.0 0.2 0.5 0.6 0.2 1:7 0.2 0.6 0.9 0.3 �ð1405Þ
ð70Þ ????

TABLE XIII. Same as Table III for 3
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] ��� �K�N !� �� K�� �� ��� K�� K��� status PDG

27 2338–54i 0.3 0.1 0.4 0.3 0.1 1:2 0.7 0.4 " 3:2 �ð2325Þ ?
(1134) ?

8 2206–11i 0.1 0.1 0.1 <0:1 0.3 1:0 0.3 " 2:1 0.4

(1134) [2198–75i]

8 2090–65i 0.2 0.8 0.6 1:1 1:1 " 1:0 2:8 1:0 0.6

(1134) [2076–125i]

1 2023–79i 0.5 0.9 0.5 2:1 " 1:6 0.7 2:7 0.6 1.2

(1134) [2029–144i]

8 1894–120i 0.7 2:8 " 1.7 1.5 1.1 0.3 2:6 0.5 1.0

(1134) [1890–140i]

27 1879–32i 1.2 0.3 " 2:3 1.1 1.3 0.3 1:6 0.4 1.1 �ð1690Þ?
(1134) ? ? ??

8 1542–37i 2:3 " 0.9 0.4 1.2 0.6 <0:1 1:6 0.6 0.6 �ð1520Þ
ð70Þ ? ? ??
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It seems natural to associate the 56-plet pole ob-
tained at

ffiffiffi
s
p ¼ 1556� 47i MeV with the Nð1535Þ

resonance, since its mass and width are in close
agreement with the experimental state and because
the dominant decay channel observed for this reso-
nance, the N� channel, is the one to which the pole
has a large coupling.
In the region of the Nð1650Þ resonance, our model
generates two or even perhaps three poles that could
be contributing to this resonance. It looks reasonable
to identify the one at

ffiffiffi
s
p ¼ 1639� 38i MeV, related

to the strongly attractive 70 irrep, with the four star
Nð1650Þ resonance. Actually, its mass, width and
main decay modes agree reasonably well with those
reported in the PDG [45]. The other two 1134 poles,
if it happens that one or both of them exist, might

induce some mixings, most likely difficult to disen-
tangle from the experimental point of view. In
Ref. [28], the dynamics of the state identified there
as theNð1650Þ resonance is dominated by a large �N
component, which in our case is almost negligible. In
contrast, our state couples directly to the pseudosca-
lar meson–baryon octet �N (dominant decay mode),
K�, K� and �N channels4 that do not appear in the
scheme of [28], and it also has a large coupling to the
!N channel, which turns out to be very small in [28].
Yet, we also notice a large coupling of our pole to the
closed channel ��, which is absent in the analysis of
Ref. [28], as well. The �N decay mode, and the

TABLE XV. Same as Table III for 1
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position[MeV] �� �K� �K� �� �K�� �K�� �� !� �K��� ��� !�� �� ��� K�� status PDG

35 2476–28i 0.1 0.1 0.2 0.2 0.1 0.1 0.1 <0:1 0.9 0.4 0.3 0.1 " 2:9 1:1
(1134)

10 2338–67i 0.2 0.1 0.3 0.7 0.4 0.8 0.3 0.3 0.2 0.8 0.5 0.8 " 1:5 3:5
(1134)

27 2244–38i 0.3 0.5 0.3 1.2 0.4 0.2 0.3 <0:1 " 0.8 0.8 2:9 2:5 1:3 1:3
(1134)

10 2238–53i 0.3 0.6 0.3 1.2 0.7 0.5 0.6 0.1 " 0.4 2:0 2:2 2:7 1.0 1.5

(1134) [2229–71i]

27 2094–59i 0.4 0.3 0.7 0.6 0.9 1.0 1.0 " 0.8 1:5 2:1 1.2 1:4 0.4 2:5
(1134) [2111–111i]

8 2037–24i 0.6 0.6 0.3 0.2 0.3 " 0.5 1.5 0.6 1:8 2:4 1.1 0.2 1.0 2:1
(1134)

10 1729–46i 0.6 1.4 0.4 " 1.6 1.4 2:1 1.0 0.4 3:3 1.5 0.4 0.2 1.6 1.0 �ð1950Þ
ð70Þ ? ? ?

8 1651–2i 0.2 0.3 " 2:2 1.3 1.0 2:6 0.2 0.6 0.9 0.4 0.2 1:7 0.4 0.2 �ð1690Þ
ð70Þ ? ? ?

8 1577–139i 2:6 " 1:7 0.5 0.1 0.8 1.0 0.7 0.1 0.6 1.3 0.3 0.1 0.2 1.2 �ð1620Þ
ð56Þ ?

TABLE XIV. Same as Table III for 5
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] ��� K��� status PDG

27 2404 0 " 2:4
(1134) [2399–11i]

8 2160 " 0:6 0

(1134) [2167–276i]

4As in the recent work of Ref. [49], the K� one is dominant
among these types of components.
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width itself, of this pole will become larger when
mechanisms like those depicted in Fig. 3, con-
structed out of the strong p-wave ��� and �N�
couplings, will be taken into account.
The discussion on the Nð1650Þ might serve to
illustrate one of the differences between this study
and the previous ones carried out in Refs. [26,28]. In
the first of these two references, the vector-octet–
baryon decuplet interaction is considered, and the
second one deals with the vector-octet–baryon
octet interaction. But, within the tree level hidden
gauge scheme adopted in these two references,
both sectors are disconnected. These two sectors
in turn are also disconnected from the pseudoscalar

octet–baryon octet one.5 For instance in
Refs. [26,28], couplings of the type �N ! �N or
��! �N do not exist, and thus within the
scheme of these references, the �N and �� chan-
nel do not enter into the coupled channel dynamics
that gives rise to the state identified in [28] as the
Nð1650Þ resonance. Though in this case, the ��
threshold is sufficiently above the mass of the
Nð1650Þ resonance to keep small the influence of

TABLE XVI. Same as Table III for 3
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] ��� �K�� �K�� ��� �K�� �� !� K� �K��� ��� !�� �� ��� K�� status PDG

10 2440–54i 0.2 0.2 0.3 0.2 0.1 04. 0.3 0.1 0.5 0.5 0.3 1:2 " 2:0 2:6
(1134)

35 2414–45i <0:1 <0:1 <0:1 0.9 <0:1 0.1 <0:1 0.8 0.1 0.1 <0:1 0.2 " 2:9 2:0
(1134)

27 2283–27i 0.1 0.1 0.8 0.2 0.1 0.7 0.1 0.2 0.2 " 2:0 1:5 0.3 0.1 0.2

(1134) [2265–62i]

8 2224–51i 0.2 0.4 0.1 0.6 1.1 0.2 0.4 0.8 " 0.9 1.6 2:2 1.1 0.4 0.5

(1134) [2225–66i]

10 2193–46i 0.3 1:0 0.1 0.2 0.7 0.2 0.3 0.3 " 3:0 0.3 1:3 0.5 0.5 0.1

(1134) [2189–48i]

8 2104–58i 0.4 0.2 0.4 0.7 1:4 1:4 0.2 " 2:0 0.7 1:0 1.1 1.0 0.2 1:4
(1134) [2123–93i]

27 1972–47i 1.3 0.6 " 1.3 0.7 0.1 1:6 1:6 1:8 0.4 1.0 0.9 0.3 0.2 1:5
(1134)

10 1772–15i 1.4 " 2:7 2:0 2:1 1.8 1.1 0.4 0.8 2:3 0.9 0.6 0.9 1.6 0.8 �ð2250Þ?
ð56Þ ??

8 1748–48i 2:6 " 1:6 1:5 1.1 1.2 2:1 0.5 1.4 1.4 1.5 0.7 0.4 0.8 1.3 �ð1820Þ
ð70Þ ? ? ?

TABLE XVII. Same as Table III for 5
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �K��� ��� !�� ��� K�� status PDG

27 2529 0 0 0 " 1:2 2:1
(1134) [2525–4i]

10 2342–38i 3:0 1:2 1:4 " 0 0

(1134) [2346–58i]

8 2304 0.2 " 1:3 0:9 0 0

(1134) [2316–118i]

5The pseudoscalar octet–baryon decuplet sector, that does not
contribute to JP ¼ 1=2� in the swave, is also separated from the
other three sectors, and treated independently in Ref. [22] by the
same group.
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this channel in the position of the pole in the SRS,
this might not be the case in other sectors that we
will discuss below. Nonetheless, as pointed out
above, and because the large width of the � and
� resonances and their large p-wave couplings to
the �� and �N pairs,, respectively, the �� com-
ponent should enhance the �N decay mode of the
Nð1650Þ resonance. The �N decay mode is re-
ported to be large in [45] and about 80% of a total
width of around 165 MeV. Note that in our case,
the coupling of the Nð1650Þ resonance to the ��
channel is an additional source for its �N decay
mode (we have a direct sizeable coupling to �N,

g�N ¼ 1:2, see Table III). In the scheme of
Ref. [28], the N�ð1650Þ ! �N decay should pre-
dominantly proceed through a diagram similar
to that depicted in the left panel of Fig. 3, but
replacing the intermediate �ð1232Þ by a Nð940Þ.
Although, it is true that the latter baryon will
be less off shell than the former one, one should
also bear in mind that the p-wave coupling �N�
is more than twice larger than the corresponding
�NN one.
Likely, there will be also some mixing between the
JP ¼ 1

2
� nucleon states that we have identified

here as the Nð1535Þ and the Nð1650Þ resonances,

TABLE XVIII. Same as Table III for 1
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �K� �K�� �K��� !� �� status PDG

35 2557–40i 0.4 0.3 1:2 0.2 " 3:4
(1134)

10 2364–26i 0.8 0.5 " 0.7 3:0 1:0
(1134)

10 2230–62i 0.4 2:1 " 3:0 0.8 2:0
(1134) [2245–73i]

10 1798 (*) " 3.6 5:5 6:8 2.3 4:7 �ð2250Þ
ð70Þ ? ? ?

TABLE XIX. Same as Table III for 3
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �K�� �K�� �� �K��� !� �� status PDG

35 2519–41i <0:1 0.1 1.1 0.1 <0:1 " 3:7
(1134)

10 2391–25i 0.1 1:1 0.1 " 1:3 2:5 0.2

(1134)

10 2322–45i 1:2 0.2 0.2 " 2:9 0.6 0.4

(1134)

10 1928 " 1:9 2:4 2:1 1.4 0.2 1.6 �ð2380Þ
ð56Þ ??

TABLE XX. Same as Table III for 5
2
� � resonances.

SU(3)

(SU(6)) jgij possible ID

irrep Pole position [MeV] �K��� !� �� status PDG

10 2416 " 1:1 2:1 0

(1134) [2415–4i]
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since they were originated by different SU(6) mul-
tiplets, and this spin–flavor symmetry is broken in
nature with additional terms to those considered in
the present approach.
The Nð1535Þ and Nð1650Þ resonances, neglecting
the influence of the decuplet baryons and the nonet
of vector mesons, were previously studied within a
similar RS in Ref. [15] using the chiral SU(3) WT
amplitude as a kernel to calculate the T matrix
(see Eq. (13)). The results obtained in this refer-
ence for the Nð1535Þ compare rather well with
those discussed here.6 However in [15], a clear
signal for the Nð1650Þ was not found. This is
common for all studies that use only the tree level
SU(3) WT amplitude [17–19,50]. Indeed, this latter
resonance is dynamically generated in pion-
nucleon scattering analysis that either use a unita-
rized chiral effective Lagrangian including all
dimension two contact terms [49], going in this
manner beyond the leading order WT term, or if
the WT is taken as the kernel, when it was used
within a different RS that embodies some more
counterterms [20]. In this latter case, the extra
counterterms mimic the effect of higher order
terms in the kernel of the Bethe-Salpeter equation,
and might be also related to the extra channels
induced by the vector mesons and decuplet bary-
ons included here. The inclusion of the extra
counterterms, besides allowing for a reasonable
description of the properties of both N� (1535 and
1650) resonances, leads also to a reasonable descrip-
tion of the �N S11 phase shift and inelasticity from
threshold to about

ffiffiffi
s
p 	 1:9 GeV, together with

cross-section data for ��p! n� and ��p!
K0� in the respective threshold regions [20].
It is also illustrative to pay attention to the predic-
tions for phase shift and inelasticities deduced from
the simple model presented here. In general, the

model provides a poor description of these
observables, though it hints to the gross features of
the amplitude. This should not be surprising, since
we have not fitted any parameter and we have just
retained here the SU(3) WT lowest order contribu-
tion to fix the SU(6) interaction. Moreover, addi-
tional breaking of SU(6) (and SU(3)) is expected
to take place not only in the kinematics but also in
the interaction amplitudes. We briefly address this
issue in Appendix B for the case of ðJP ¼ 1

2 ; I ¼ 1
2Þ�

�N scattering, though conclusions are similar for
other sectors.

(ii) For the JP ¼ 3
2
� resonances there are also three

possible observed states quoted in the PDG, the
Nð1520Þ, the Nð1700Þ and the Nð2080Þ. The exis-
tence of the first state is firmly established, while
latest GWU partial-wave analysis of �N data [46]
finds no evidence for the two star resonance
Nð2080Þ.
For this JP quantum number we expect a worst
description of the experimental states since our
model does not take into account the d-wave
pseudoscalar-baryon channels which can give im-
portant contributions on the decays of the JP ¼ 3

2
�

resonances.
The lightest pole found in this sector at

ffiffiffi
s
p ¼

1348� 20i MeV, stemming from the attractive 70
SU(6) irrep, could be associated with the Nð1520Þ.
Our model misses here the contribution from the d
wave �N which should be important for this reso-
nance (the branching fraction quoted in [45] is
around 60% for this mode) and could bring the
pole closer to the experimental position. The pole
found here has large couplings to the �� and �N
channels, which account for the bulk of the approxi-
mately remaining 40% of the branching fraction
quoted in the PDG [45] for the Nð1520Þ. The ��
and the �N channels are considered independently
in Refs. [22,28], respectively. Signals for the four
star Nð1520Þ resonance are found in neither the
former nor the latter of these works. We believe
this is because this state appears as a result of the
coupled channel dynamics involving both the ��
and �N channels, which our SU(6) model provides.
Note that the pseudoscalar octet-baryon decuplet
interaction is determined by chiral symmetry and
therefore is the same here as that used in Ref. [22].
The interaction of vector mesons with baryons is not
constrained by chiral symmetry and the hidden-
gauge scheme of Refs. [26,28] predicts different
potentials than the ones used here and deduced
from spin-flavor SU(6) symmetry. We should finally
mention that in Ref. [21], this Nð1520Þ resonance
was also dynamically generated with a large ��
component.

π

N

ρ

∆

π

ρ

π

π

π∆

N

N N∗ ∗

FIG. 3. Resonance (N�) decay to �N (left) or ���N (right)
through its s-wave (hexagon) coupling to �� and the p-wave
coupling (ovals) of these latter hadrons to two pions and to a �N
pair.

6The Nð1535Þ alone has received a lot of attention since the
pioneering work of Ref. [17,18], and several groups [19,50] have
also found a fair description of its dynamics starting from the
tree level SU(3) chiral Lagrangian.
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The rest of the poles predicted by the SU(6) model
are related to the 1134 irrep, and thus are subject to
much larger uncertainties. Perhaps, the Nð1700Þ
can be associated to one or both of the poles at

ffiffiffi
s
p ¼

1895� 72i MeV and
ffiffiffi
s
p ¼ 1832� 106i MeV.

The observed state has as the most important decay
channel the N��, which is a result of the decay to
the �� and N� channels to which these two poles
generated by the model have important couplings.
The data on the heavier Nð2080Þ state are ambig-
uous and more experimental information is needed
in order to do a proper association of the 1134
heavier poles displayed in Table IV with the
Nð2080Þ. Comments here are similar to those we
made above in the case of the spin 1=2 Nð2090Þ
resonance. Nevertheless, we would like to point out
that a recent study [51] finds indirect hints of the
existence of the nucleon resonance Nð2080Þ in the
recent data of the LEPS collaboration on the ~�p!
Kþ�ð1520Þ reaction [52,53]. Actually in Ref. [51],
it is shown that the inclusion of this resonance,
with a sizable coupling to the �ð1520ÞK pair, leads
to a fairly good description of a bump structure in
the differential cross section at forward Kþ angles
observed in the new LEPS differential cross section
data [53]. The pole at

ffiffiffi
s
p ¼ 2228� 41i MeV, re-

lated to a SU(3) 27-plet, will naturally provide a
sizable �ð1520ÞKNð2080Þ decay thanks to: i) its
dominant K��� coupling, ii) the large K� ! K�
width, and iii) that, as we will discuss in the
Sec. III D, the �ð1520Þ resonance has a large
��� component (actually, it might be a ���
quasi-bound state).

(iii) Two JP ¼ 5
2
� states are compiled in the PDG. The

firmly established (four stars) Nð1675Þ resonance
has a mass far too low to be associated with any of
the two poles generated by our model here from the
weakly bound 1134-plet. Moreover, the main decay
modes of this state are the d-wave N� and ��
channels [45], which are out of the scope of our
approach.
On the other hand, from the data on the unsettled
two star Nð2200Þ resonance any of the two poles in
Table V could be associated with it (note that the
SU(6) transition potential ��! K��� is zero in
this sector). The latest GWU partial-wave analysis
of �N data [46] finds no evidence for this N�
resonance either.

B. Deltas (�)

The results for the � resonances are shown in Tables VI,
VII, and VIII. In the PDG, there are only two firmly
established four star, �ð1620Þ and �ð1700Þ, resonances
with spin-parity 1

2
� and 3

2
�, respectively. In addition, there

exists [45], a three star � state (�ð1930Þ) with spin-parity

5
2
�, and four other resonances (two star �ð1900Þ and the

one star �ð2150Þ,�ð1940Þ and �ð2350Þ) for which there is
little evidence of their existence, as confirmed in the latest
GWU partial-wave analysis of �N data [46].
(i) There are three � resonances in the PDG with

JP ¼ 1
2
�. To the �ð1620Þ we associate the lightest

pole generated by our model at
ffiffiffi
s
p ¼ 1472�

77i MeV that comes from an SU(3) decuplet of the
SU(6) 70 irrep. We see a sizeable coupling to the N�
channel and different potential sources of decay into
a �N pair (direct coupling to �N and large coupling
to the �� channel) in agreement with some known
features of this state. However, the model misses the
presumably sizable contribution that the �� d-wave
channels should have in this state, and that might
help to understand the difference between our pre-
diction for its position and the mass value reported in
[45]. From the data on the PDG those channels
should be responsible for between 30% to 60%
of the decay width of this state. The work in
Refs. [26,28] does not find this �ð1620Þ state. This
is not surprising because here, it appears mostly as
the result of the coupled channel dynamics of the
�N, �N and �� pairs, and these channels are treated
separately in the framework set up in [19,22,26,28].
Unitarized chiral perturbation theory studies that do
not include three-body ��N states do not generate
any resonance in the S31 partial wave at low energies
either [20,49]. The effects of these latter states were
taken into account, within certain approximations, in
[19] and some signatures of the �ð1620Þ were re-
ported there.
The rest of the poles generated by our model in this
sector are associated with the SU(6) 1134-plet, and
thus deciding on their real existence and on their
possible relation with physical states becomes cum-
bersome. This task is even more speculative given
the few existing experimental evidences for the rest
of the � states reported in the PDG. Thus, we might
associate the pole at

ffiffiffi
s
p ¼ 1935� 51i MeV with

the �ð1900Þ state because of the proximity in mass
and width. Moreover from the PDG data the decay of
this state into N� is between 10% and 30% and the
dynamically generated state has as its most impor-
tant decay channels the N� and �� channels. Yet,
the pole at

ffiffiffi
s
p ¼ 1732� 91i MeV could also be part

of the �ð1900Þ state or it might mix with the lightest
of the poles that we identified above with the
�ð1620Þ resonance.
The data on the �ð2150Þ is poor and either of the
poles at

ffiffiffi
s
p ¼ 2244� 18i MeV,

ffiffiffi
s
p ¼ 2187�

50i MeV or at
ffiffiffi
s
p ¼ 2025� 88i MeV, if they are

real, could be associated with it.
(ii) For the JP ¼ 3

2
� � resonances, at first sight it might

seem natural to identify the four star �ð1700Þ with
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the pole at
ffiffiffi
s
p ¼ 1712� 46i MeV, although this is

actually a virtual state in our model; it appears in the
second Riemann sheet but below the N� threshold.
However, we rather think that the correct identifica-
tion of the �ð1700Þ should be done with the 56-plet
pole at

ffiffiffi
s
p ¼ 1426� 75i MeV, because of its large

�� and �N couplings. Indeed, the s-wave, �� and
�N decay modes are known to be large around
25%–50% and 5%–20%, respectively [45]. As in
the case of the �ð1620Þ, other decay modes in the d
wave (�N and also �� and �N) are important,
which points out the importance of these compo-
nents in the inner structure of this resonance, and
that could also explain the existing discrepancy
between the pole position predicted here and that
reported in [45]. Nevertheless, in this latter refer-
ence, the real part of the pole position is quoted to
be well below 1700 MeV (1620 to 1680), while
the resonance is quite broad, j2 Imð ffiffiffi

s
p Þj ¼

160 to 240 MeV, which makes less important the
difference for the mass. This interpretation does
not coincide with that of Refs. [21,22], where a
second pole on top of the �� threshold and with
large��K and�� couplings was identified with the
�ð1700Þ. This state would correspond to the virtual
state found here. The wide pole placed below
1.5 GeV and with a strong coupling to the ��
channel, that we have assigned here to the
�ð1700Þ, is associated in [22] to a missing reso-
nance, with no known counterpart in the PDG, that
could be searched experimentally.
The other observed state for JP ¼ 3

2
� is the one star

�ð1940Þ, which we might associate with the pole atffiffiffi
s
p ¼ 1912� 88i MeV. Although there is no data
on the partial decay widths of this state the mass and
width of the state are fairly close to the ones ob-
tained from the pole position.

(iii) For JP ¼ 5
2
�, we have only structures coming from

the 1134 irrep. Experimentally, there is a three star
resonance �ð1930Þ more or less well established
and presumably with a small N� d-wave compo-
nent. It is quite wide, with a Breit-Wigner full width
of around 400 MeV or larger, and it has a mass
of around 1950 MeV [45]. Tentatively, we could
identify the pole at

ffiffiffi
s
p ¼ 1994� 311i MeV with

the observed �ð1930Þ. The pole at
ffiffiffi
s
p ¼ 2238�

115i MeV would then correspond to the �ð2350Þ.
There is no information on the branching fractions
for this state and huge uncertainty on its mass and
width.

C. Sigmas (�)

Tables IX, X, and XI, display the results for the � states
generated by the model. This sector is specially complex
to analyze, and the situation here is unclear. On the

experimental side, there are only two firmly established
(four stars) odd-parity resonances. These are the �ð1670Þ
and the �ð1775Þ states, with spin 3=2 and 5=2, respec-
tively. The latter one cannot be described by our model,
since the decays of this state reveal a fundamental role of
d-wave interactions between the N �K, ��, �� and ���
pairs. Besides these two resonances, there exists scarce
trustworthy information in the PDG on s- and d-wave
�’s resonances: three additional 3-star resonances (one of
them with yet undetermined JP) and a plethora of one and
two star states and undetermined spin-parity bumps from
which it is difficult to draw any robust conclusion. On the
theory side, there are many channels participating in the
dynamics (16 and 15 for J ¼ 1

2 and J ¼ 3
2 , respectively),

and as a consequence, the model provides a rich spectrum
in this sector. Indeed, attending to Table II, we might
expect as many as 26 different states (five if we limit
the study to the 56 and 70 irreps) which are difficult to
identify.
(i) With JP ¼ 1

2
�, the only state for which there is

experimental information on its decays is the three
star �ð1750Þ resonance. It has decays into �KN, ��,
�� and ��, being the latter one likely suppressed.
These features seem to agree with the couplings of
the pole at

ffiffiffi
s
p ¼ 1599� 61i MeV that stems from

an SU(3) decuplet of the attractive SU(6) 70 irrep.
Note that from the decays compiled in [45], one
might expect some d-wave ��� component in the
structure to the �ð1750Þ resonance that is not con-
sidered within our scheme. This might, at least par-
tially, explain the disagreement between the mass
predicted by our model and that quoted in the PDG.
Nevertheless, one should also bear in mind that this
state is quite wide (full width � ¼ 60 to 160 MeV)
[45], and thus the difference in the real part of the
position of the pole becomes less relevant. On the
other hand, little is known on the two star �ð1620Þ
state, besides it might have a width of the order of a
few tens of MeVand that the �� decay mode might
be sizable. We associate to this state the lowest-lying
pole (

ffiffiffi
s
p ¼ 1489� 117i MeV) generated in our

scheme and that also has its origin in the attractive
70 irrep. We find in agreement with Ref. [44] that the
�ð1620Þ resonance has couplings of normal size to
all pseudoscalar-baryon octet channels, and, given
the large phase space available, it has a sizable decay
width into any of the channels and hence a consid-
erably large total width. Identifying any of the re-
maining states of Table IX, that come from the 1134
irrep, with the one star �ð2000Þ or some of the one
and two star bumps listed in [45] would be too
speculative and we refrain from doing it. It is note-
worthy that the � 1

2
� state needed to complete the

56-plet does appear in the SU(6) limit, but, when
going to the physical point (physical masses and
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decay constants) the pole moves to unphysical re-
gions of the

ffiffiffi
s
p

Riemann surface.
(ii) For JP ¼ 3

2
�, and besides the bumps, there are three

� states compiled in the PDG. The decay width of
one of them, the four star�ð1670Þ resonance, comes
mostly from d-wave pseudoscalar-baryon channels,
though this state also decays into a s-wave��� pair
[45]. Therefore our model should have some prob-
lems predicting its mass and width correctly.
Nevertheless, its ��� decay mode and the fact
that it is relatively narrow suggests that our pole
placed at

ffiffiffi
s
p ¼ 1571� 8i MeV could be identified

with this �ð1670Þ state. Indeed, this pole appears in
the evolution of an SU(3) octet of the attractive 70
SU(6) irrep, and it clearly coincides (position and
couplings) with that assigned to the �ð1670Þ reso-
nance in [21,22].
The second pole generated by our model at

ffiffiffi
s
p ¼

1605� 55i MeV stems from an SU(3) decuplet of
the 56 irrep, and it is also obtained in [22], but it is
not mentioned in [21]. It is wider than the first one
because it has a larger ��� coupling, and it is not
associated with any state in [22]. Indeed, it is not
straightforward to assign any state of the PDG to
this pole. Its identification with the one star�ð1580Þ
seems inappropriate because this state might not
exist and also because in the PDG, only d-wave
decay modes (N �K, �� and ��) are quoted for
this resonance. It could be associated with some of
the bumps listed in the PDG, or perhaps this pole
corresponds to the three star �ð1940Þ resonance. As
we have argued before in the case of the �ð1700Þ,
the �ð1940Þ state is very wide (full width � ¼ 150
to 300 MeV) and the actual position of the pole
should be influenced by genuine d-wave channels
(N �K;��;��; . . . ) that have not been considered in
the present model. The fact that this resonance has
been granted with three stars [45] implies that its
existence ranges from very likely to certain, which
in our scheme would naturally fit with it being
related to the strongly attractive 56 irrep.
Furthermore, as possible decay modes of this
�ð1940Þ state, the s-wave ���, �K�N and �K� pairs
are also given in [45], the latter one being relatively
sizable (	 16%). This could be easily accommo-
dated in our model if we identify the �ð1940Þ with
our 56-plet pole. Instead, in Refs. [21,22], the
�ð1940Þ resonance is identified with a pole much
closer in mass to the 1:9 GeV region, which couples
strongly to ��K, but very weakly to �K�. This
would be similar to our 1134 irrep

ffiffiffi
s
p ¼ 1932�

50i MeV pole.
(iii) The obtained states with JP ¼ 5

2
� are placed in the

weakly attractive 1134 irrep and are too heavy to be
associated with the PDG �ð1775Þ state. Some of

them or other of the 1134-plet states with JP ¼ 1
2
�

and JP ¼ 3
2
�, could fit some of the � resonances

which have not had their JP quantum numbers
identified yet, but more experimental information
is needed to do a proper identification. Other poles
obtained here might disappear when higher order
terms are taken into account in the potential.
Perhaps, the �ð2250Þ resonance is of special rele-
vance for our discussion here. It is classified with
three stars, some experiments see two resonances,
one of them with JP ¼ 5

2
� and with a sizable �K

decay mode [54]. Attending to this latter feature,
we might assign the highest pole predicted by our
model in Table XI to this �ð2250Þ state. Indeed,
this is the only pole among the three compiled in
this table that has a nonvanishing coupling to the
K��� channel. This decay mode would provide
�K events through a mechanism similar to that
sketched in the left panel of Fig. 3.

D. Lambdas (�)

Tables XII, XIII, and XIV show the results for the �
resonances generated by the model.
(i) In the PDG there are three observed JP ¼ 1

2
� �

states. The lightest of them is the �ð1405Þ which
has been thoroughly studied [12–15] and is believed
to have a two pole structure. In our model the two
poles that describe this state are at the positionsffiffiffi
s
p ¼ 1374� 85i MeV and

ffiffiffi
s
p ¼ 1430� 3i MeV,

and both of them stem from the strongly attractive 70
irrep. It is noteworthy that vector mesons turn out to
have important components in both poles, though
channels involving these mesons are well above the
position of the poles.
We identify the four star�ð1670Þ resonance with the
56 irrep pole at

ffiffiffi
s
p ¼ 1691� 26i MeV. This state

has decays to ��, �KN and �� but the couplings are
not so strong and the resonance, despite the large
phase space available for the decays, is fairly narrow.
Indeed, this state shows a large K� component, but
this channel is kinematically closed. Results for this
resonance here compare rather well with those ob-
tained in Refs. [14,15,44].
We also find two poles in the region of the �ð1800Þ
at positions

ffiffiffi
s
p ¼ 1824� 115i MeV and

ffiffiffi
s
p ¼

1870� 27i MeV. Both poles have small �� cou-
plings, and specially the singlet one shows large
�KN and �K�N components. The �ð1800Þ fits nicely
with these features, and it has a broad width which
covers the whole region of these two poles.
Experimentally it should be very difficult to distin-
guish the contribution of each one of these two
structures separately.

(ii) The most prominent resonance with JP ¼ 3
2
� is the

�ð1520Þwhich we associate with the pole located at
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ffiffiffi
s
p ¼ 1542� 37i MeV. This state has important
d-wave components which are not taken into ac-
count by our model. In [55] the authors develop a
phenomenological coupling of the s-wave ��� and
K�� with the d-wave �� and �KN channels. In that
model, a subtraction constant is fitted in order to
obtain the pole with a lower mass than in our
approach. This would be equivalent to changng
the subtraction point in the calculation of the T
matrix in the present approach which would drasti-
cally decrease also the width of the resonance.7

Including then the d-wave channels in the model
would create the appropriate width bringing the
resonance properties closer to the experimental
values.
The decay modes of the four star�ð1690Þ resonance
are more or less equally distributed in d-wave
pseudoscalar-baryon channels and three-body chan-
nels (��� and ���). The three-body channels can
come from s-wave channels considered by our
model like ��� or �� and therefore we could
associate this state with the pole at

ffiffiffi
s
p ¼ 1879�

32i MeV. Note that it would not be difficult to
readjust the subtraction constant to achieve a better
agreement of the position of this pole with the mass
and the width of the physical �ð1690Þ state. We
cannot discard here a possible mixing with the pole,
close in energy, at

ffiffiffi
s
p ¼ 1894� 120i MeV, and

also generated within the 1134 irrep. However,
this last pole is quite broad, significantly wider
than the�ð1690Þ state, because of its large coupling
to the open channel �K�N. This latter decay mode
does not appear in [45] for the physical �ð1690Þ,
which disfavors any relation of this pole with the
physical state.
The association of the�ð2325Þwith the pole at ffiffiffi

s
p ¼

2338� 54i MeV is based on the mass and width of
the state, since there is not enough data on this
resonance in order to analyze its decay channels.
This is just a tentative identification, subject to all
shortcomings that we have noted above for 1134-plet
states.

(iii) The poles obtained with JP ¼ 5
2
� are too heavy to

be associated with the firmly established �ð1830Þ
resonance. The model fails to generate this state.
This is not surprising because from the data on this
resonance compiled in the PDG, one expects a
fundamental role of d-wave interactions involving
the N �K, �� and ��� pairs.

E. Cascades (�)

The results for the� resonances generated by the model
are shown in Tables XV, XVI, and XVII.
Besides the lowest-lying even parity � and �� baryons,

only the three star �ð1820Þ resonance has its JP quantum
numbers (32

�) assigned in the PDG. This fact makes any

identification of the poles predicted by our model with any
physical state difficult. Nevertheless, the information we
provide about possible poles and which states each of them
couples most strongly could be a guiding line for the search
of new resonance and/or for the correct assignment of spin
and parity to those already compiled in [45].
(i) We find two JP ¼ 1

2
� poles below 1.7 GeV related to

the strongly attractive 56 and 70 irreps. Here, we
confirm the findings of Ref. [15] and these two states
can clearly be identified to the�ð1690Þ and�ð1620Þ
resonances, which clarifies the spin, parity and
nature of these two resonances. The spin-parity as-
signment of the�ð1690Þ found here corroborates the
evidence presented in [30]. Of particular interest is
the signal for the three star �ð1690Þ resonance,
where we find a quite small (large) coupling to the
�� ( �K�) channel, which explains the smallness of
the experimental ratio, �ð��Þ=�ð �K�Þ< 0:09 [45]
despite of the significant energy difference between
the thresholds for the �� and �K� channels. On the
other hand the 56 irrep pole associated here with
the �ð1620Þ strongly couples to the �� channel.
This work, and that of Ref. [15], widely improves the
conclusions of Ref. [57], since we also address here
the�ð1690Þ resonance, and determine its spin-parity
quantum numbers (JP ¼ 1

2
�). Yet for spin-parity 1

2
�,

we predict another pole at
ffiffiffi
s
p ¼ 1729� 46i MeV,

and we are reasonably convinced of its existence
since it is related to the 70 irrep. It is placed in a
decuplet and it would be partner of the �ð1620Þ and
�ð1750Þ resonances. Assuming an equal spacing
rule, we would expect a strangeness �2 state of
around 1900 MeV that could naturally be the three
star�ð1950Þ resonance. Note that the predicted pole
positions in the �ð1620Þ and �ð1750Þ cases were
also low by around 150 MeV. This identification
would allow to fix the still undetermined spin-parity
of this state to 1

2
�. It couples strongly to the �K�� and

�K��� (vector-baryon octet and vector-baryon dec-
uplet), in an analogous manner to its partners in this
decuplet that had big �N and ��, and �K�N and �K��
components, respectively. Moreover, the �K�� and
�K��� components of the pole will lead to the sin-
gularly seen �K� decay mode, through mechanisms
like the one in the left panel of Fig. 3, thanks to the
large �K� �K�, and��� and���� strong vertices. In
Ref. [28], the�ð1950Þ resonance is identified as one
of the states generated there, but its dynamics is
different from that deduced within our approach

7This is explicitly shown in Fig. 2 of Ref. [56]. There, it is also
explained how the couplings to the different channels decrease
when the dynamically generated pole approaches the ���
threshold.

ODD-PARITY LIGHT BARYON RESONANCES PHYSICAL REVIEW D 84, 056017 (2011)

056017-19



since, in that work, coupled channel effects with
vector meson-baryon decuplet are not considered.
The remaining 1

2
� poles predicted by the model

stem from the weakly attractive 1134 irrep. Some of
them might have some correspondence with some
of the states compiled in the PDG, like the
�ð2120Þ;�ð2250Þ;�ð2370Þ;�ð2500Þ; . . . , or to
states not discovered yet. However, we cannot
make any meaningful statement, at this stage.

(ii) In the JP ¼ 3
2
� sector, we associate the 70-plet pole

at
ffiffiffi
s
p ¼ 1748� 48i MeV with the three star

�ð1820Þ state. As happens for other JP ¼ 3
2
� reso-

nances, we expect that inclusion of the d-wave
channels and fine tuning of the subtraction point
could bring its position closer to the experimental
value. The �ð1820Þ dominant modes seem to be
�K� and perhaps ���, but the branching fractions
are very poorly determined (30� 15% for both
decay modes) [45]. Though we can easily explain
the latter decay mode, we have serious problems to
understand within our model the �K� one. This,
together with the fact that our pole is much wider8

than the actual �ð1820Þ state, reveals the important
role played by d-wave components, not taken into
account here, in the dynamics of this state. This
situation is similar to those previously discussed
for the other partners [Nð1520Þ, �ð1520Þ and
�ð1670Þ] of the �ð1820Þ in this 84 octet of the
70-plet. Neither in Ref. [26] nor in Ref. [28], this
�ð1820Þ state is discussed. However, it is studied in
[21] and in [22]. In the latter work, both the decuplet
and octet poles belonging to the 56 and 70 irreps,
respectively, are found with couplings similar to
those compiled in Table XVI. However, there the
�ð1820Þ is identified with the decuplet pole, be-
cause it is narrower, while the octet pole, that in [22]
is four times wider than here, is ignored. This is
because in the approach of Ref. [22] it did not show
up in the jTj2 plot of the amplitudes in the real
plane, and hence the chances of observation were
thought to be not too bright. The approach of
Ref. [21] is based on speed plots, where two close
poles cannot be disentangled, and hence the com-
bined signature of the octet and decuplet poles was
assigned there to the �ð1820Þ resonance.
Next, we might try to identify in our scheme the 56
irrep pole with some other cascade resonance. It
would be partner of the �ð1700Þ and the �ð1940Þ
resonances in an SU(3) decuplet, and we might have
the same difficulties doing a proper assignment as in

these two cases. Assuming an equal spacing rule,
we would expect a cascade state of around
2.1 GeV. It would be quite far from the mass
predicted by the model, however we have already
faced up this problem for the other two members
of this decuplet. In the PDG there exists one state
in this region of energies. This is the one star
�ð2120Þ resonance, however the existence of this
state is highly uncertain. Next in energy in the
PDG, we find the two star �ð2250Þ state. Its
spin-parity is unknown, and it decays into the
���, � �K� and � �K� three-body states. These
decay modes are in agreement with the large
���, �K�� and �K�� couplings of the 56-plet
pole, and we tentatively assign this �ð2250Þ reso-
nance to this pole. This fixes the spin-parity of this
resonance, which is not known yet. Nevertheless,
we must acknowledge that this identification is not
theoretically robust, and it might well be instead
that this pole should be associated with the
�ð1820Þ-resonance or to a new � state not dis-
covered yet. The fact that it is related to the 56
irrep makes us confident that it might have some
counterpart in nature.

(iii) In the JP ¼ 5
2
� sector, we find poles only from the

1134 SU(6) irrep. Experimentally, there exists one
state, the three star�ð2030Þ, with J 
 5

2 , and parity

undetermined. It has large d-wave decays into �K�
and �K�, around 20% and 80%, respectively. As
was the case with the four star Nð1675Þ, �ð1775Þ
and �ð1830Þ 5

2
� resonances, this well established

state can not be described in our scheme and it
might belong, together with the latter resonances,
to an octet of genuine d-wave resonances of spin 5

2 .

However, in [59] it is argued that this�ð2030Þ state
could be better accommodated in a JP ¼ 5

2
þ octet

that would include also the four star Nð1680Þ,
�ð1915Þ and �ð1820Þ resonances. It is also inter-
esting to reproduce here a warning that is made in
the PDG related to the �ð1950Þ: ‘. . . the accumu-
lated evidence for a � near 1950 MeV seems
strong enough to include a �ð1950Þ in the main
Baryon Table, but not much can be said about its
properties. In fact, there may be more than one �
near this mass’. We have identified the �ð1950Þ
with a spin-parity 1

2
� state related to a decuplet of

the 70 irrep. However, if a second state would exist
at this energy, that could be the octet partner of the
5
2
� resonances mentioned above.

Some of the poles listed in Table XVII might have
some correspondence with some of the states
compiled in the PDG, like the �ð2120Þ;�ð2370Þ;
�ð2500Þ; . . . , or to states not yet discovered. Some
of them present similarities with states listed in
Refs. [26,28]. However, as in the previous

8Note, however that because of the Flattè effect [58], with the
opening of the �K�� channel to which the resonance couples
strongly, the apparent width might be smaller than that deduced
from the imaginary part of the pole position.
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isospin-strangeness sectors, we cannot make any
definitive statement for spin 5=2 states.

F. Omegas (�)

Finally, Tables XVIII, XIX, and XX show the results for
the � resonances generated by the model.

The strangeness �3 sector of the SU(6) model has been
investigated in [60]. In this previous work, the meson
decay constants for vector and pseudoscalar mesons were
all taken equal. In the present work, however, the vector
meson decay constants used are higher and therefore the
interaction is weakened. As a result the binding of the
resonances is reduced and their mass increased with re-
spect to [60].

In this sector also the experimental data is very poor and
more information is needed in order to do a proper iden-
tification of the poles obtained in our model. We will
concentrate only in two states that are placed in two
SU(3) decuplets associated with the strongly attractive 70
(in this case, we find a virtual state) and 56 irreps, respec-
tively, and that we will identify to the �ð2250Þ and
�ð2380Þ states. These resonances are not generated in
the works of Refs. [26,28].

(i) For the 70 irrep pole, the spin is 1
2 and from the

various discussions above, this state would be part-
ner of the �ð1620Þ, �ð1750Þ and �ð1950Þ reso-
nances. Following the pattern of flavor breaking,
we expect its real mass to be around 2.2 GeV. Thus,
we find a clear candidate in the PDG: the �ð2250Þ.
Moreover, we can see that this resonance shares
many features in common with the other resonances
mentioned above. Among its main decay modes, we
pay attention to the �K�� one first. It is of the
pseudoscalar-baryon decuplet type, and it would
be similar to the ��, ��� and ��� modes for
the �ð1620Þ, �ð1750Þ and �ð1950Þ resonances,
respectively. If all these resonances have spin 1

2 ,

these components are genuinely d wave and pro-
duce some distortion between the predicted masses
and widths for these states in our scheme and the
actual ones of the physical resonances. The other
decay mode for the �ð2250Þ resonance is the three-
body one �� �K, which is analogous to the ��� for
the �ð1620Þ and that can be naturally explained
from the large vector-baryon octet �K�� and
vector-baryon decuplet �K��� couplings of the
70-plet pole.
Thus we conclude that it is fair to identify this
70-plet pole with the �ð2250Þ state, which in turn
also determines the spin-parity of this resonance.

(ii) For the 56 irrep pole, the spin is 3
2 and from the

various discussions above, this state would be
partner, in a decuplet, of the �ð1700Þ, �ð1940Þ
and �ð2250Þ resonances. From the pattern of flavor
breaking, we expect its real mass to be around

2.5 GeV. In the PDG are listed two other omega
resonances: the two star �ð2380Þ and �ð2470Þ.
The latter one is seen to decay into ���, while
the main decay modes of the former one are �� �K,
�K�� and �K�� in perfect agreement with the cou-
plings of our predicted 56-plet pole, and exhibiting
some similarities with the features of the other
members of this decuplet. Hence, it seems natural
to identify this pole with the �ð2380Þ resonance,
which allows us again to determine its spin-parity.
Similar poles were found in Refs. [21,22]. The
dynamics of this state in these two references is
different than that found here, since in both
schemes the interplay with the vector-baryon dec-
uplet �K��� channel was not considered. While in
the former work the state was not identified to
any resonance, in the latter work it was tenta-
tively assigned to the �ð2250Þ baryon. For the
reasons given above, we disagree with such an
identification.

G. Exotics

If we look at Table II, there are many states that do not
have N, �, �, �, � or � quantum numbers. These are
what we will call here exotic states. All of them stem from
the evolution of the weakly attractive 1134 irrep. We find
several poles, but they might be subject to larger relative
corrections or even disappear by the consideration of
higher order terms and higher order even waves, as we
have been discussing for all nonexotic poles belonging to
the 1134 irrep in the previous subsections. Given this
uncertain scenario, we feel that we cannot draw any robust
conclusion on exotic states at this point. It is, however, a
valuable piece of information that exotic states are not
related with the strongly attractive 70- and 56-plets. As
we have seen, the bulk of J ¼ 1

2 ,
3
2 odd-parity three and four

star baryon resonances listed in the PDG can comfortably
be associated with these two SU(6) multiplets. Moreover,
we would like to draw the attention here to some of the
findings of Ref. [32] when the number of colors Nc departs
from 3. There it is shown that, in the 70 SU(6)
irreducible space, the SU(6) extension of the WT s-wave
meson-baryon interaction scales as Oð1Þ, instead of the
well-known OðN�1c Þ behavior for its SU(3) counterpart.
However, the WT interaction behaves as OðN�1c Þ within
the 56 and 1134 meson-baryon spaces. This presumably
implies that 1134 states do not appear in the large Nc QCD
spectrum, since both excitation energies and widths grow
with an approximate

ffiffiffiffiffiffi
Nc

p
rate.

Finally, we mention that in previous works [31,33], we
advocated for the existence of some exotic states. In par-
ticular, we paid special attention to the existence of a
pentaquark of spin 3

2 , isospin zero and strangeness þ1.
Indeed, it naturally showed up as a K�N bound state with a
mass around 1.7–1.8 GeV and it was part of an SU(3)
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antidecuplet of the 1134 irrep. In these previous works, as
mentioned above, the meson decay constant for vector and
pseudoscalar mesons were taken as equal. In the present
work, however, the vector meson decay constants used are
higher and therefore the interaction is weakened. As a
result, this pole disappears within the RS employed here.
However, it is true that by using instead a cutoff to renor-
malize the ultraviolet loops, and keeping it greater than
1.3 GeV, one still finds such a state within the pattern of
spin symmetry breaking assumed here.

To conclude, we cannot discard the existence of exotic
states, because to a large extent this is a RS dependent
issue. However we can say that the SU(6) extension of the
WT presented here does not provide robust theoretical
hints of their actual existence.

H. Assignation of SU(6) and SU(3) labels

As explained at the beginning of this Section, we have
attached definite SU(6) and SU(3) labels to each pole
found by paying attention to how this pole is generated
in SU(6) or SU(3) symmetric scenarios. This procedure
allows us to uncover the pattern of SU(6) or SU(3) multip-
lets in the final physical results, where these symmetries
are broken.9

The previous procedure reveals the nature of the pole
from the genetic point of view. Alternatively, one can study
the structure of the resonance in the final scenario with
broken symmetry. This can be done by analyzing the wave
function of the resonance in coupled channels space.
Following [61], we note that the pole condition on the T
matrix10 is equivalent to the Schrödinger equationlike
condition

ðG�1 � VÞc ¼ 0; (21)

where G and V are matrices in coupled channel space and
c is a column vector. The condition is on

ffiffiffi
s
p

for the
matrix GV to have an eigenvector with eigenvalue equal
to unity, namely, GVc ¼ c . c is related to the wave
function of the resonance in coupled channel space (more
specifically to the wave function for small baryon-meson
separation [61]).

Up to a factor, the quantities Vc (a column vector) are
the coupling constants gi (modulus and phase) appearing in
the residue of the resonance pole. So these couplings give
us information on the structure of the resonance, however,
this is not directly the wave function, rather, gi ¼ hijVjc i
are the transition matrix elements related to the probability

of formation and decay of the resonance. Working instead
with the wave function11 we can analyze the resonance
from the point of view of its SU(6) and SU(3) composition.
The coupled channel space baryon-meson basis is the basis
attached to 56 � 35. In terms of product of representations,
this is the ‘‘uncoupled basis’’. Using the appropriate scalar
factors of SUð6Þ � SUð3Þf � SUð2ÞJ [62], one can express
the same state in the ‘‘coupled basis’’, with well defined
SUð6Þ � SUð3Þf � SUð2ÞJ labels. This gives us for in-

stance how much of the resonance belongs to each of the
SU(6) irreps 56, 70, 700 and 1134.
As it turns out, it is found that the irrep 1134 has an

important weight in almost all resonances. This reflects
that masses and meson decay constants break SU(6) (as
well as SU(3)). In a purely random state the 1134 multi-
plet would be expected to dominate from statistical con-
siderations. Valuable information follows from deviations
from statistics. The analysis shows that the SU(6) irrep
700 has a small (in fact almost always negligible) role in
the wave function of the resonances; presumably a con-
sequence of the repulsive character of the interaction in
that sector. It follows that all 5

2� poles are nearly 100%

1134 irrep.
After the evolution from the SU(6) and SU(3) sym-

metric points, we find that considerable mixing of irreps
is achieved for resonances originally in the 56 or 70. The
mixing takes place with the 1134 and also between 56
and 70. This is true in many cases and particularly in the
� sector. Notably, the ð�; 32

�Þ with a pole at 1928 MeV

is a very pure (56, 10) state with very small mixing. On
the other hand, as a rule, the heavier resonances origi-
nally in the 1134 stay in that multiplet with small or no
mixing.
From the point of view of classification of resonances,

we stick to the prescription given above, based on how the
resonance is originated. Because of the breaking of sym-
metry it would not make sense to expect the resonances to
form clear and distinct multiplets at the end of the evo-
lution different from the initial ones. Rather one expects
to find the same multiplets plus breaking. As a rule, we
find that the final structure of the resonances reflect the
SU(6) and SU(3) multiplets assigned to them. There are

9An alternative procedure to reveal the genesis of each pole
under SU(6) would be to study its response under changes of the
eigenvalues �r in Eq. (12). The analysis can be extended to
SU(3) in the obvious way.
10We work in a given sector of coupled channel space through-
out, so we drop the sector label SIJ.

11There is a subtlety here since the quantity c obtained as above
depends on conventions on how preciselyG andV are normalized
(all the conventions having the same poles in the plane

ffiffiffi
s
p

). The
proper definition of the wave function is such that the propagator
is normalized as Gs ¼ ðE�H0Þ�1. In our case Gi ¼ c2i Gs;i with

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMi þmiÞ=ðmi16�

3
ffiffiffi
s
p Þ

q
from Eqs. (66, 67) of [61] (note

that our Gi ¼ 2MiG
FT for GFT of [61]). The potential that

combined with Gs ¼ c�1Gc�1 (matrix notation) gives the same
poles, is Vs ¼ cVc, with corresponding T matrix Ts ¼ cTc. The
couplings from the residues of Ts at the poles are gs ¼ cg. For the
(unnormalized) wave function, gs ¼ Vsc s, so c s ¼ Gsgs ¼
c�1Gg ¼ c�1c . Therefore, up to normalization, the wave func-

tion is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ðmi þMiÞ

p
Gigi, with Gi evaluated at the pole.
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some exceptions. Thus, the pole ð1867� 36iÞ MeV in the
ð�; 12�Þ sector has a dominant structure of ð56; 82Þ rather
than ð1134; 82Þ. And the following poles in the ð�; 12

�Þ
sector: ð1577� 139iÞ and ð2037� 24iÞ MeV would
have structures of ð1134; 82Þ and ð56; 82Þ, respectively.
It is interesting that the large coupling of ð1577�
139iÞ MeV to the channel ��, attending to the corre-
sponding Clebsh-Gordan coefficients, cannot be easily
achieved through the 56 or 70 irreps and requires the
important weight of the 1134. This pole is identified as
�ð1620Þ, and the same large coupling is obtained in other
models [15,57].

IV. SUMMARY

We have studied the light baryon resonances based on
the SU(6) model introduced in [31,32]. The model as-
sumes that the light-quark interactions are approximately
spin and SU(3) flavor independent. With this assumption
the usual SU(3) Weinberg-Tomozawa interaction is ex-
tended to SU(6). This allows us to construct the elemen-
tary amplitudes for the s-wave scattering of mesons with
baryons including in a systematic way low-lying 0� and
1� mesons and 1=2þ and 3=2þ baryons. With these
amplitudes, the T matrix is calculated and poles are
identified. Each pole is associated with a resonance. The
information obtained for each pole includes its mass,
width and couplings of each resonance and comparison
of the information obtained allows us to associate some of
the theoretical states from the model with observed ex-
perimental states.

We have studied the possible N, �, �, �, � and �
states generated by the model. Most of the experimental
JP ¼ 1

2
� states fit within our approach fairly well. For the

JP ¼ 3
2
� one should bear in mind that d-wave channels,

which are not considered in the model, might play an
important role, but even with this handicap, the model
describes many of the observed states. Most of the low-
lying three and four star odd-parity baryon resonances
with spin 1

2 and 3
2 are generated in our scheme, and they

can be related to the 70 and 56 multiplets of the spin-
flavor symmetry group SU(6), as sketched in Fig. 1.
Indeed, the spin-flavor WT interaction turns out to be
quite attractive in these two irreps, especially in the first
one, and thus we believe these results are robust, except
perhaps for those concerning the spin 1

2
� octet of the

56-plet which are subject to larger uncertainties, as ar-
gued in the previous subsections. The spin-parity of the
�ð1620Þ, �ð1690Þ, �ð1950Þ, �ð2250Þ, �ð2250Þ and
�ð2380Þ resonances, not experimentally determined yet,
can be read off the figure and thus are predictions of our
scheme. More precise experiments on this issue would be
very welcome in order to test these assignments.

It should be stressed that we have chosen not to adjust
any parameter; the RS used here completely fixes the
subtraction constant to some specific quantity determined

by the masses of the hadrons in each IS sector (see
Eq. (15)). This is in contrast with the RS advocated in
other works [12,14,19,20,22,26,28,44], which allows for
some free variation in the subtraction constants of each of
the coupled channels that enter in any JIS sector. Such
freedom makes it possible to achieve a better phenomeno-
logical description of data. However in some sense, this
flexibility dilutes the predictive power of the scheme, and
also it might happen that some more freedom than that
allowed by the underlying symmetry is being used.
We predict also many states associated with the weakly

attractive 1134 irrep, some of them with exotic quantum
numbers. In order to do a proper identification in these
cases, it is essential to have accurate data because slight
changes in the RS might change drastically the position
and main features of the predicted states, and some of
them might even disappear. That is the reason why we
have tried to associate these poles with resonances in the
PDG only in a few cases, mostly for those which could be
related to firmly established resonances (three or four
stars). In this context, we mention here that the four star
�ð1690Þ and the three star Nð1700Þ, �ð1930Þ and
�ð1800Þ resonances could also be accommodated within
the model. Thus, considering the states included in Fig. 1
and these four resonances above, all three and four star
odd-parity baryons listed in the PDG, except for the
Nð1675Þ, �ð1775Þ, �ð1830Þ and �ð2030Þ resonances,
are dynamically generated within this scheme. These
latter five states have spin J ¼ 5

2 , their existence is firmly

established, and in all cases their dominant decay modes
always involve d-wave interactions, which are beyond the
scope of this work. We observe that they can be cast into
an SU(3) octet, though some other possibilities cannot be
discarded.
The hidden gauge scheme of Refs. [26,28] leads to a

distinctive pattern, where the higher energy states are
degenerate in spin [25,26,28]. The authors of these works
found in some cases candidates in the PDG that seem to
follow this pattern, for instance, the triplet of resonances
�ð1900Þ, �ð1940Þ, �ð1930Þ that have spin-parity JP ¼
1
2
�, 3

2
�, and 5

2� , respectively.12 Many of the states pre-

dicted in [25,26,28] are missing, however this does not
mean that the pattern deduced there is necessarily incor-
rect, since the predicted states are at the frontier of the
experimental research. It would not be difficult to fine
tune the subtraction constants of some of the 1134 states,
which have always energies higher than those associated
with the more attractive 56 and 70 irreps, obtained in
our model to meet the results of [26,28]. Indeed, in
Tables VI, VII, and VIII, we have identified the triplet

12Note the scarce experimental evidence on the actual existence
of the first two � states that are classified in the PDG as one and
two stars, respectively.
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of �s mentioned above without introducing to modifi-
cations in the RS.

As noted, the 1134-plet contains exotic states which
require pentaquark configurations. On the contrary, spin-
flavor wavefunctions in the 56- and 70-plets can be ob-
tained with qqq states, i.e., from the product 6 � 6 � 6.
The 70�, which has the strongest attraction in our model
and becomes dominant in the large Nc limit [32], is also
natural in quark-model approaches with qqq configura-
tions [63]. The 70� corresponds to the symmetric combi-
nation with two quarks in s-wave (the lowest) state and
the other quark in an excited p-wave state of the bag.
(The color wave function is antisymmetric and so the
spin-flavor-orbital wave function must be symmetric.) In
this view, one would expect some mixing between our
dynamically generated states and the qqq states. The
situation is different for the 56� states. For a 56 the
qqq spin-flavor wave function is completely symmetric
and this requires a completely symmetric wave function
in the orbital space. The states obtained from putting one
of the quarks in a p wave are spurious and disappear after
center of mass projection. Hence 56� is not natural as a
qqq state as it requires more complicated, and so heavier,
quark configurations.
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APPENDIX A: MATRIX ELEMENTS BETWEEN
SU(3) � SU(2) MULTIPLETS

This appendix presents Tables XXI, XXII, XXIII, XXIV,
XXV, XXVI, XXVII, XXVIII, XXIX, XXX, XXXI,
XXXII, XXXIII, XXXIV, XXXV, and XXXVI for the
matrix elements � of Eq. (11). Because there are in all 38
sectors S, I, J (counting only those with negative eigen-
values; see Table II) and some of themwith many channels,
we provide here tables for the 16 (R, J) sectors where R
denotes an SU(3) irreducible representation. The tables
display the matrix elements between SU(3) multiplets. To
obtain the matrix element for a concrete channel one
should use the well-known SUð3Þ � SUð2ÞI � Uð1ÞY iso-
scalar factors. We note that the tables have been con-
structed using the phase convention in [64] which, unlike
that of [65], is suitable for more than three flavors. The
corresponding isoscalar factors using this convention can

TABLE XXII. Matrix elements for 1 and J ¼ 3=2.
Eigenvalue: �2.
14 ð82; 83Þ
ð82; 83Þ �2

TABLE XXIII. Matrix elements for 8 and J ¼ 1=2.
Eigenvalues: �18, �12, 6, �2, �2, �2.
82 ð82; 81Þs ð82; 81Þa ð82; 83Þs ð82; 83Þa ð82; 13Þ ð104; 83Þ
ð82; 81Þs �3 0 2

ffiffiffi
3
p � ffiffiffiffiffiffi

15
p

0 �2 ffiffiffi
6
p

ð82; 81Þa 0 �3 � ffiffiffiffiffiffi
15
p

2
ffiffiffi
3
p

0 0

ð82; 83Þs 2
ffiffiffi
3
p � ffiffiffiffiffiffi

15
p � 7

3
4
ffiffi
5
p
3 � 4

ffiffiffiffi
10
p
3 � 4

ffiffi
2
p
3

ð82; 83Þa � ffiffiffiffiffiffi
15
p

2
ffiffiffi
3
p

4
ffiffi
5
p
3 � 23

3
8
ffiffi
2
p
3 � 2

ffiffiffiffi
10
p
3

ð82; 13Þ 0 0 � 4
ffiffiffiffi
10
p
3

8
ffiffi
2
p
3 � 4

3
4
ffiffi
5
p
3

ð104; 83Þ �2
ffiffiffi
6
p

0 � 4
ffiffi
2
p
3 � 2

ffiffiffiffi
10
p
3

4
ffiffi
5
p
3 � 38

3

TABLE XXI. Matrix elements for 1 and J ¼ 1=2.
Eigenvalues: �18, �2.
12 ð82; 81Þ ð82; 83Þ
ð82; 81Þ �6 4

ffiffiffi
3
p

ð82; 83Þ 4
ffiffiffi
3
p �14

TABLE XXIV. Matrix elements for 8 and J ¼ 3=2.
Eigenvalues: �18, 6, �2, �2, �2.
84 ð82; 83Þs ð82; 83Þa ð82; 13Þ ð104; 81Þ ð104; 83Þ
ð82; 83Þs � 10

3 � 2
ffiffi
5
p
3

2
ffiffiffiffi
10
p
3 2

ffiffiffi
3
p � 4

ffiffi
5
p
3

ð82; 83Þa � 2
ffiffi
5
p
3 � 2

3 � 4
ffiffi
2
p
3 0 � 10

3

ð82; 13Þ 2
ffiffiffiffi
10
p
3 � 4

ffiffi
2
p
3

2
3 0 10

ffiffi
2
p
3

ð104; 81Þ 2
ffiffiffi
3
p

0 0 �6 2
ffiffiffiffiffiffi
15
p

ð104; 83Þ � 4
ffiffi
5
p
3 � 10

3
10

ffiffi
2
p
3 2

ffiffiffiffiffiffi
15
p � 26

3

TABLE XXV. Matrix elements for 8 and J ¼ 5=2. Eigenvalue:
�2.
86 ð104; 83Þ
ð104; 83Þ �2
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be found in [62,66]. The tables of this Appendix can be
obtained using the SUð6Þ � SUð3Þ � SUð2Þ scalar factors
in [62]. The same scalar factors but with the convention of
[65] can be found in [67,68].
For instance, from [62,66] and including the appropriate

spin SU(2) Clebsch-Gordan coefficients, we learn that

TABLE XXVIII. Matrix elements for 10 and J ¼ 5=2.
Eigenvalues: 6, �2.
106 ð104; 83Þ ð104; 13Þ
ð104; 83Þ 2 �4
ð104; 13Þ �4 2

TABLE XXVII. Matrix elements for 10 and J ¼ 3=2.
Eigenvalues: �12, 6, �2, �2.
104 ð82; 83Þ ð104; 81Þ ð104; 83Þ ð104; 13Þ
ð82; 83Þ 2

3 2
ffiffiffi
6
p � 2

ffiffiffiffi
10
p
3

4
ffiffiffiffi
10
p
3

ð104; 81Þ 2
ffiffiffi
6
p �3 ffiffiffiffiffiffi

15
p

0

ð104; 83Þ � 2
ffiffiffiffi
10
p
3

ffiffiffiffiffiffi
15
p � 19

3
8
3

ð104; 13Þ 4
ffiffiffiffi
10
p
3 0 8

3 � 4
3

TABLE XXVI. Matrix elements for 10 and J ¼ 1=2.
Eigenvalues: �18, 6, �2, �2.
102 ð82; 81Þ ð82; 83Þ ð104; 83Þ ð104; 13Þ
ð82; 81Þ 0 �2 ffiffiffi

3
p �4 ffiffiffi

3
p

0

ð82; 83Þ �2 ffiffiffi
3
p � 4

3 � 4
3

8
3

ð104; 83Þ �4 ffiffiffi
3
p � 4

3 � 34
3

20
3

ð104; 13Þ 0 8
3

20
3 � 10

3

TABLE XXIX. Matrix elements for 10� and J ¼ 1=2.
Eigenvalues: 6, �2.
10�2 ð82; 81Þ ð82; 83Þ
ð82; 81Þ 0 2

ffiffiffi
3
p

ð82; 83Þ 2
ffiffiffi
3
p

4

TABLE XXX. Matrix elements for 10� and J ¼ 3=2.
Eigenvalues: �2.
10�4 ð82; 83Þ
ð82; 83Þ �2

TABLE XXXI. Matrix elements for 27 and J ¼ 1=2.
Eigenvalues: 6, �2, �2.
272 ð82; 81Þ ð82; 83Þ ð104; 83Þ
ð82; 81Þ 2 � 4ffiffi

3
p 4

ffiffi
2
3

q
ð82; 83Þ � 4ffiffi

3
p � 2

3 � 4
ffiffi
2
p
3

ð104; 83Þ 4
ffiffi
2
3

q
� 4

ffiffi
2
p
3

2
3

TABLE XXXII. Matrix elements for 27 and J ¼ 3=2.
Eigenvalues: 6, �2, �2.
274 ð82; 83Þ ð104; 81Þ ð104; 83Þ
ð82; 83Þ 10

3 � 4ffiffi
3
p � 4

ffiffi
5
p
3

ð104; 81Þ � 4ffiffi
3
p �1

ffiffi
5
3

q
ð104; 83Þ � 4

ffiffi
5
p
3

ffiffi
5
3

q
� 1

3

TABLE XXXIII. Matrix elements for 27 and J ¼ 5=2.
Eigenvalues: �2.
276 ð104; 83Þ
ð104; 83Þ �2

TABLE XXXIV. Matrix elements for 35 and J ¼ 1=2.
Eigenvalues: �2.
352 ð104; 83Þ
ð104; 83Þ �2

TABLE XXXV. Matrix elements for 35 and J ¼ 3=2.
Eigenvalues: 6, �2.
354 ð104; 81Þ ð104; 83Þ
ð104; 81Þ 3 � ffiffiffiffiffiffi

15
p

ð104; 83Þ � ffiffiffiffiffiffi
15
p

1

TABLE XXXVI. Matrix elements for 35 and J ¼ 5=2.
Eigenvalues: 6.

356 ð104; 83Þ
ð104; 83Þ 6
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jN �K�iS¼�1;I¼1;J¼3=2 ¼ �
ffiffiffiffiffiffi
3

10

s
jð82; 83Þ; 8s;4i � 1ffiffiffi

6
p jð82; 83Þ; 8a;4i � 1ffiffiffi

6
p jð82; 83Þ; 104i þ 1ffiffiffi

6
p jð82; 83Þ; 10�4i

þ 1ffiffiffi
5
p jð82; 83Þ; 274i;

j���iS¼�1;I¼1;J¼3=2 ¼ 1ffiffiffi
5
p jð104; 81Þ; 84i þ

ffiffiffiffiffiffi
3

10

s
jð104; 81Þ; 274i þ 1ffiffiffi

2
p jð104; 81Þ; 354i:

(A1)

Henceforth, using the tables provided for 84 and 274, one easily obtains

��1;1;3=2
���;N �K� ¼ h���j84ihð104; 81Þj�84 jð82; 83Þsih8s;4jN �K�i þ h���j84ihð104; 81Þj�84 jð82; 83Þaih8a;4jN �K�i

þ h���j274ihð104; 81Þj�274 jð82; 83Þih274jN �K�i

¼ 1ffiffiffi
5
p

�
2

ffiffiffi
3
p �

|fflffl{zfflffl}
Table XXIV

0
@�

ffiffiffiffiffiffi
3

10

s 1
Aþ 1ffiffiffi

5
p ð0Þ|{z}

Table XXIV

0
@�

ffiffiffi
1

6

s 1
Aþ

ffiffiffiffiffiffi
3

10

s �
� 4ffiffiffi

3
p

�
|fflfflffl{zfflfflffl}

Table XXXII

1ffiffiffi
5
p ¼ � ffiffiffi

2
p

: (A2)

APPENDIX B: �N S11 PHASE SHIFT AND
INELASTICITIES

In this appendix, we pay special attention to �N elastic
and inelastic scattering, and, in particular, to phase shifts,
inelasticities and some total inelastic cross sections in the
S11 wave (notation L2I2J, with L the �N orbital angular
momentum). We will restrict our discussion to relatively
low energies (

ffiffiffi
s
p

< 1:7 GeV), where the Nð1535Þ and
Nð1650Þ four star resonances generated by the interaction
in the 56 and 70 irreps should play a central role. Phase
shifts, inelasticities and inelastic cross sections are eval-
uated using Eqs. (18), (19) and (35) of Ref. [20], but
replacing this latter equation by

½f1=20 ðsÞ�BA ¼ �
1

8�
ffiffiffi
s
p

ffiffiffiffiffiffiffiffi
j ~kBj
j ~kAj

vuut TBAffiffiffiffiffiffiffiffiffiffi
2MA

p ffiffiffiffiffiffiffiffiffiffi
2MB

p ; (B1)

for the transition B A. This is necessary to account for
minor differences between the normalizations used here
and those employed in [20].

At first sight, the model presented up to here (solid lines
in Fig. 4, labeled model 0 there) leads to a poor description
of data, though it already explains their gross features.13

Indeed, we could appreciate the changes of curvarture in
the phase-shifts and inelasticities, which hints the exis-
tence of both the Nð1535Þ and Nð1650Þ resonances.
Those states show clearly up in the ��p! �n and
��p! K0� total cross sections, as well.

This raw description of the data should not be surprising,
since we have not fitted any parameter and we have just
retained here the SU(3)WT lowest order contribution to fix
the SU(6) interaction. Accurate descriptions of data have
been achieved in previous works [20,27,49], but always
within more general schemes, where a large number of
parameters are fitted to data. Thus for instance in [20],
though vector meson and decuplet baryon degrees of free-
dom are not incorporated and the SU(3) WT is taken as the
kernel to solve a Bethe-Salpeter equation (BSE), the con-
sideration of off-shell effects in [20] led to a total of 12
counterterms which are fitted to data. Four of them (one for
each of the four channels, �N, �N, K� and K�, included
in [20]) are the subtraction constants needed in Eq. (14) to
renormalize the ultraviolet divergences in the loop func-
tion. Here, we have not only neglected the counterterms
that arise from off-shell effects in the solution of the BSE,
moreover, those counterterms that appear in the on-shell
scheme adopted here have also been totally fixed, by means
of the prescription of Eq. (15), instead of fitting them to
data. In Ref. [49], there is a total of 17 free parameters,
given by the 14 low energy constants that appear when one
goes beyond the SU(3) WT term, and includes all dimen-
sion two contact terms, as well as three subtraction con-
stants for the regularized loop integrals.14 Finally, in [27]
an even larger number of parameters is fitted to data.
We could adopt here also a more flexible RS, and relax

the prescription of Eq. (15) to achieve a better agreement to
data. Fitting the subtraction constants to data is a difficult
task, since there are likely many local minima, and it
requires a careful analysis. Besides, it would also require
working in parallel possible off-shell effects [20] and next-
to-leading contributions [49] to the kernel of the BSE.

13Note that we do not show results for the ��p! K0�0 total
cross section because of the likely sizable isospin 3=2 contribu-
tion, and that as the C.M. energy increases, higher �N wave
contributions (neglected here) to the two total inelastic cross
sections shown in Fig. 4 become much more relevant. Yet the
three-body final state �N ! N�� process, not considered here,
will affect to the inelasticities, as well [19,20].

14In [49], it is assumed the same subtraction constant for both
the K� and K� channels.
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These latter ones should account also for additional
SU(6) and SU(3) breaking terms to be considered on top
of those already incorporated in our simplified scheme.
This is an ambitious and formidable task, which is out of
the scope of the present work. Here, we just aim to show
how the underlying chiral symmetry of the WT term
induces a qualitative SU(6) classification pattern, where
most of the lowest-lying odd-parity three and four star
resonances of the PDG fill into 70 and 56 irrep SU(6)
multiplets. We would like however to point out that there
are regions in the parameter space which lead to better
descriptions of the scattering data. As a matter of example,
we also show in Fig. 4, results (dashed lines, labeled model
1 there) which look more phenomenologically acceptable,
and have been obtained by modifying the prescription of

Eq. (15) (see figure caption, for more details.15) For this
particular set of parameters the state identified with the
Nð1535Þ becomes wider whereas that identified with the
Nð1650Þ becomes lighter than the corresponding states in
the model 0.
The conclusions of the above discussion are similar for

other sectors of strangeness, spin and isospin.
In summary, the simple scheme advocated in this work,

where no parameters are being fitted, provides the main
features of the lowest-lying odd-parity baryon resonances.

FIG. 4 (color online). Top panels: S11 elastic �N phase shifts (left) and inelasticities (right) as a function of the C.M. energy
ffiffiffi
s
p

. Data
are from Ref. [69], and to better appreciate the discrepancies, we have assumed in both cases a 5% systematic error and a statistical
uncertainty of 5� and 0.1 for 	0s and �0s, respectively, (errors have been added in quadrature). Bottom panels: ��p! �n and
��p! K0� total cross sections as a function of

ffiffiffi
s
p

. Data are from Ref. [70]. Solid lines (model 0) stand for the predictions obtained
within the scheme presented here, where no parameters have been adjusted to data. Dashed lines (model 1) show results from a

modified model, where in Eq. (14), the subtraction constants �J0ð� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þM2
N

q
;Mi;miÞÞ are multiplied by the factors �0:039,

0.007, 2.228, �0:539, 0.443, 0.757, 2.855, 0.710, 1.460, 2.677, 0.333, for the �N, �N, K�, K�, �N, !N, �N, ��, K��, K��, K���
channels, respectively.

15In some cases, there appear large deviations when compared
to the prescription of Eq. (15), which however do not attribute
much physical relevance, because of the complexity of the
parameter space, as we already mentioned.
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However, one should not expect a very good, actually it
could be poor, description of data that, however, hints at
their major features. This situation is similar for other
simple models, like those of Refs. [22,25,26,28], where
the � baryon decuplet and the vector meson nonet degrees

of freedom are taken into account. Accurate descriptions of
data, beyond masses, widths and the main couplings of the
relevant low-lying resonances in each sector, can be
achieved, but it requires much more physics to enter in
the form of undetermined counterterms.
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