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In order to better understand the fundamental issue regarding the compatibility between the quark-shell

picture and that of resonances in meson-nucleon scattering in large Nc QCD we extend the work of Cohen

and Lebed on mixed symmetric ‘ ¼ 1 baryons to analyze excited states with ‘ ¼ 3. We give an explicit

proof on the degeneracy of mass eigenvalues of a simple Hamiltonian including operators up to order

OðN0
c Þ, i.e., neglecting 1=Nc corrections in the quark-shell picture in the large Nc limit. We obtain three

sets of degenerate states with ‘ ¼ 3, as in the case of ‘ = 1 baryons. The compatibility between this picture

and that of resonances in meson-nucleon scattering is discussed in the light of the present results.
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I. INTRODUCTION

The usefulness of the 1=Nc expansion method [1–4] to
describe ground-state baryons has been clearly demon-
strated [5–7]. It is based on the contracted spin-flavor
symmetry SUð2NfÞ that emerges in large Nc QCD. For

excited baryons the problem is more involved and needs
more investigations.

There are two complementary pictures of large Nc

for the baryon resonances. Using the terminology of
Refs. [8–10] these are:

(i) the SUð2NfÞ � Oð3Þ called the quark-shell picture

where the role of O(3) is essentially to include orbital
excitations. This picture allows us to classify bary-
ons in excitation bands N, like in the quark model
[11,12]. For Nc ¼ 3 each band contains a number of
SUð6Þ � Oð3Þ multiplets. A practical and commonly
used procedure is to consider an excited state as a
single quark excitation about a spin-flavor symmet-
ric core [13,14]. The Nc counting is implemented by
introducing operators that break the SUð2NfÞ sym-

metry in powers of 1=Nc. The coefficients of these
operators encode the quark dynamics and are fitted
from experiment.

(ii) the resonance or scattering picture derived from
symmetry features shared by various chiral soliton
models. The role of large Nc QCD is to relate the
scattering amplitudes in various channels with K

amplitudes, where K is the grand spin ~K ¼ ~I þ ~J.
These are linear relations in the meson-nucleon
scattering amplitudes from which one can infer
some patterns of degeneracy among resonances.

For the nonstrange lowest negative parity baryons be-
longing to the ½70; 1�� multiplet (the N ¼ 1 band in quark
model terms) Cohen and Lebed have shown [8] that the
two pictures share the same pattern of degeneracy from
which they concluded that the two pictures are generically
compatible. Simultaneously with Cohen and Lebed, Pirjol
and Schat [9] found the same sets of degenerate states,
corresponding to irreducible representations of the con-
tracted SUð4Þc symmetry and the three degenerate multip-
lets obtained by them were called three towers of states.
Moreover, to the three leading-order operators in the mass
formula they added 1=Nc corrections and reanalyzed the
mass spectrum of the lowest negative parity nonstrange
baryons. They found ambiguities in the identification of
physical states with Nc ¼ 3 with the degenerate large Nc

tower states.
One should also mention that in the SU(4) case, prior

to Refs. [8,9], the degeneracy of multiplets corresponding
to irreducible representations of the contracted SUð4Þc
symmetry was first discussed by Pirjol and Yan in
Ref. [15].
Later on, the compatibility between the two pictures was

discussed on a general basis again by Cohen and Lebed
[10]. By full compatibility it was understood that any
complete spin-flavor multiplet within one picture fills the
quantum numbers in the other picture. The analysis in-
volved group theoretical arguments and the nature of quark
excitations in a hedgehog picture. The compatibility was
generally claimed for completely symmetric, mixed sym-
metric and completely antisymmetric states of Nc quarks
having angular momentum up to ‘ ¼ 3. However an ex-
plicit proof regarding the degeneracy of mass eigenvalues
in the quark-shell picture is known only for ‘ ¼ 1 [8,9].
For symmetric states with ‘ ¼ 0 and 2 it is inferred from
previous studies [5–7,16] respectively. Similar arguments
hold for symmetric ‘ ¼ 4 states as well [17].
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The aim of the present work is to give an explicit
analytical proof of the degeneracy of mass eigenvalues in
the quark-shell picture for ‘ ¼ 3 and present its pattern of
degeneracy as compared to that of the meson-nucleon
scattering picture. For this purpose we use the
Hamiltonian of Ref. [8] and calculate all the possible
eigenvalues. We find a pattern of degeneracy which is
compared to that given in Ref. [10] from general arguments
and discuss the compatibility of the two pictures explicitly.

II. THE QUARK-SHELL PICTURE

In the quark-shell picture the authors of Ref. [8] start
from the leading-order Hamiltonian including operators up
to order OðN0

cÞ which has the following form [14]

H ¼ c11þ c2‘ � sþ c3
1

Nc

‘ð2Þ � g �Gc: (1)

This operator is defined in the spirit of a Hartree picture
(mean field) [2] where the matrix elements of the first term
are Nc on all baryons, and the spin-orbit term ‘ � s which is
a one-body operator and the third term—a two-body op-

erator containing the tensor ‘ð2Þij of O(3)—have matrix
elements of order OðN0

cÞ. The neglect of 1=Nc corrections
in the 1=Nc expansion makes sense for the comparison
with the scattering picture in the large Nc limit, as de-
scribed in the following section.

We remind that the SU(4) generators are Si, Ta, and Gia

and ‘i are the O(3) generators which form the tensor

operator ‘ð2Þij ¼ 1=2f‘i; ‘jg � 1=3‘2�i;�j. In the manner

of Ref. [14] they are decomposed into two parts, one acting
on the excited quark and the other on the ground-state core.
Thus ‘i, si, ta and gia act on the excited quark and Sic, T

a
c

and Gia
c act on the ground-state core. Starting from the

Hamiltonian (1) the authors of Ref. [8] show that the
masses of the ½70; 1�� multiplet described by this model
to leading order in the 1=Nc expansion fall into three
degenerate multiplets given by three distinct masses de-
noted bym0,m1 andm2, which are linear in the parameters
c1, c2 and c3. Their expression are

m0 ¼ c1Nc �
�
c2 þ 5

24
c3

�
;

m1 ¼ c1Nc � 1

2

�
c2 � 5

24
c3

�
;

m2 ¼ c1Nc þ 1

2

�
c2 � 1

24
c3

�
:

(2)

From its form one can see that the Hamiltonian (1)
incorporates the property that the characteristic Nc scaling
for the excitation energy of baryons is N0

c [2].
The spectrum obtained from the Hamiltonian (1) is

identical to that derived by Pirjol and Schat [9] for
‘ ¼ 1. Note that the third operator of Ref. [9] contains
an extra factor of 3, which should be taken into account
when comparing the eigenvalues.

Below we give the mass matrices obtained from the
Hamiltonian (1) for ‘ ¼ 3. As we shall see, this
Hamiltonian has the remarkable property that for ‘ ¼ 3
as well, its eigenvalues are simple linear expressions
in the coefficients ci, which makes the discussion very
convenient.

A. The nucleon case

We have the following ½Nc � 1; 1� spin-flavor (SF)
states which form a symmetric state with the orbital
‘ ¼ 3 state of partition ½Nc � 1; 1� as well
(1) ½Nc � 1; 1�SF ¼ ½Ncþ1

2 ; Nc�1
2 �S � ½Ncþ1

2 ; Nc�1
2 �F,

Nc � 3 with S ¼ 1=2 and J ¼ 5=2, 7=2

(2) ½Nc � 1; 1�SF ¼ ½Ncþ3
2 ; Nc�3

2 �S � ½Ncþ1
2 ; Nc�1

2 �F,
Nc � 3 with S ¼ 3=2 and J ¼ 3=2, 5=2, 7=2, 9=2.

They give rise to matrices of a given J either 2� 2 or
1� 1. States of symmetry ½Nc � 1; 1�SF with S ¼ 5=2, as
for � (see below), which together with ‘ ¼ 3 could give
rise to J ¼ 11=2, are not allowed for N, by inner products
of the permutation group [18]. Therefore the resonance
N11=2 should belong to the N ¼ 5 band (‘ ¼ 5), as sug-

gested in the before last section. For Nc ¼ 3 the above
states belong to the 28 and 48 multiplets of SUð2Þ � SUð3Þ
respectively.
We calculate the matrix elements using the formulas

from Appendix . The expectation value for the ‘ ¼ 3
N3=2 state is

mð1Þ
N3=2

¼ c1Nc � 2c2 � 3

4
c3: (3)

The matrix for N5=2 is

M‘¼3
N5=2

¼ c1Nc � 4
3 c2 �

ffiffi
5

p
3 c2 � 3

ffiffi
5

p
8 c3

�
ffiffi
5

p
3 c2 � 3

ffiffi
5

p
8 c3 c1Nc � 7

6 c2 þ 3
16 c3

0
@

1
A: (4)

Its eigenvalues are

mð1Þ
N5=2

¼ c1Nc � 2c2 � 3

4
c3 (5)

mð2Þ
N5=2

¼ c1Nc � 1

2
c2 þ 15

16
c3: (6)

The matrix for N7=2 is

M‘¼3
N7=2

¼ c1Nc þ c2 �
ffiffi
3

p
2 c2 þ 5

ffiffi
3

p
16 c3

�
ffiffi
3

p
2 c2 þ 5

ffiffi
3

p
16 c3 c1Nc þ 5

8 c3

0
@

1
A (7)

and its eigenvalues are

mð1Þ
N7=2

¼ c1Nc � 1

2
c2 þ 15

16
c3 (8)

mð2Þ
N7=2

¼ c1Nc þ 3

2
c2 � 5

16
c3: (9)
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The expectation value of the N9=2 is

mð1Þ
N9=2

¼ c1Nc þ 3

2
c2 � 5

16
c3: (10)

B. The � case

We have the following basis states in the spin-flavor
space compatible with the orbital state ½Nc � 1; 1� with
‘ ¼ 3

(1) ½Nc � 1; 1�SF ¼ ½Ncþ1
2 ; Nc�1

2 �S � ½Ncþ3
2 ; Nc�3

2 �F,
Nc � 3 with S ¼ 1=2 and J ¼ 5=2, 7=2,

(2) ½Nc � 1; 1�SF ¼ ½Ncþ3
2 ; Nc�3

2 �S � ½Ncþ3
2 ; Nc�3

2 �F,
Nc � 5 with S ¼ 3=2 and J ¼ 3=2, 5=2, 7=2, 9=2,

(3) ½Nc � 1; 1�SF ¼ ½Ncþ5
2 ; Nc�5

2 �S � ½Ncþ3
2 ; Nc�3

2 �F,
Nc � 7 with S ¼ 5=2 and J ¼ 1=2, 3=2, 5=2, 7=2,
9=2, 11=2.

As above, they indicate the size of a matrix of fixed J. For
Nc ¼ 3 the first state belongs to the 210 multiplet. The
other two types of states do not appear in the real world
withNc ¼ 3. Note that both forNJ and�J states the size of

a given matrix equals the multiplicity of the corresponding
state indicated in Table 1 of Ref. [10] for ‘ ¼ 3.
The expectation value for the �1=2 state is

mð1Þ
�1=2

¼ c1Nc � 2c2 � 3

4
c3: (11)

The matrix for �3=2 is

M‘¼3
�3=2

¼ c1Nc � 4
5 c2 þ 3

5 c3 � 3
5 c2 � 27

40 c3

� 3
5 c2 � 27

40 c3 c1Nc � 17
10 c2 � 33

80 c3

 !
:

(12)

The eigenvalues of this matrix are

mð1Þ
�3=2

¼ c1Nc � 2c2 � 3

4
c3 (13)

mð2Þ
�3=2

¼ c1Nc � 1

2
c2 þ 15

16
c3: (14)

For �5=2 we have

M‘¼3
�5=2

¼

c1Nc þ 2
3 c2

ffiffi
1
2

q �
5
3 c2 � 3

8 c3

�
3
4

ffiffi
1
2

q
c3

ffiffiffiffi
15
2

q �
1
2 c2 þ 1

16 c3

�
c1Nc � 7

15 c2 � 3
20 c3 � 3

2
ffiffi
2

p c2 � 3
16
ffiffi
2

p c3

3
4

ffiffi
1
2

q
c3 � 3

2
ffiffi
2

p c2 � 3
16
ffiffi
2

p c3 c1Nc � 6
5 c2 þ 1

40 c3

0
BBBBBBBB@

1
CCCCCCCCA
: (15)

The eigenvalues of this matrix are

mð1Þ
�5=2

¼ c1Nc � 2c2 � 3

4
c3 (16)

mð2Þ
�5=2

¼ c1Nc � 1

2
c2 þ 15

16
c3 (17)

mð3Þ
�5=2

¼ c1Nc þ 3

2
c2 � 5

16
c3: (18)

For �7=2 we obtain

M‘¼3
�7=2

¼

c1Nc � 1
2 c2

ffiffiffiffi
15
2

q �
1
2 c2 þ 1

16 c3

�
3
ffiffiffiffi
15

p
16 c3

ffiffiffiffi
15
2

q �
1
2 c2 þ 1

16 c3

�
c1Nc � 1

2 c3 � 3
2
ffiffi
2

p c2 � 3
16
ffiffi
2

p c3

3
ffiffiffiffi
15

p
16 c3 � 3

2
ffiffi
2

p c2 � 3
16
ffiffi
2

p c3 c1Nc � 1
2 c2 þ 3

8 c3

0
BBBBBBB@

1
CCCCCCCA

(19)

and the eigenvalues of this matrix are

mð1Þ
�7=2

¼ c1Nc � 2c2 � 3

4
c3 (20)

mð2Þ
�7=2

¼ c1Nc � 1

2
c2 þ 15

16
c3 (21)
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mð3Þ
�7=2

¼ c1Nc þ 3

2
c2 � 5

16
c3: (22)

For �9=2 we obtain

M‘¼3
�9=2

¼ c1Nc þ 3
5 c2 þ 1

4 c3 � 3
ffiffiffiffi
11

p
10 c2 þ 3

ffiffiffiffi
11

p
16 c3

� 3
ffiffiffiffi
11

p
10 c2 þ 3

ffiffiffiffi
11

p
16 c3 c1Nc � 1

2 c2 � 15
16 c3

0
@

1
A
(23)

with eigenvalues

mð1Þ
�9=2

¼ c1Nc � 1

2
c2 þ 15

16
c3 (24)

mð2Þ
�9=2

¼ c1Nc þ 3

2
c2 � 5

16
c3: (25)

Finally, the expectation value of the �11=2 one compo-

nent state is

mð1Þ
�11=2

¼ c1Nc þ 3

2
c2 � 5

16
c3: (26)

It is remarkable that the 18 available eigenstates with
‘ ¼ 3 fall into three degenerate multiplets, like for ‘ ¼ 1.
If the degenerate masses are denoted by m0

2, m3 and m4

we have

m0
2 ¼ mð1Þ

�1=2
¼ mð1Þ

N3=2
¼ mð1Þ

�3=2
¼ mð1Þ

N5=2
¼ mð1Þ

�5=2
¼ mð1Þ

�7=2
;

(27)

m3 ¼ mð2Þ
�3=2

¼ mð2Þ
N5=2

¼ mð2Þ
�5=2

¼ mð1Þ
N7=2

¼ mð2Þ
�7=2

¼ mð1Þ
�9=2

;

(28)
TABLE I. Partial wave amplitudes and their expansions in
terms of K amplitudes from Eqs. (30) and (31). The superscripts
�NN, �N�, ���, �NN, and ��� refer to the scattered meson
and the initial and final baryons, respectively. We list amplitudes
consistent with a single quark excited to ‘ ¼ 3 and partial waves
having L ¼ L0 ¼ 2.

State

Quark-shell

mass Partial wave and K amplitudes

�1=2 m0
2 D���

31 ¼ 1
10 ðs�122 þ 9s�222Þ

D
���
31 ¼ s

�
2

N3=2 m0
2 D�NN

13 ¼ 1
2 ðs�122 þ s�222Þ

D
�NN
13 ¼ s

�
2

D���
13 ¼ 1

2 ðs�122 þ s�222Þ
D�N�

13 ¼ 1
2 ðs�122 � s�222Þ

�3=2 m0
2, m3 D�NN

33 ¼ 1
20 ðs�122 þ 5s�222 þ 14s�322Þ

D���
33 ¼ 1

25 ð8s�122 þ 10s�222 þ 7s�322Þ
D

���
33 ¼ s

�
2

D�N�
33 ¼ 1

5
ffiffiffiffi
10

p ð2s�122 þ 5s�222 � 7s�322Þ
N5=2 m0

2, m3 D�NN
15 ¼ 1

9 ð2s�222 þ 7s�322Þ
D

�NN
15 ¼ s

�
2

D���
15 ¼ 1

9 ð7s�222 þ 2s�322Þ
D�N�

15 ¼
ffiffiffiffi
14

p
9 ðs�222 � s�322Þ

�5=2 m0
2, m3 D�NN

35 ¼ 1
90 ð27s�122 þ 35s�222 þ 28s�322Þ

D���
35 ¼ 1

450 ð189s�122 þ 5s�222 þ 256s�322Þ
D

���
35 ¼ s

�
2

D�N�
35 ¼ 1

90

ffiffi
7
5

q
ð27s�122 þ 5s�222 � 32s�322Þ

�7=2 m0
2, m3 D���

37 ¼ 1
5 ð2s�222 þ 3s�322Þ

D
���
37 ¼ s

�
2

TABLE II. Same as Table I but for partial waves L ¼ L0 ¼ 4.

State

Quark-shell

mass Partial wave and K amplitudes

N5=2 m3 G���
15 ¼ s�344

�5=2 m3, m4 G���
35 ¼ 1

4 ðs�344 þ 3s�444Þ
G

���
35 ¼ s

�
4

N7=2 m3, m4 G�NN
17 ¼ 1

12 ð7s�344 þ 5s�444Þ
G�NN

17 ¼ s�4

G���
17 ¼ 1

12 ð5s�344 þ 7s�444Þ
G�N�

17 ¼
ffiffiffiffi
35

p
12 ðs�344 � s�444Þ

�7=2 m3, m4 G�NN
37 ¼ 1

72 ð7s�344 þ 21s�444 þ 44s�544Þ
G���

37 ¼ 1
225 ð100s�344 þ 48s�444 þ 77s�544Þ

G
���
37 ¼ s

�
4

G�N�
37 ¼

ffiffiffiffi
14

p
90 ð5s�344 þ 6s�444 � 11s�544Þ

N9=2 m4 G�NN
19 ¼ 1

15 ð4s�444 þ 11s�544Þ
G

�NN
19 ¼ s

�
4

G���
19 ¼ 1

15 ð11s�444 þ 4s�544Þ
G�N�

19 ¼ 2
ffiffiffiffi
11

p
15 ðs�444 � s�544Þ

�9=2 m3, m4 G�NN
39 ¼ 1

90 ð35s�344 þ 33s�444 þ 22s�544Þ
G���

39 ¼ 1
900 ð385s�344 þ 3s�444 þ 512s�544Þ

G
���
39 ¼ s

�
4

G�N�
39 ¼ 1

90

ffiffiffiffi
11
10

q
ð35s�344 � 3s�444 � 32s�544Þ

�11=2 m4 G���
3;11 ¼ 1

25 ð12s�444 þ 13s�544Þ
G���

3;11 ¼ s�4
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m4 ¼ mð3Þ
�5=2

¼ mð2Þ
N7=2

¼ mð3Þ
�7=2

¼ mð1Þ
N9=2

¼ mð2Þ
�9=2

¼ mð1Þ
�11=2

:

(29)

The masses (27)–(29) are indicated in Column 2 of
Tables I, II, and III for comparison with results obtained
below from the resonance picture amplitudes. Here, the
notation mK (or m0

K) is used for the calculated masses
while in Ref. [10] themK associated with ‘ ¼ 3 are generic
names related to poles in the reduced amplitudes. One can
notice thatm2 found in Ref. [8] for ‘ ¼ 1, as reproduced in
Eq. (2), is different from m0

2 obtained here for ‘ ¼ 3. In
addition to distinct analytical forms for m2 and m0

2 the
coefficients ci entering these expressions are expected to
depend on the band [11]. A more extensive discussion is
given at the end of the next section.

III. THE MESON-NUCLEON
SCATTERING PICTURE

Here we are concerned with the SU(4) case, as above,
and we look for the degeneracy pattern in the resonance
picture. Following Refs. [8,10] the starting point in this
analysis are the linear relations of the S matrices S�LL0RR0IJ
and S�LRJ of � and � scattering off a ground-state baryon in
terms of K amplitudes. They are given by the following
equations

S�LL0RR0IJ ¼
X
K

ð�1ÞR0�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Rþ 1Þð2R0 þ 1Þ

p
ð2K þ 1Þ

�
�
K I J

R0 L0 1

��
K I J

R L 1

�
s�KLL0 (30)

and

S�LRJ ¼
X
K

�KL�ðLRJÞs�K (31)

in terms of the reduced amplitudes s�KL0L and s
�
K,

respectively.
The notation is as follows. For � scattering R and R0

are the spin of the incoming and outgoing baryons,

respectively (R ¼ 1=2 for N and R ¼ 3=2 for �), L and
L0 are the partial wave angular momentum of the incident
and final �, respectively (the orbital angular momentum L
of � remains unchanged), I and J represent the total
isospin and total angular momentum associated with a
given resonance (see column 1 of Tables I, II, and III)

and K is the magnitude of grand spin ~K ¼ ~Iþ ~J. The 6j
coefficients imply four triangle rules �ðLRJÞ, �ðR1IÞ,
�ðL1KÞ and �ðIJKÞ.
These equations were first derived in the context of the

chiral soliton model [19–22] where the mean field breaks
the rotational and isospin symmetries, so that J and I are
not conserved but the grand spin K is conserved and
excitations can be labeled by K. These relations are exact
in large Nc QCD and are independent of any model
assumption.
The meaning of Eq. (30) is that there are more ampli-

tudes S�LL0RR0IJ than there are s
�
KLL0 amplitudes. The reason

is that the IJ as well as the RR0 dependence is contained
only in the geometrical factor containing the two 6j co-
efficients. Then, for example, in the�N scattering, in order
for a resonance to occur in one channel there must be a
resonance in at least one of the contributing amplitudes
s�KLL0 . But as s�KLL0 contributes in more than one channel,

all these channels resonate at the same energy and this
implies degeneracy in the excited spectrum. From the
chiral soliton model there is no reason to suspect degener-
acy between different K sectors.
From the meson-baryon scattering relations (30) and

(31) the following degenerate negative parity multiplets
have been found for ‘ = 1 orbital excitations [8]

N1=2;�1=2; ðs�0 Þ (32)

N1=2;�1=2; N3=2;�3=2;�5=2; ðs�100; s�122Þ (33)

�1=2; N3=2;�3=2; N5=2;�5=2;�7=2; ðs�222; s�2 Þ: (34)

One can see a clear correspondence between the first three
degenerate multiplets of Eqs. (32)–(34) and the three tow-
ers of states [8,9] of the excited quark picture provided by
the symmetric coreþ excited quark scheme [14]. They
correspond to K ¼ 0, 1 and 2 in the resonance picture.
But the resonance picture also provides a K ¼ 3 due to the
amplitude s�322. As this is different from the other s�KL0L, in

Ref. [8] it was interpreted as belonging to the N ¼ 3 band.
Here we extend the work of Ref. [8,9] to ‘ ¼ 3 excited

states which belong to the N ¼ 3 band. In Tables I, II, and
III we list the partial wave amplitudes of interest and their
expansion in terms of K amplitudes from Eqs. (30) and
(31). They correspond to L ¼ L0 ¼ 2, L ¼ L0 ¼ 4 and
L ¼ L0 ¼ 6, respectively. Note that the squared sum of
the coefficients of every elastic amplitudes �NN or ���
is equal to one. This is due to the sum rule of 6j coefficients

TABLE III. Same as Table I but for partial waves L ¼ L0 ¼ 6.

State

Quark-shell

mass Partial wave and K amplitudes

N9=2 m4 I���19 ¼ s�566

�9=2 m3, m4 I���39 ¼ 1
10 ð3s�566 þ 7s�666Þ
I���39 ¼ s�6

�11=2 m4 I�NN
1;11 ¼ 1

468 ð55s�566 þ 143s�666 þ 270s�766Þ
I���1;11 ¼ 1

819 ð392s�566 þ 130s�666 þ 297s�766Þ
I���1;11 ¼ s�6

I�N�
1;11 ¼

ffiffiffiffi
55

p
117

ffiffiffiffi
14

p ð14s�566 þ 13s�666 � 27s�766Þ
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X
K

ð2Rþ 1Þð2K þ 1Þ
�
K I J

R0 L 1

��
K I J

R L 1

�
¼ �ðR0RÞ;

(35)

which can be used for a check. The same relation can be
used to check that the coefficients of the �N� amplitudes
sum up to zero.

From the last column of Tables I, II, and III one can
infer the following degenerate towers of states with their
contributing amplitudes

�1=2; N3=2;�3=2; N5=2;�5=2;�7=2; ðs�222; s�2 Þ; (36)

�3=2; N5=2;�5=2; N7=2;�7=2;�9=2; ðs�322; s�344Þ; (37)

�5=2; N7=2;�7=2; N9=2;�9=2;�11=2; ðs�444; s�4 Þ; (38)

�7=2; N9=2;�9=2;�11=2; ðs�544; s�566Þ; (39)

�9=2;�11=2; ðs�666; s�6 Þ (40)

associated with K ¼ 2, 3, 4, 5 and 6, respectively. Here
one can recognize patterns of degeneracy similar to those
observed in Table II of Ref. [10]. Note that mK of column
2 of that table represents the name associated with the
position of a possible pole in an amplitude with K-spin.

We can now compare the towers (36)–(40) with the
quark-shell model results of (27)-(29). The first observa-
tion is that the agreement of (36) (K ¼ 2) with (27), of (37)
(K ¼ 3) with (28) and of (38) (K ¼ 4) with (29) is perfect
regarding the quantum numbers. Second, we note that the
resonance picture can have poles with K ¼ 5; 6, which
imply the towers (39) and (40). They have no counterpart
in the quark-shell picture for ‘ ¼ 3. But there is no prob-
lem because the poles withK ¼ 5; 6 can belong to a higher
band, namely N ¼ 5 (‘ ¼ 5) without spoiling the
compatibility.

A discussion is necessary for the tower (27) of the quark-
shell picture associated with the degenerate mass m0

2. The
expression of m0

2 is entirely different from that of m2

obtained for ‘ ¼ 1. This is quite natural from the algebra
described in the Appendix. Moreover, in practice, the
‘ ¼ 3 states should lie higher than the ‘ ¼ 1 states (as
they include more orbital excitation). In fact the analysis of
Ref. [11] suggests that the coefficients ci are expected to
depend on the band. If so, some constraints could be
imposed on the values of these coefficients to be found
phenomenologically, after including 1=Nc corrections. For
example, the first panel in Fig. 1 of Ref. [11] indicates a
linear behavior of the coefficient c1 as a function of the
band N. From that figure one can extract the value of c1
associated with the band N ¼ 3. This gives

c1 � 640 MeV (41)

Such a value can safely be used in a first step analysis of the
N ¼ 3 band, which would mean that there is one less
parameter to fit.
Thus one can associate a common K ¼ 2 to ‘ ¼ 1 and

‘ ¼ 3. For this value of K the triangular rule �ðK‘1Þ
proposed in Ref. [10] is satisfied. The quark-shell picture
brings however more information than the resonance pic-
ture because it implies an energy dependence via the ‘
dependence which measures the orbital excitation. As m0

2

is different from m2 and in the resonance picture they stem
from the same amplitude s�222 one should expect that this

amplitude possesses two poles at two distinct energies, in
order to have compatibility. Thus the number of poles of
the reduced amplitudes s�KLL remains an open question.
We anticipate that a similar situation will appear for

every value of K associated with two distinct values of ‘,
satisfying the �ðK‘1Þ rule, for example, forK ¼ 4which is
common to ‘ ¼ 3 and ‘ ¼ 5.

IV. THE EXPERIMENTAL SITUATION FOR
RESONANCES WITH ‘ � 3

Here we are essentially concerned with resonances
which can be explained as orbital excitations with ‘ ¼ 3.
Examples of experimentally known negative parity reso-
nances of this category [23] are indicated in Table IV. They
are located at about 2.2 GeV and in quark model terms
they belong to the N ¼ 3 band. For completeness we
have also indicated two resonances Nð2600ÞI1;11 and

�ð2750ÞI3;13 which should belong to the N ¼ 5 band, as

their total angular momentum require an orbital excitation
with ‘ ¼ 5.
The SUð6Þ � Oð3Þ multiplet content of the N ¼ 3 band

is [24,25]: ½700; 1��, ½7000; 1��, ½56; 3��, ½20; 3��, ½70; 3��,
½70; 2��, ½56; 1�� and ½20; 1�� where 700 and 7000 represent
radial excitations. In column 2 we have indicated the
multiplet to which the listed resonances can belong, using
the notations of Ref. [25]. Both references [24,25] were
independently concerned with the resonance D35 observed
by Cutkosky et al. [26]. In Ref. [24] a sum rule was derived
in a harmonic oscillator basis to calculate the mass of
D35 as a pure ½56; 1�� state by neglecting the tensor force.

TABLE IV. Examples of nonstrange negative parity reso-
nances from Particle Data Group [23] and their possible main
component expressed in terms of SU(6) multiplets.

Resonance Multiplet Status

Nð2190ÞG17
2N½70; 3�� ****

Nð2250ÞG19
4N½70; 3�� ****

Nð2600ÞI1;11 2N½70; 5�� ***

�ð2220ÞG37
2N½70; 3�� *

�ð2400ÞG39
4�½56; 3�� **

�ð2750ÞI3;13 4�½56; 5�� **
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In Ref. [25] the masses of negative parity nonstrange
resonances were obtained in a quark model with a linear
confinement and a chromomagnetic interaction (spin-spin
and tensor forces) including interband mixing. The D35

resonance was found to be mainly a ½56; 1�� state.
For the resonances expected to belong to theN ¼ 5 band

the multiplet is only suggested. To our knowledge, the
SUð6Þ � Oð3Þ multiplet decomposition of this band is not
known.

V. CONCLUSIONS

The compatibility between the quark-excitation and the
meson-nucleon resonance pictures of negative parity
baryons with ‘ ¼ 3 has been analyzed in the spirit of
Refs. [8–10]. We have found patterns of degeneracy with
a common resonance content in both pictures. This sup-
ports the idea of full compatibility of Ref. [10] in the sense
that any complete spin-flavor multiplet within one picture
fills the quantum numbers of the other picture. However
the quark-shell picture is richer in information, by making
a clear distinction between degenerate sets of states of
different values of the angular momentum but associated
with the same grand spin K.

The low-energy baryons of the ½70; 1�� multiplet have
been very extensively studied in large Nc QCD but the
highly excited ‘ ¼ 3 baryons have been nearly entirely
neglected so far. To our knowledge, there is only one
general work including ‘ ¼ 3 baryons [27]. The experi-
mental situation described in Sec. 4 encourages such
analysis. The 1=Nc expansion method could, in principle,
predict many more resonances to guide the experimen-
talists. This work supplies an incentive for the study of
highly excited negative parity baryons in the 1=Nc expan-
sion method. Including 1=Nc corrections in the mass
formula means that, besides c1, c2 and c3, more parame-
ters are involved in the fit. As the data is presently scarce,
in a first attempt, the number of parameters must remain
small. A strategy would be to fix the value of c1 in
agreement with Eq. (41) and restrict the number of op-
erators in the mass formula to the most dominant ones,
as,, for example, the spin and isospin operators described
in Ref. [28] for ‘ ¼ 1. This would involve at most four
parameters to fit.
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APPENDIX A

In our notation [28] the total wave function of the
symmetric coreþ excited quark procedure [14] takes the
following form

j‘SJJ3; II3ip¼2 ¼
X
m‘;S3

‘ S J

m‘ S3 J3

 !

j‘mij½Nc � 1; 1�p ¼ 2;SS3; II3i:
(A1)

It contains an orbital part j‘mi and a spin-flavor part
j½Nc � 1; 1�p ¼ 2; SS3; II3i depending on an index p
which takes the value 2, which signifies that the excited
quark is in the second row of the Young diagram of
partition ½Nc � 1; 1� in the flavor-spin space. The expres-
sion of the spin-flavor part is

j½Nc � 1; 1�p ¼ 2; SS3; II3i
¼ X

p1p2

Kð½f1�p1½f2�p2j½Nc � 1; 1�p ¼ 2Þ

� jSS3;p1ijII3;p2i; (A2)

in terms of the spin part

jSS3;p1i ¼
X

m1;m2

Sc
1
2 S

m1 m2 S3

 !
jScm1ij1=2m2i; (A3)

with Sc ¼ S� 1=2 if p1 ¼ 1 and Sc ¼ Sþ 1=2 if p1 ¼ 2
and the isospin part

jII3;p2i ¼
X
i1;i2

Ic
1
2 I

i1 i2 I3

 !
jIci1ij1=2i2i; (A4)

with Ic ¼ I � 1=2 if p2 ¼ 1 and Ic ¼ Iþ 1=2 if p2 ¼ 2.
Here Sc and Ic are the spin and isospin of the core and p1

and p2 represent the position of the Nc-th quark in the spin
and isospin parts of the wave function, respectively, both
consistent with p ¼ 2 and the inner product rules generat-
ing the wave function in the flavor-spin space. The coef-
ficients Kð½f1�p1½f2�p2j½Nc � 1; 1�p ¼ 2Þ are isoscalar
factors of the permutation group SNc

. At p fixed, one can

use an alternative notation

Kð½f1�p1½f2�p2j½Nc � 1; 1�p ¼ 2Þ ¼ c½Nc�1;1�
p1p2

ðSÞ: (A5)

For the representation ½Nc � 1; 1� the only non vanish-
ing expressions are

c½Nc�1;1�
11 ðSÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþ 1ÞðNc � 2SÞ

Ncð2Sþ 1Þ

s
; (A6)

c½Nc�1;1�
22 ðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S½ðNc þ 2ðSþ 1Þ�

Ncð2Sþ 1Þ

s
; (A7)
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c½Nc�1;1�
12 ðSÞ ¼ c½Nc�1;1�

21 ðSÞ ¼ 1: (A8)

Actually we need the above coefficients in the limit
Nc ! 1. Therefore for N resonances where S ¼ 1=2 we
have to take

c½Nc�1;1�
11 ð1=2Þ ! �

ffiffiffi
3

4

s
; c½Nc�1;1�

22 ð1=2Þ !
ffiffiffi
1

4

s
; (A9)

and for � resonances

c½Nc�1;1�
11 ð3=2Þ ! �

ffiffiffi
5

8

s
; c½Nc�1;1�

22 ð3=2Þ !
ffiffiffi
3

8

s
: (A10)

With the above notations, the matrix elements with a
given J, between states with S0 and S take the following
form

h‘0S0J0J03; I0I03j‘ � sj‘SJJ3; II3ip¼2

¼ ð�1ÞJþ‘þ1=2�J0J�J0
3
J3�‘0‘�I0I�I0

3
I3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð2Sþ 1Þð2S0 þ 1Þ‘ð‘þ 1Þð2‘þ 1Þ

s �
‘ ‘ 1

S S0 J

�

� X
p1;p2

ð�1Þ�Scc½Nc�1;1�
p1p2

ðS0Þc½Nc�1;1�
p1p2

ðSÞ
�
1 1

2
1
2

Sc S S0

�
:

(A11)

This expression is equivalent to Eq. (A7) of Ref. [14]. The
correspondence in the isoscalar factors denoted there by
c�� is

c½Nc�1;1�
11 ðSÞ ! c0�; c½Nc�1;1�

22 ðSÞ ! c0þ;

c½Nc�1;1�
12 ðSÞ ! cþþ; c½Nc�1;1�

21 ðSÞ ! c��:
(A12)

The expectation value of the operator containing the tensor
term is

h‘0S0J0J03; I0I03j‘ð2Þ � g � Gcj‘SJJ3; II3ip¼2

¼ ð�ÞJþIþ‘þSþ1=2�J0J�J0
3
J3�‘0‘�I0I�I0

3
I3

1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

2
‘ð‘þ 1Þð2‘� 1Þð2‘þ 1Þð2‘þ 3Þð2S0 þ 1Þð2Sþ 1Þ

s �
2 ‘ ‘

J S S0

�

� X
p0
1
;p0

2
;p1;p2

ð�1ÞS0cc½Nc�1;1�
p0
1
p0
2

ðS0Þc½Nc�1;1�
p1p2

ðSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2I0c þ 1Þð2Ic þ 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ 1Þ2 � ðS0c � ScÞ2ð2Iþ 1Þ2

q

�
8<
:

1
2 1 1

2

I0c I Ic

9=
;
8>>><
>>>:
I0c Ic 1

S0 S 2
1
2

1
2 1

9>>>=
>>>;: (A13)

One can recover Eq. (A9) of Ref. [14] using the correspondence (A12). In the large Nc limit considered here the term
ðS0c � ScÞ2ð2I þ 1Þ2 under the squared root should be ignored.
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