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Proof of the Froissart theorem is reconsidered in a different way to extract its necessary conditions. Two

physical inputs, unitarity and absence of massless intermediate hadrons, are indisputable. Also important

are mathematical properties of the Legendre functions. Assumptions on dispersion relations, single or

double, appear to be excessive. Instead, one should make assumptions on possible high-energy asymp-

totics of the amplitude in nonphysical configurations, which have today no firm basis. Asymptotics for the

physical amplitude always appear essentially softer than for the nonphysical one. Froissart’s paper

explicitly assumed the hypothesis of power behavior and obtained asymptotic bound for total cross

sections�log2ðs=s0Þ with some constant s0. Our bounds are slightly stronger than original Froissart ones.

They show that the scale s0 should itself slowly grow with s. Under different assumptions about

asymptotic behavior of nonphysical amplitudes, the total cross section could grow even faster than

log2s. The problem of correct asymptotics might be clarified by precise measurements at the LHC and

higher energies.
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I. INTRODUCTION

One of the cornerstones for the present strong interaction
physics is the Froissart theorem [1]. It declares that the
total cross sections of any two-hadron scattering cannot
grow with energy faster than ðlogsÞ2. The expectation
agrees with current experimental data [2]. However, the
same data can also be fitted so to have an asymptotical
increase as s� with �� 0:08 [3]. Of course, some authors
suggest that the power behavior is only temporal and will
change at some very high energies. If, however, such a
fit continued infinitely, it would violate the canonical
Froissart bound. Thus, experimental validity of this bound
stays an open question. Measurements at LHC may help to
clarify it.

Theoretically, the Froissart theorem was initially proved
for 2 ! 2 amplitudes [1] in the framework of the double-
dispersion representation (the Mandelstam representation)
[4] with a finite number of subtractions. Such representa-
tion is true in the nonrelativistic quantum mechanics with
Yukawa-type potentials [5]. However, it has never been
proven mathematically for any relativistic amplitude.

Froissart’s bound for total cross sections was reproduced
by Martin [6] without any dispersion representations, and
even without considering amplitudes. In his proof, the
unitarity condition and absence of angular singularities in
the physical region were applied only to the absorptive part
of an elastic amplitude. He explicitly assumed also that
the absorptive part in the physical region may grow with
energy not faster than some power of s.

Later, however, Martin returned to the investigation of
the amplitude as a whole [7] (sure, the amplitude contains
more information than its absorptive part). Using the basic
principles of axiomatic local field theory, he extended the
analyticity domain of the scattering amplitude so that it

reveals at least part of the Mandelstam cuts. This has
appeared to be sufficient for confirming Froissart’s results
for the amplitude. Moreover, such an approach has allowed
many new results to be obtained (e.g., Ref. [8]; see also
the recent paper [9] and references therein). It was further
suggested that a more accurate account for unitarity could
even improve existing bounds [10].
There is, however, an interesting problem in the Martin

approach. Axiomatics of the quantum field theory suggest,
in particular, that the theory is constructed from local
quantized fields, which are related with isolated (quasifree)
asymptotic in and out states.
Meanwhile, Froissart-Martin boundaries are usually ap-

plied to hadron processes. It is common belief now that the
hadron interactions are underlaid by the quantum chromo-
dynamics (QCD). However, QCD is hard to consider an
axiomatic theory. Indeed, it deals with quark and gluon
fields, which are local, but (because of confinement) cannot
have isolated one-quark and/or one-gluon states.
On the other hand, hadrons, consisting of quarks and

gluons, cannot be pointlike. Therefore, ‘‘effective QCD’’,
dealing directly with hadrons, should contain some non-
locality (imagine description of atoms without explicit use
of charged nuclei and electrons).
Thus, application of the ideas and methods of axiomatic

local field theory to hadron properties might look dubious,
as well as application of dispersion relations. That is why
we reconsider here the derivation of Froissart’s results,
without any hypotheses on double-dispersion, or even
single-dispersion, representations, or axioms of quantum
field theory. In this way we clarify the origin and necessary
inputs for the Froissart bound and can discuss their relia-
bility. The present approach allows us also to use stricter
inequalities for the Legendre functions and, thus, slightly
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improve the original Froissart bound for total cross
sections or other observables.

The presentation here goes as follows. In Sec. II we
demonstrate that only a finite number of partial-wave
amplitudes are essential at each particular energy.
Section III shows construction of bounds for amplitudes
in different configurations, either studied before or not, in
terms of the number of essential partial waves.

II. MODIFIED FROISSART DERIVATION

To begin with, we go along Froissart’s lines as close
as possible. Just as in Ref. [1], we consider a reaction
of the type

aþ b ! cþ d (1)

among scalar particles. We shall assume that all masses are
equal to m as we deal only with asymptotic properties,
where the difference between the masses is expected to be
negligible. We introduce the familiar Mandelstam varia-
bles s ¼ ðpa þ pbÞ2, t ¼ ðpc � paÞ2 and u ¼ ðpd � paÞ2.
Then sþ tþ u ¼ 4m2. Evidently, s is the c.m. energy
squared for the reaction (1), which is called the s-channel
reaction. A similar role is played by t and u for two cross-
channel reactions

aþ �c ! �bþ d; �cþ b ! �aþ d; (2)

respectively the t-channel and u-channel ones. For the
s-channel reaction, t and u are momentum transfers
squared, related to the reaction angle �s as

cos�s ¼ 1þ ðt=2q2sÞ ¼ �1� ðu=2q2sÞ; (3)

where q2s ¼ ðs� 4m2Þ=4, qs being the s-channel c.m.
momentum. The s-channel physical region is given by

q2s > 0; jcos�sj � 1; or s> 4m2; t� 0; u� 0:

Let us relate the reaction amplitude with the partial-wave
amplitudes (we use the same normalization and relations
for the amplitudes as Froissart [1]):

Aðs; cos�sÞ ¼
ffiffiffi
s

p
�qs

X1
l¼0

alðsÞð2lþ 1ÞPlðcos�sÞ; (4)

alðsÞ ¼ �qs
2

ffiffiffi
s

p
Z þ1

�1
Aðs; cos�0sÞPlðcos�0sÞdðcos�0sÞ: (5)

For any physical (integer) l, jalj is bounded by one, al
being an element of the unitary S-matrix.

At the next step, Froissart [1] uses the momentum trans-
fer dispersion relation for the amplitude at fixed s to show
that al exponentially decreases at large l. We go another
way, without any dispersion relations. Note, first of all, that
PlðzÞ are analytical functions of z in the whole z-plane and

jPlðzÞj< jPlð�1Þj ¼ 1 at � 1< z < 1:

If the series (4) for the amplitude and for its angular
derivative are convergent in the end points cos�s ¼ �1,
then they are convergent also for any physical cos�s, and
the amplitude Aðs; cos�sÞ is an analytical function of cos�s
inside the whole physical region (and nearby).
As is well known, in addition to PlðzÞ, the Legendre

functions of the 1st kind, there exist also the Legendre
functions of the 2nd kind, QlðzÞ. They are also analytical
functions of z, but have branch points. At integer values
of l, the 1st Riemann sheet contains only one cut, between
�1 and þ1. The jump over this cut is

1

2i
½Qlðxþ i�Þ�Qlðx� i�Þ� ¼��

2
PlðxÞ; �1<x<þ1:

(6)

Therefore, expression (5) may be rewritten as

alðsÞ ¼ qs
2i

ffiffiffi
s

p
I

Aðs; z0ÞQlðz0Þdz0; (7)

where integration runs along the closed contour going
counterclockwise around the cut of QlðzÞ between �1
and þ1. Such a contour crosses the real z-axis both at
z >þ1, and at z <�1. Let us define

z0 ¼ coshð�þ i’0Þ
with real � and ’0. We can choose � � 0 and construct the
contour in Eq. (7) so as to have a constant value of � on
the whole contour, integration running over ’0, say, from
�� to þ�. In the z-plane, such a contour is an ellipse�

Rez

cosh�

�
2 þ

�
Imz

sinh�

�
2 ¼ 1; (8)

having semiaxes cosh�, sinh� and foci at z ¼ �1,
z ¼ þ1; at the contour

dz0 ¼ i sinhð�þ i’0Þ � d’0:

Now we can use integral (7) to investigate behavior of al
at large values of l. The Legendre function Ql may be
written in the form [11]

Qlðcosh�Þ ¼
ffiffiffiffi
�

p � �ðlþ 1Þ
�ðlþ 3

2Þ
� e��ðlþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2�
p

� 2F1

�
1

2
;
1

2
; lþ 3

2
;

1

1� e2�

�
; Re�> 0;

(9)

which provides the asymptotic expression

sinhð�þ i’0Þ �Qlðz0Þjl!þ1

¼ e�ð�þi’0Þðlþ1=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2l
sinhð�þ i’0Þ

r
� ½1þOðl�1Þ�:

(10)
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Since sinh�< j sinhð�þ i’0Þj< cosh�, for large real l
there is the upper boundary

jsinhð�þ i’0ÞQlðz0Þjl!þ1<e��ðlþ1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2l
cosh�

r
; (11)

independent of ’0. Therefore,

jalj< qsffiffiffi
s

p � B�ðsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�� cosh�

p � e
��lffiffi
l

p ; (12)

where

B�ðsÞ ¼
ffiffiffiffi
�

8

r Z þ�

��
jAðs; z0Þjd’0; z0 ¼ coshð�þ i’0Þ:

(13)

Evidently, the upper boundary (12) decreases with increas-
ing l. The larger � is, the faster is the decrease of the
boundary, which means the stricter limitation for jalj at
large l. If the amplitude Aðs; zÞ has a singularity nearest to
the physical region at

z ¼ z0 	 coshð�0 þ i’0Þ;
then the contour in Eq. (7) may be blown up until it touches
this nearest singularity. If the singularity is integrable and
B� stays finite in this limit, we can drag � to �0 (the value
of ’0 may influence only the limiting value of B�). For
the amplitude Aðs; zÞ, the ellipse with � ¼ �0 is just the
Lehmann ellipse of analyticity in z [12].

Let us consider, in more detail, possible singularities in
the z-plane. Unitarity predicts that an amplitude has singu-
larities in both s-, and t- or u-channels. Those may be poles,
corresponding to one-particle states, or branch points, cor-
responding to two-particle or multiparticle thresholds. Any
of such singularities has a position described by a definite
value of the corresponding Mandelstam invariant, say, t0,
independent of other Mandelstam invariants. In addition,
there can be anomalous singularities (Landau singularities)
[13], whose positions, say, in the t-plane, depend on the
s-value. However, each leading anomalous singularity in
reaction (1) is related to some threshold, and at s ! þ1 it
tends toward the corresponding threshold point. Since we
are interested here just in large positive s, we will neglect
possibility of s-dependence for all t- or u-singularities
meaningful in our present problem.

According to Eq. (3), all t- and/or u-channel singularities
reveal themselves in the s-channel as singularities in the
z-plane. One-particle and threshold singularities, related to
stable particles, have real non-negative values of t or u.
This means that the t-channel (u-channel) generates real
z-singularities at z >þ1 (z <�1). Unstable particles gen-
erate complex singularities, but they are not leading (near-
est) ones, being positioned at secondary Riemann sheets
(we assume initial and final particles in reaction (1) to be
stable). Anomalous singularities also can be complex, but
the nearest ones are real. Thus, in conventional opinion, the
nearest z-singularity has either ’0 ¼ 0, for t-channel, or

’0 ¼ ��, for u-channel. As was explained, the ’0-value
may influence the boundary (12) only through the coeffi-
cient B. In what follows, we assume, for simplicity, that the
nearest singularity is related to the t-channel; it has ’0 ¼ 0
and is positioned at fixed point t ¼ t0 � 0.
If there exist massless particles, as in QED, then some

amplitudes may have a pole at t0 ¼ 0, i.e., at the edge of
the physical region, at z ¼ þ1. Then both the correspond-
ing forward amplitude and the total cross section are
infinite at any value of the s-channel energy, their bounda-
ries being meaningless. Multiphoton exchanges are related
to thresholds, also at t0 ¼ 0. Such singularities are also at
the edge of the physical region, but they are integrable and
do not provide infinities of the forward amplitudes and/or
total cross sections. Applicability of high-energy bounda-
ries for QED amplitudes without one-photon exchanges
needs special investigation.
If there are no massless particles, then t0 > 0, and

z0 ¼ cosh�0 ¼ 1þ ðt0=2q2sÞ> 1. There is a finite interval
of �, from 0 to

�0 ¼ ln

�
z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 � 1

q �
;

where Eq. (7) is applicable and the boundary (12) is
operative. The limit � ! �0 may be reached if the effec-
tive value of B� stays finite. Let us consider this problem in
some more detail. If t0 corresponds to a pole, one can
separate the pole contribution and continue to blow up
the remaining contour (7) further, till the next singularity.
The pole term provides then the inequality (12) with
� ¼ �0 and the coefficient B expressed through the pole
residue (below we will explicitly consider this case). Of
course, contribution of the continued contour decreases
with l faster than the pole one. For the nonpole-leading
singularity, both threshold- and anomalous-leading singu-
larities are integrable, and the corresponding expression
(13) is finite even at � ¼ �0, when the singularity lies
just at the integration contour. Therefore, in all practical
cases, one can use the boundary (12) with � ¼ �0 and

some finite coefficient B0ðsÞ. At high energies �0 
ffiffiffiffi
t0

p
=qs 
 2

ffiffiffiffiffiffiffiffiffi
t0=s

p
. The factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e��0 cosh�0

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e��0 sinh�0

p
is always lower than unity, and tends toward unity at high
energies. Therefore, for our purpose here (for finding upper
boundaries at high energies), we can change this factor by
unity.
Thus, after all we have two upper boundaries for the

partial amplitudes:

jalj � 1 and jalj< qsffiffiffi
s

p B0ðsÞ e
��0lffiffi
l

p : (14)

The first inequality is true for any l, while the second one is
applicable only at sufficiently large values of l. It is inter-
esting to compare these inequalities for partial amplitudes
with those of Froissart [1].
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Of course, the first inequality is the same in both cases.
But the second one is slightly different. Froissart’s Eq. (4)
may be rewritten as

jalj< qsffiffiffi
s

p BFrðsÞ e
��0ðl�NÞffiffiffiffiffiffiffiffiffiffiffiffi
l� N

p ;

with integer positiveN equal to the number of subtractions.
(Of course, l > N; it seems, that N appeared here because
Froissart worked with the infinite integration intervals,
so his dispersion integrals were subtracted; our integrals
(7) and (13) run over the final ’0-interval and need no
subtractions.) Our parameter �0 is simply related with
Froissart’s parameter x0:

�0 ¼ log

�
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 � 1

q �
:

The quantity BFrðsÞ is constructed differently than our
B0ðsÞ, but it is also linearly related with the amplitude in
nonphysical configurations.

Note that Froissart’s factor exp½��0ðl� NÞ�= ffiffiffiffiffiffiffiffiffiffiffiffi
l� N

p
is

somewhat larger than our exp½��0l�=
ffiffi
l

p
. Therefore, his

Eq. (4) is somewhat weaker than our second boundary (14).
Moreover, to simplify further calculations, Froissart addi-

tionally changed the factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
l� N

p
< 1 by just unity (see

Ref. [1], lower left column on p. 1055). Thus, for the
l-dependence in the second inequality (14) he effectively
used the purely exponential factor expð��0lÞ, instead of

the smaller factor expð��0lÞ � l�1=2. Martin [6] also ap-
plied softened boundaries for the Legendre functions.

In difference, the present approach allows us to use
inequality (11) which is the strictest boundary for the
asymptotics (10). In what follows, we retain the resulting
boundaries (14) for the partial-wave amplitudes as they
are, without any further simplifications.

III. BOUNDARIES FOR AMPLITUDES
AND CROSS SECTIONS

Evidently, at very large l, the latter of boundaries (14) is
stricter than the former. Let us denote L to be the minimal
value of l, for which the former boundary is above the
latter (we assume L to be sufficiently large, so that both
inequalities (14) are applicable near L). Then

qsffiffiffi
s

p B0ðsÞ e
��0Lffiffiffiffi
L

p < 1<
qsffiffiffi
s

p B0ðsÞ e
��0ðL�1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 1

p ;

or

1<

ffiffiffi
s

p
qs

� e
�0L

ffiffiffiffi
L

p
B0ðsÞ < e�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L

L� 1

s
: (15)

We see that generally L depends on energy s. If B0ðsÞ
increases with energy, so does the corresponding value
of L. In such a case, the interval between the upper and
lower boundaries (15) shrinks. Then, at high energies we
can write

e�0L
ffiffiffiffi
L

p ¼ 1

2
B0ðsÞ; (16)

keeping in mind that the correct value of L is the nearest
integer number above the solution of equality (16).
Note that Froissart also introduced the interfacial

number L [1]. His value LFr also increases with s, but is
different from ours. Because of the stronger second bound-
ary (14), our inequalities (15) provide a lower value of L
than Froissart’s LFr. Martin’s value of L (denoted as �L) [6]
is also larger than ours.
Now, to construct various bounds for the scattering

amplitude (4), first of all we separate its series into two
parts, below and above L (again, similar to Froissart [1]),
and then estimate

jAðs; cos�sÞj �
ffiffiffi
s

p
�qs

�XL�1

l¼0

ð2lþ 1ÞjalðsÞj � jPlðcos�sÞj

þ X1
l¼L

ð2lþ 1ÞjalðsÞj � jPlðcos�sÞj
�
: (17)

To the partial amplitudes in each part, we apply the corre-
sponding boundary (14).

A. Forward (backward) amplitude

For the forward (or backward) amplitude, with
jPlð�1Þj ¼ 1, we obtain

jAðs;�1Þj<
ffiffiffi
s

p
�qs

� XL�1

l¼0

ð2lþ 1Þ

þ B0ðsÞ
�

� X1
l¼L

e��0lð2lþ 1Þl�ð1=2Þ: (18)

The first term sums to L2
ffiffiffi
s

p
=ð�qsÞ. The second term, with

l ¼ Lþ l0, can be rewritten as

1

�
B0ðsÞe

��0Lffiffiffiffi
L

p � X1
l0¼0

e��0l
0
�
2L

�
1þ l0

L

�
1=2 þ

�
1þ l0

L

��ð1=2Þ�
;

which is, due to the left inequality (15), smaller thanffiffiffi
s

p
�qs

� X1
l0¼0

e��0l
0
�
2L

�
1þ l0

L

�
1=2 þ

�
1þ l0

L

��ð1=2Þ�
:

This sum converges only due to the decreasing exponential
factor. If we define y ¼ �0l

0, Y ¼ �0L then at small �0

(i.e., at high energy) the sum tends toward the integral (see
Appendix)

IðsÞ ¼ 1

�0

Z 1

0
dye�y

�
2L

�
1þ y

Y

�
1=2 þ

�
1þ y

Y

��ð1=2Þ�
:

(19)

Thus, our boundary for the forward (backward) amplitude
takes the form
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jAðs;�1Þj<
ffiffiffi
s

p
�qs

½L2 þ IðsÞ�: (20)

Its high-energy behavior directly depends on properties of
L (and Y ¼ �0L).

Let us consider various possibilities. A finite limit of L at
s ! 1 would mean that B0ðsÞ has also a finite limiting
value. Such a case would lead to decreasing total cross
section and is not interesting here.

If L increases with s, but Y stays finite (or even de-
creases), then B0ðsÞ also grows, but not faster than

ð1=�0Þ1=2 � s1=4. The corresponding total cross section
cannot infinitely grow with energy. It tends to be constant
(or may even slowly decrease in asymptotics).

In connection with the Froissart theorem, the most in-
teresting is the case when the total cross section does
increase with energy, without any finite limit. Then both
L and Y should grow. Integral (19) can then be approxi-
mately calculated as

IðsÞ ¼ 1

�2
0

½2Y þ 1þOð1=YÞ�;

and boundary (20) at high energies takes the simple form

jAðs;�1Þj< 2

�

�
Y þ 1

�0

�
2 
 2q2s

�t0
ðY þ 1Þ2 
 s

2�t0
ðY þ 1Þ2:

(21)

Therefore, at forward or backward angles, the modulus of
the amplitude behaves the most like sY2, when s ! þ1.
If the considered amplitude corresponds to elastic scatter-
ing, then one can use the optical theorem to derive that
the total cross section behaves the most like Y2, as s goes
to infinity.

B. Fixed-angle amplitude

For the fixed-angle configuration we will consider only
the case of an infinitely increasing total cross section,
corresponding to growing values of L and Y. At nonfor-
ward (nonbackward) angles we also begin with the in-
equality (17). Since L is growing with s, we can fix some
finite number l0 and subdivide the first term, again into two
parts, with 0 � l < l0 and with l0 � l < L. We choose the
value l0 so that Plðcos�Þ for l � l0 can be, with good
accuracy, presented in its large-l asymptotic form [11].
This form corresponds to combining Eqs. (6) and (10);
for � < � < �� � it provides the estimate

jPlðcos�Þjl!þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�l sin�

s
�
��������
�
cos

��
lþ 1

2

�
�� �

4

�

þOðl�1Þ
���������<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�l sin�

s
: (22)

In Eq. (17), contributions with l < l0 do not grow at
s ! þ1. Thus, the amplitude increasing at high energy
should be related to (and bounded by) two sums:

jAðs;cos�sÞj<
ffiffiffi
s

p
�qs

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�sin�s

s XL�1

l¼l0

ð2l1=2þ l�ð1=2ÞÞ

þB0ðsÞ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�sin�s

s X1
l¼L

e��0lð2þ l�1Þ: (23)

Just as for the forward amplitude, one can use the left
inequality (15) to rewrite

jAðs; cos�sÞj<
ffiffiffi
s

p
�qs

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

� sin�s

s �XL�1

l¼l0

ð2l1=2 þ l�ð1=2ÞÞ

þ X1
l0¼0

e��0l
0
�
2L1=2 þ L�ð1=2Þ

1þ l0=L

��
:

The most singular high-energy behavior of these sums is
determined by their first terms. At s ! þ1 they can be
approximated as (again, see Appendix)

jAðs;cos�sÞj<
ffiffiffi
s

p
�qs

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�sin�s

s �XL�1

l¼l0

2l1=2þ2L1=2
X1
l0¼0

e��0l
0
�



ffiffiffi
s

p
�qs

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�sin�s

s �
2

�3=2
0

Z Y

0
dy

ffiffiffi
y

p þ 2
ffiffiffiffi
L

p
1�e��0

�
;

which takes the final form

jAðs; cos�sÞj< 2
ffiffiffi
s

p
�qs

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

� sin�s

s �
Y

�0

�
3=2

�
2

3
þ 1

Y

�
: (24)

Evidently, the main term in the fixed-angle bound comes
from the sum over l < L, just as for the forward (back-
ward) amplitude. Presence of cosine in the asymptotic
expression (22) gives evidence for possibility of oscillating
angular distributions in elastic scattering with increasing
total cross section. If so, boundary (24) limits the upper
edges of those oscillations.
Singularities of this boundary at the ends of the physical

angular interval, at � ¼ 0 or �, are related, of course, to

the change in the possible energy behavior: �ðqsYÞ3=2
(or �L3=2) inside the interval and �ðqsYÞ2 (or �L2) at
its ends.
To understand how this works, let us consider in more

detail our boundary at very small angles. Note that near
� ¼ 0 (i.e., cos� near unity) both all Plðcos�Þ and all their
derivatives are positive, and we may eliminate signs of
modulus for the Legendre polynomials in the right-hand
side of inequality (17). Moreover, one can differentiate
it over cos�s. The adequate expression for PlðzÞ near
z ¼ 1 is [11]

PlðzÞ ¼ 2F1

�
lþ 1;�l; 1;

1� z

2

�
:
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It shows that every additional differentiation of PlðzÞ over z
at z ¼ 1 provides an additional factor which is quadratic
in l.

Derivation of boundaries, considered above, shows that
most efficient in the case of the growing cross section are
values l� L. Therefore, the n-th derivative of the bound-
ary over cos�s at cos�s ¼ 1 grows with energy as ðL2Þnþ1.
This means that the angular dependence of the boundary
reveals a narrow forward peak which rapidly shrinks with
energy growing. Formally, the same is true for the back-
ward scattering. We will return to this situation when
considering the fixed-t configuration.

C. Fixed-t (or -u) amplitude

Up to now, following Froissart [1], we considered high-
energy boundaries for amplitudes in two regimes: either
forward (backward) amplitudes, related in elastic cases to
the total cross sections; or amplitudes of two-particle pro-
cesses at a fixed angle. Here we consider another interest-
ing regime, not discussed by Froissart or any other author.
It is the case of fixed-momentum transfer, t or u. We begin,
again, with two-term Eq. (17).

For definiteness, let us take at first a fixed value of t
and denote the corresponding amplitude as Aðs; tÞ. At
high energy, according to Eq. (3), the corresponding
cos�s ! 1, i.e., �s ! 0. Then, one can approximately
express the Legendre polynomials with sufficiently large
l � l0 through the Bessel functions [11]

Plðcos�sÞ ¼ J0ð�Þ þOð�2sÞ; (25)

with � ¼ ðlþ 1=2Þ�s. At high energy, � 
 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�tÞ=t0

p
,

where again y ¼ �0l.
Now, in analogy with previous subsections, we obtain

the estimate

jAðs; tÞj<
ffiffiffi
s

p
�qs

� XL�1

l¼l0

ð2lþ 1ÞjJ0ð�Þj

þ B0ðsÞ
�

� X1
l¼L

e��0lð2lþ 1Þl�ð1=2ÞjJ0ð�Þj;

which can, after using the left inequality (15) and the fact
that essential values of l� L at high energy are much less
than L, be rewritten as

jAðs; tÞj<
ffiffiffi
s

p
�qs

�XL�1

l¼l0

ð2lþ 1Þ � jJ0ðl�sÞj

þ X1
l0¼0

e��0l
0 ð2Lþ l0 þ 1Þ � jJ0ðL�s þ l0�sÞj

�

(compare to inequality (18) and its transforms). High-
energy asymptotics of the right-hand side can be, again,
expressed through integrals

jAðs; tÞj<
ffiffiffi
s

p
�qs

� 2

�2
0

�
�Z Y

0
dy � y

��������J0
�
y

ffiffiffiffiffiffi�t

t0

s ���������
þ

Z 1

0
dy0 � e�y0

�
Yþ y0

2Y

���������J0
�
Yþ y0ffiffiffiffi

t0
p ffiffiffiffiffiffi�t

p ���������
�
:

As in other cases considered until now, the second
integral here is less singular at high energies and can be
neglected. Then, our final high-energy estimate for the
fixed-t amplitude is

jAðs; tÞj< 2

�
� Y

2

�2
0

�
Z 1

0
dx

��������J0

�
Y

ffiffiffiffiffiffiffiffiffiffiffiffi
ð�tÞx
t0

s ���������; (26)

with x ¼ ðy=YÞ2 (the limit
ffiffiffi
s

p
=qs ! 2 at s ! 1 is also

used here). At t ¼ 0 this inequality coincides with the
estimate (21) for the forward amplitude. At nonzero finite
values of t the argument of the Bessel function infinitely
increases with energy, and we can use the asymptotic
expression [14]

jJ0ð�Þj�!þ1 ¼
ffiffiffiffiffiffiffi
2

��

s
�
��������
�
cos

�
���

4

�
þOð��1Þ

���������<

ffiffiffiffiffiffiffi
2

��

s

(27)

(compare to Eqs. (22) and (25)). Then, finally, we obtain

jAðs; tÞj< 4

3�2
0

�
2Y

�

�
3=2 �

�
t0
�t

�
1=4

: (28)

Energy behavior of this boundary (�Y3=2=�2
0) is inter-

mediate between the forward boundary (�Y2=�2
0) and

the fixed-angle one (� Y3=2=�3=2
0 ). It shows also a rather

slow decrease with increasing momentum transfer,

�ð�tÞ�1=4.
Again, similar to the fixed-angle case, presence of cosine

in Eq. (27) may provide evidence for a possible oscillating
t-distribution. Then the boundary (28) limits the upper
edges of those oscillations.
Similar to the fixed-angle case at �s ! 0, the fixed-t

bound is singular at ð�tÞ ! 0. This singularity, again, is
spurious, related to the change of the energy behavior.
The boundary (26) for the amplitude in the small
jtj-region increases with energy very differently at t ¼ 0

(�Y2=�2
0) and at small finite value of jtj (� Y3=2=�2

0). This

means that the amplitude boundary (26) at small jtj reveals
a narrow peak which shrinks when energy grows.
To understand the structure of this peak, let us consider

in more detail relation

jAðs:tÞj< AðmaxÞðs; tÞ:
Near t ¼ 0 the AðmaxÞðs; tÞ corresponds to the right-hand
side (26). At sufficiently small jtj and fixed s (and Y as
well) the Bessel function in Eq. (26) is positive, and the
signs of modulus may be omitted. For small arguments [14]
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J0ðzÞ 
 1� z2

4
;

and we obtain

d

dt
AðmaxÞðs; tÞjt¼0 ¼ 2

�
� Y

2

�2
0

� Y
2

8t0
¼ AðmaxÞðs; 0Þ � Y

2

8t0
:

(29)

When considering a differential cross section, it is fa-
miliar to parameterize its near-forward t-dependence as
expðbtÞ (recall that t < 0 in the physical region and that
we do not account for spins). Since d�ðs; tÞ=dt / jAðs; tÞj2,
we can express the slope of the forward peak as

b ¼ d

dt
log

�
d�ðs; tÞ

dt

�
t¼0

¼ 2
d

dt
logjAðs; tÞjt¼0: (30)

In analogy, we can define the slope related to the boundary

AðmaxÞðs; tÞ as

bðmaxÞ ¼ 2
d

dt
log½AðmaxÞðs; tÞ�t¼0: (31)

Of course, bðmaxÞ does not necessarily provide a bound for

b, though AðmaxÞ is the bound for jAj. The reason is evident:
differentiation may violate inequalities. Now, Eq. (29)

shows that at high energies bðmaxÞ ¼ Y2=ð4t0Þ. It is inter-
esting to note that the slope bðmaxÞ has the high-energy

behavior �Y2, exactly the same as �ðmaxÞ
tot , the boundary

for �tot. Therefore,�
bðmaxÞ

�ðmaxÞ
tot

�
s!þ1

¼ const:

There is, however, an essential difference between the two
quantities: the physical total cross section �tot is always

bounded by �ðmaxÞ
tot , while the physical slope bmay be either

larger or smaller than bðmaxÞ. But if �tot is saturated and
indeed increases �Y2, then the diffraction peak slope b
should be also saturated and increasewith energy not slower

than bðmaxÞ. Thus, in the saturated regime b � bðmaxÞ.
Otherwise, the amplitude boundary (26) at fixed t < 0might
become violated when energy grows.

The high-energy scattering at fixed t corresponds to
angles near #s ¼ 0, i.e., to forward scattering. The case
of backward scattering, for angles near #s ¼ �, may be
considered in a similar way, with change t ! u.

D. Amplitude inside the Lehmann ellipse

Our approach allows us to discuss one more case:
asymptotics of the amplitude outside the physical region,
but inside the Lehmann ellipse. Though this case is not of
direct physical interest, it may have theoretical interest.
Here we again apply Eq. (17), but instead of Plðcos#sÞ
we use PlðzÞ with z ¼ coshð�þ i’Þ; by our convention,
�> 0.

To find the large-l asymptotics ofPlðzÞwith z outside the
physical region, we can use the relation between Legendre
functions of the 1st and 2nd kinds [11]:

Qlðcosh�Þ �Q�l�1ðcosh�Þ ¼ �
cosð�lÞ
sinð�lÞ � Plðcosh�Þ:

(32)

Substituting the corresponding expressions (9) and tending
the value of l to a positive integer number, we obtain
relation

Plðcosh�Þ ¼
�ðlþ 1

2Þffiffiffiffi
�

p
�ðlþ 1Þ �

e�lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2�

p

� 2F1

�
1

2
;
1

2
;�lþ 1

2
;

1

1� e2�

�
; Re�> 0:

(33)

Of course, this relation is correct only at positive integer
values of l, but only such values appear in the sums (17).
For large l, it provides the asymptotic form

Plðcosh�Þjl!þ1 ¼ 1ffiffiffiffiffiffiffiffi
2�l

p � e�ðlþ1
2Þffiffiffiffiffiffiffiffiffiffiffiffi

sinh�
p � ½1þOðl�1Þ�;

Re�> 0;

which, for z ¼ coshð�þ i’Þ, gives

jPlðzÞjl!þ1 ¼ 1ffiffiffiffiffiffiffiffi
2�l

p � e�ðlþ1
2Þ

ðsinh2�þ sin2’Þ1=4 � ½1þOðl�1Þ�;

� > 0: (34)

If we use this expression in the sums

jAðs; zÞj �
ffiffiffi
s

p
�qs

�XL�1

l¼0

ð2lþ 1ÞjalðsÞj � jPlðzÞj

þ X1
l¼L

ð2lþ 1ÞjalðsÞj � jPlðzÞj
�

(35)

and apply, as earlier, bounds (14), we see that the second
sum converges only at �< �0 (recall that � ¼ �0 is the
singular point where the series should diverge). Since
�0 ! 0 at s ! þ1, our approach does not allow to inves-
tigate high-s behavior of Aðs; zÞ at any fixed z outside the
physical region. However, we are able to consider, e.g., the
case of a fixed nonphysical value for the momentum trans-
fer t (or u).
The nonphysical interior of the z-plane Lehmann ellipse

corresponds to 0 � � � �0 and is described by inequality�
Rez

cosh�0

�
2 þ

�
Imz

sinh�0

�
2 � 1 (36)

(compare to Eq. (8)). Since z ¼ 1þ t=ð2q2sÞ and �0 
ffiffiffiffi
t0

p
=qs at high energies, we can rewrite condition (36)

for s ! þ1 as

HOW ROBUST IS THE FROISSART BOUND? PHYSICAL REVIEW D 84, 056012 (2011)

056012-7



Ret

t0
þ

�
Imt

2t0

�
2 � 1: (37)

The case of equality here corresponds to the limiting form
of the Lehmann ellipse. In the complex t-plane, it is the
parabola, symmetrical with respect to the real t-axis and
directed to the left of t ¼ t0.

For any point t inside this parabola one can define

tr ¼ ðjtj þ RetÞ=2: (38)

Then,

Ret

tr
þ

�
Imt

2tr

�
2 ¼ 1

(compare to Eq. (37)). Inside the parabola, 0 � tr � t0.
Further, we can use the familiar relation z ¼ 1þ t=ð2q2sÞ.
At high (but not infinite) s-values and fixed t, the parame-

trization z ¼ coshð�þ i’Þ provides � 
 ffiffiffiffi
tr

p
=qs 


�0 �
ffiffiffiffiffiffiffiffiffiffi
tr=t0

p
, j’j 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtr � RetÞp

=qs 
 �0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtr � RetÞ=t0

p
,

and sinhð�þ i’Þ 
 ffiffi
t

p
=qs. Expression (34) takes the form

jPlðzÞjl;s!þ1 
 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�l�0

p � e�0l
ffiffiffiffiffiffiffi
tr=t0

p
�
�
t0
jtj
�
1=4

: (39)

Note that in the physical region, at real t � 0, � ¼ 0 and
j’j ¼ �s, as should be.

Now we can return to the inequality (35) and continue
construction of the boundary for the amplitude Aðs; tÞ. As
before, contributions of finite-l terms are inessential for the
case of increasing �tot (i.e., for increasing L), and we will
run the summation from some l ¼ l0, which is fixed, but
sufficiently large to admit application of the asymptotics
(34) and (39). Then

jAðs; tÞj � 2

�

�
t0
jtj
�
1=4

�XL�1

l¼l0

2lþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�l�0

p e�0l
ffiffiffiffiffiffiffi
tr=t0

p

þ X1
l¼L

2lþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�l�0

p B0ðsÞ e
��0l

2
ffiffi
l

p e�0l
ffiffiffiffiffiffiffi
tr=t0

p �
:

Using for B0ðsÞ the left inequality (15) (or, equivalently,
equality (16)), changing the sums by integrals (as de-
scribed in Appendix and used in the previous subsections),
and discarding inessential contributions, we obtain

jAðs; tÞj<
�
2

�

�
3=2

�
t0
jtj
�
1=4

�
1

�2
0

Z Y

0
dy

ffiffiffi
y

p
ey

ffiffiffiffiffiffiffi
tr=t0

p

þ
ffiffiffiffi
Y

p
eY

ffiffiffiffiffiffiffi
tr=t0

p

�2
0

Z 1

0
dye�yð1�

ffiffiffiffiffiffiffi
tr=t0

p
Þ
�
:

The second integral here diverges at tr ! t0 and, thus,
restricts the region of applicability for our bound as
tr < t0. Now, integration of the second term and transforma-
tion of the integral in the first term provides the boundary

jAðs; tÞj< 1

�2
0

�
2Y

�

�
3=2

�
t0
jtj
�
1=4

2
42

3

Z 1

0
dxex

2=3Y
ffiffiffiffiffiffiffi
tr=t0

p

þ eY
ffiffiffiffiffiffiffi
tr=t0

p

Yð1� ffiffiffiffiffiffiffiffiffiffi
tr=t0

p Þ

3
5; (40)

where x ¼ ðy=YÞ3=2.
It is interesting to compare this boundary with the simi-

lar fixed-t boundary (28) for real negative t-values of the
physical region. As was explained, the physical region may
be reached by the limit tr ! 0 at jtj � 0. When we for-
mally apply this limit to the boundary (40), the second term
becomes a parametrically small (� 1=Y) correction to the
first one, and we can neglect it. Then the boundary (40)
takes the same functional structure as the boundary (28),
but being twice as small. The difference can be traced
to the different large-l asymptotics of the Legendre poly-
nomials PlðzÞ inside the physical interval (z ¼ x, �1<
x<þ1) and outside it. The cosine, present in the asymp-
totic expression (22) (and in the related expression (27)), is
the combination of two exponentials, both of which should
be taken into account. Only one of those exponentials is
essential in the similar asymptotic expression (34), for z
outside the physical region. Therefore, transition between
asymptotics inside and outside the physical region may be
noncontinuous (the Stokes phenomenon). Note, however,
that the modulus of the cosine reveals oscillations, which
frequency increases with energy. Their averaging provides
the factor 1=2 and could make the asymptotics be continu-
ous between physical and nonphysical regions.
To find explicit high-energy behavior of the boundary

(40), we need to calculate its integral. Using decomposi-
tion for the exponential, we obtain [11]

Z 1

0
dxex

2=3Z ¼ X1
n¼0

Zn

n!
� 1
2
3nþ 1

¼ �

�
3

2
;
5

2
;Z

�
;

�

�
3

2
;
5

2
;Z

�
Z!þ1

¼ 3

2
� e

Z

Z
½1þOðZ�1Þ�;

where Z ¼ Y
ffiffiffiffiffiffiffiffiffiffi
tr=t0

p
. Finally, at fixed t with 0< tr < t0,

we obtain

jAðs; tÞjs!þ1 <

�
2

�

�
3=2

�
t0
jtj
�
1=4 �

ffiffiffiffi
Y

p
�2
0

� eY
ffiffiffiffiffiffiffi
tr=t0

p
�
�

1ffiffiffiffiffiffiffiffiffiffi
tr=t0

p þ 1

1� ffiffiffiffiffiffiffiffiffiffi
tr=t0

p
�
: (41)

Thus, after all, the high-energy asymptotics is not continu-
ous between physical and nonphysical regions. Presence of
singularities in the boundary (41) at tr ¼ 0 and tr ¼ t0,
similar to previous cases, is related to the change of the
asymptotic behavior.
It is interesting to note the difference between bounds

for the nonphysical interior of the Lehmann ellipse
and all the cases considered before. The second sum
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(contributions of partial waves with l � L; in the brackets
of Eq. (41) they provide the second term) has asymptoti-
cally the same functional behavior with respect to energy-
dependent parameters Y and �0, as the first sum (coming
from waves with l < L; in the brackets of Eq. (41), see the
first term). Numerically, the second term becomes even
larger than the first one, if tr is close to the singularity
point t0. In the physical region, contribution of waves with
l � L was parametrically smaller than contribution of
waves with l < L.

Evidently, the amplitude in the nonphysical region can
grow much faster than in the physical region, either inside
it or at the edge. This is directly related to difference in the
high-l asymptotics of the Legendre polynomials PlðzÞ. In
the whole physical region, they all do not exceed unity.
Moreover, as a function of l inside the physical region, they
oscillate at physical arguments and slowly decrease with
growing l. On the other hand, outside the physical region,
PlðzÞ exponentially increases with growing l. This is just
the origin of the exponential factor in the bound (41).

In this subsection, we have studied the case of fixed t
inside the Lehmann ellipse. In terms of the z-plane, this
corresponds to z ! þ1. The case of fixed u-value, which
corresponds to z ! �1, may be considered in a similar
way. However, we can discuss also other points inside the
Lehmann ellipse. They may be characterized by

t� u ¼ 4q2sz

(recall that tþ u ¼ �sþ 4m2). Then the condition (36)
for the ellipse interior takes the form

�
Reðt� uÞ
4q2s cosh�0

�
2 þ

�
Imðt� uÞ
4q2s sinh�0

�
2
< 1; (42)

which shows thatReðt� uÞ and Imðt� uÞ inside the ellipse
can grow with energy not faster than �q2s and �qs, corre-
spondingly. The fixed-t (or -u) case is just a particular case of
such extreme possibility. Now, if we parametrize, as before,
z ¼ coshð�þ i’Þ ¼ cosh� � cos’þ i sinh� � sin’, then

Reðt� uÞ ¼ 4q2s cosh� � cos’;
Imðt� uÞ ¼ 4q2s sinh� � sin’:

Since 0<�< �0 inside the Lehmann ellipse, � should
decrease at s ! þ1 as �q�1

s or faster, while ’ may stay
fixed. In this limit z ! cos’, and j’j may be confronted
with �s. If we construct a high-energy boundary for the
fixed-’ amplitude, starting from �> 0 and using the
asymptotic expression (34), the exponential factor will
contain the parameter �L ¼ ð�=�0ÞY. For the case of �
decreasing faster than q�1

s , the boundary appears to have
the same functional structure as the fixed-angle one (24),
but being twice as small (compare with the relation be-
tween the two fixed-t boundaries, physical boundary (28)
and nonphysical one (40) at tr ! 0).

For � decreasing as q�1
s , it is reasonable again to

define tr by the relation

1þ tr
2q2s

¼ cosh� ¼ 1

4q2s
ðjtj þ jujÞ: (43)

The latter equality results from Eq. (8) and relations be-
tween t, u, and z. The value tr defined in such a way is the
t-value corresponding to the real positive z-point being on
the same z-plane ellipse as the given point t (or u). The
earlier expression (38) for tr arises as the high-energy limit
of Eq. (43) at fixed t. As in the nonphysical fixed-t case, we
have 0< tr < t0 and, in the high-energy limit,

� 

ffiffiffiffi
tr

p
qs

;
�

�0



ffiffiffiffi
tr
t0

s
:

Now, to the case of fixed’ and tr, we can apply the same
procedure as described above for the fixed-t case, starting
from Eqs. (34) and (35) to construct the high-energy
boundary. In this manner we obtain

jAðs;zÞj<
�

2

��0

�
3=2

�
sin2’þ tr

t0
�2
0

��ð1=4Þ�Z Y

0
dy

ffiffiffi
y

p
ey

ffiffiffiffiffiffiffi
tr=t0

p

þ ffiffiffiffi
Y

p
eY

ffiffiffiffiffiffiffi
tr=t0

p Z 1

0
dye�yð1�

ffiffiffiffiffiffiffi
tr=t0

p
Þ
�
:

High-Y asymptotics at fixed values of tr and ’ gives the
final bound

jAðs; zÞjs!þ1 <

�
2

��0

�
3=2

�
sin2’þ tr

t0
�2
0

��ð1=4Þ

�
ffiffiffiffi
Y

p
eY

ffiffiffiffiffiffiffi
tr=t0

p
ffiffiffiffiffiffiffiffiffiffi
tr=t0

p ð1� ffiffiffiffiffiffiffiffiffiffi
tr=t0

p Þ : (44)

If sin’ � 0, the relation between the nonphysical bounda-
ries (41) and (44) for the fixed-t and fixed-ð’; trÞ cases is
essentially the same as between the physical boundaries
(28) and (24) for the fixed-t and fixed-�s cases (recall
that in the physical region tr equals zero and, thus, is
always fixed). If’ ! 0 faster than q�1

s , then t tends toward
tr; inequality (44) takes the same form as the previous
inequality (41) for nonphysical positive t-values. If
’ ! ��, also tending toward the limit faster than q�1

s ,
then u ! tr, and expression (44) comes to correspond with
the nonphysical fixed-u case, for real positive u-values.

IV. HIGH-ENERGY BEHAVIOR OF AMPLITUDES

In the previous section we constructed high-energy
upper boundaries for a 2 ! 2 amplitude in different physi-
cal or nonphysical configurations: forward or backward,
fixed-angle scattering, fixed momentum transfer, and the
nonphysical interior of the Lehmann ellipse. In all the
cases, the boundaries have been expressed through two
energy-dependent parameters, �0 and Y.
One of them, �0, has the clear and very simple energy

dependence. But it depends also on the parameter t0,
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related to the position of a crossed-channel singularity,
which we assume to be energy-independent. We have not
discussed, however, how the kind of the singularity could
influence the amplitude asymptotics.

The other parameter, Y ¼ �0L, depends on the number
L of the partial-wave amplitudes that could be essential.
Dependence of L (and Y) on energy is much less clear than
for �0. It is definitely not fixed by kinematics or any
physical principles.

Now we are going to discuss both problems in some
detail.

A. Role of different singularities

Up to now we have assumed t0 to be related with the
position of any z-singularity, nearest to the physical region.
At very high values of l, contribution of this singularity is
definitely the largest one. However, at l-values near L, it
may appear less essential than that of some more remote,
but more intensive singularity. Consider this point more
specifically.

Let the nearest singularity be a pole corresponding to a
one-particle exchange, say, in the t-channel. If so, we can
present the amplitude as

Aðs; tÞ ¼ rðsÞ
t� t0

þ ~Aðs; tÞ ¼ 1

2q2s
� rðsÞ
z� z0

þ ~Aðs; zÞ;

where ~Aðs; zÞ has no z-singularities inside the Lehmann
ellipse related to z0. Substituting this form into Eq. (7), we
separate the simple pole contribution

aðpoleÞl ¼ � �rðsÞ
2qs

ffiffiffi
s

p �Qlðz0Þ; (45)

while contribution of other singularities retains the form
similar to the contour integral (7), with � ¼ ~�> �0. The
value of ~�may be increased up to �1, corresponding to the
next nearest singularity. Now, applying again the asymp-
totic relation (10), we can rewrite boundary (12) as

jalj< qsffiffiffi
s

p � jrðsÞj
qs

ffiffiffi
s

p
�
�

2

�
3=2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�0 sinh�0

p � e
��0lffiffi
l

p

þ qsffiffiffi
s

p � ~B1ðsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e��1 cosh�1

p � e
��1lffiffi
l

p ; (46)

where ~B1ðsÞ is related with ~Aðs; zÞ. At very large l, the first
term in the right-hand side is always the leading one, since
�1 >�0. But this right-hand side itself is then small and
decreasing. The situation may be different, however,
at l 
 L, where the right-hand side is near unity.

Let us consider the high-energy behavior of the bound-
ary (46). The asymptotics of the t-channel pole residue rðsÞ
is �sJ being directly related to the spin J of the corre-
sponding hadron. There exist only two kinds of hadrons
which are stable under strong interactions and can, thus,
generate poles on the physical Riemann sheet. They are
basic pseudoscalar mesons with J ¼ 0 (pions, kaons, eta,

and so on) or basic baryons with J ¼ 1=2. Neither of the
corresponding exchanges can produce increasing total
cross sections. Moreover, their contribution to the bound-
ary (46) (see the first term) is vanishing when s grows at
fixed l. Increasing total cross sections could be induced by
exchanges of the higher-spin hadrons, but such hadrons
reveal themselves only as resonances. Therefore, the cor-
responding poles are positioned at nonphysical Riemann
sheets and contribute to ~B1ðsÞ. Thus, to provide an increas-
ing cross section, the role of the second term should grow
at high s, due to growing ~B1ðsÞ.
If ~B1ðsÞ grows indeed with s, the value ofL at sufficiently

high energy becomes determined by the second term in the
right-hand side (46), while the first term becomes inessen-
tial. If the singularity at � ¼ �1 is also a pole, we can
separate it as well. After all, possible increase of the total
cross sections appears to be related to the nearest threshold,
even if there is a nearer pole. Therefore, we can use for-
mulas of the preceding sections, assuming that �0 always
corresponds to the nearest threshold and not to a pole. Note
that the Lukaszuk-Martin boundary [8] for total cross sec-
tions, widely discussed in the literature, uses just the nearest
threshold, which is the two-pion threshold.

B. Energy dependence of boundaries

Now we return to the explicit high-energy behavior of
parameters �0 and Y, which determine upper boundaries
for amplitudes in different scattering configurations. At
high energies,

�0 

ffiffiffiffi
t0

p
qs


 2

ffiffiffiffi
t0
s

r
; (47)

where t0, as explained, is related to the nearest threshold in
the crossed channel.
Less-evident energy dependence of the other parameter,

Y, is seen in Eq. (16), which can be rewritten as

eY � ffiffiffiffi
Y

p ¼ B0ðsÞ ffiffiffiffiffiffi
�0

p
2

: (48)

The quantity B0ðsÞ is linearly related to the amplitude
integrated over nonphysical configurations, as determined
by Eq. (13) with� ¼ �0. Evidently, the energy behavior of
Y (and, therefore, of boundaries for the amplitude in physi-
cal configurations) directly depends on the (unknown)
energy behavior of B0ðsÞ.
The original Froissart boundaries have similar structure.

Instead of our parameter Y, those boundaries contain

YFr ¼ �0LFr. Recall that in Froissart’s notations �0 ¼
logðx0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 � 1

q
Þ. The value of LFr at high energies was

chosen so that

eYFr ¼ BFrðsÞeN�0 ;

where N is the number of necessary subtractions (see
Ref. [1], upper right column on p. 1055). Though both
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BFrðsÞ and our B0ðsÞ, by construction, are linearly related
with the amplitude in nonphysical configurations, those
configurations are, generally, different (they correspond
to different values of z or, equivalently, t). Therefore,
BFrðsÞ looks not identical to B0ðsÞ. But if we assume an
increasing total cross section, both BFrðsÞ and B0ðsÞ should
increase as well. It is reasonable to assume that they have
similar high-energy asymptotics. Then YFr > Y, and
Froissart’s boundaries are higher than ours. In particular,

�tot <CY2 <CY2
Fr:

Discussion (and/or derivation) of any dispersion
relation always contains two ingredients. The main one
is, of course, knowledge of positions for singularities.
According to standard assumptions, the character and po-
sition of a singularity is determined by the unitarity con-
dition. Then, the amplitude singularities are only poles and
branch points, corresponding to one-particle states or to
several-particle thresholds, respectively. Their positions
are determined, therefore, by the particle masses. Any
singularity of other kinds (e.g., essential singularity) is
not suggested by the unitarity and, hence, is not expected
to appear at some final distance.

Unitarity, by itself, says nothing about analytical prop-
erties of the infinite energy point. Nevertheless, a familiar
assumption is that this point also has no essential singu-
larity. It means, in particular, that when s ! 1 along any
direction at the physical Riemann sheet, the amplitude
Aðs; tÞ can increase not faster than some limited power of
s (at any fixed value of t or u). This is the second important
ingredient, after which the dispersion relation in s (with
some limited number of subtractions) arises just as a
simple manifestation of the Cauchy theorem.

If Aðs; tÞ is restricted by sn, then this is true also for both
BFrðsÞ and B0ðsÞ. This implies that YFr grows no faster
than n � logs, and �tot grows no faster than log2s. It is
just the canonical formulation of the Froissart theorem.

Our Eq. (48) gives a more complicated, but somewhat
stronger, restriction for Y:

Y <

�
n� 1

4

�
logs� 1

2
logY 


�
n� 1

4

�
logs� 1

2
loglogs:

(49)

Of course, it is smaller than the Froissart boundary n logs.
If we describe the high-energy boundary for Y by the
standard parametrization� logðs=s0Þ, then Eq. (49) means
that the scale s0 itself should be energy-dependent: it
should slowly (logarithmically) increase with energy.

Recall now that, according to Eq. (21), the high-energy
boundary for �tot is determined by Y2. Then we see that
�tot, indeed, cannot grow faster than �log2ðs=s0Þ with a
fixed scale s0. But such growing log-squared behavior can
be saturated only if the scale s0 used here also increases
with energy.

V. DISCUSSION OF THE RESULTS

Let us summarize the above results for quantum ampli-
tudes of 2 ! 2 processes.

(i) Dispersion relations, single or double, are not neces-
sary for the Froissart theorem. Moreover, in the
above considerations we have not assumed any spe-
cific nature of the underlying interaction. And even
more, all the above relations are consequences
of the rather general quantum picture. They could
be equally applied either to the nonrelativistic
Schrödinger equation (using the energy E instead
of the invariant s) or to relativistic interaction(s) of
(non-)elementary particles.

(ii) Unitarity is known since the original paper [1] to be
a necessary input for the Froissart theorem. In all
cases, it restricts the partial-wave amplitudes, which
contribute to the total amplitude.

(iii) One more necessary input for the Froissart theorem
is absence of singularities in the physical region of
z ¼ cos� (inside or on the edges of the interval
½�1;þ1�Þ. In the nonrelativistic case, this may be
ensured by properties of the potential (as, e.g., for
the Yukawa potential). In the relativistic case, this
may be provided by the unitarity condition in the
crossed channel(s), if no massless exchanges are
possible (note the double-sided role of the unitarity
in the relativistic case). It is just the reason why the
Froissart theorem may be applied to strong inter-
actions (having finite-mass pions as the lightest
particles), but not to electroweak interactions (hav-
ing the massless photon). Absence of any physical-
region singularities guarantees the exponential
smallness of high-l partial-wave amplitudes. As a
result, only a finite number of partial waves may be
‘‘essential’’ at each given energy.

(iv) A very important ingredient of the Froissart theo-
rem comes from the mathematical properties
of the Legendre functions. Our calculations clearly
demonstrate that high-energy asymptotics for
amplitudes in different configurations is directly
coupled with high-l behavior of the Legendre func-
tions, which have l ¼ 1 as the essential singularity.
It is well-known that the Legendre polynomials
PlðzÞ at large l behave very differently inside the
physical region (the real interval�1 � z � þ1), at
its edge (z ¼ �1), and outside it. At the edge
jPlð�1Þj ¼ 1, while inside the region jPlðzÞj< 1

and decreases �l�1=2 with growing l. Outside the
physical region, it exponentially grows. Just these
well-known facts imply that the quantum amplitude
has very different behavior inside the physical
region, outside it, or at the edge. They also explain
why high-energy asymptotics of the amplitude is
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much more moderate in the physical region than
outside it.

(v) The most disputable input is given by assumptions
on the high-energy behavior of the amplitude in the
nonphysical region. The familiar assumption is the
power boundary for the increase in s, with some
restricted power which is universal, in the sense that
it is applicable for any value of t (or cos�s), physical
or nonphysical, and even complex. The canonical
log-squared bound for the total cross sections arises
as a consequence of such a restriction for the am-
plitude at nonphysical values of t.

Let us consider in some more detail the problem of
discontinuities between asymptotics for different configu-
rations. Froissart’s calculations [1] show different high-
energy behavior for �s ¼ 0 and �s � 0. Our calculations
confirm this result and present it also as discontinuities of
asymptotics between t < 0, t ¼ 0, and t > 0. At first sight,
this looks strange since t ¼ 0 is a nonsingular point, where
the amplitude is analytic (and continuous). Therefore, it
would be natural to expect the s-asymptotics to be con-
tinuous as well. However, the Legendre functions clearly
demonstrate just the opposite behavior. The point z ¼ 1 is
always an analyticity point for PlðzÞ. Nevertheless, the
high-l asymptotics is discontinuous near z ¼ 1. Indeed,
at the real axis below this point

Plðcos�Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�l sin�

s
� cos

��
lþ 1

2

�
�� �

4

�
;

at the point itself,

Plð1Þ ¼ 1;

at last, above this point,

Plðcosh�Þ 
 1ffiffiffiffiffiffiffiffi
2�l

p � e
�ðlþ1=2Þffiffiffiffiffiffiffiffiffiffiffiffi
sinh�

p ; Re�> 0:

Discontinuities of the asymptotics are evident here.
However, they appear only in the limit l ! 1 at fixed z.
If one takes l to be large but fixed, PlðzÞ is, of course,
continuous in z, as seen from one more well-known ap-
proximate relation (25). It shows that the different asymp-
totics join in a narrow intervals ðz� 1Þ � l�2.

A similar conclusion is true for the amplitude as well.
Equation (26) is continuous near t ¼ 0, if Y is finite. But
essential changes of the right-hand side take place in a very
narrow interval �t� t0=Y

2. In the limit Y ! 1 we obtain
discontinuous boundaries for different values of t near
zero. Analogous is the transition from physical real values
of t < 0 to nearby complex values of t.

Now we briefly discuss the problem of power high-
energy behavior for the amplitude. In quantum field
theory, such behavior could not be deduced from any
general principles (in particular, unitarity can say nothing

on this problem). The only motivation for the power
behavior near infinity is that it allows us to write disper-
sion relations.
In difference, for quantum mechanics, the high-energy

asymptotics of the amplitude can be found somehow, if the
potential is given. Dispersion relation in energy is true for
the forward scattering amplitude with many quantum-
mechanical potentials [15]. Potentials which admit disper-
sion relations for nonforward scattering seem to be much
rarer. But at least for Yukawa-like potentials, the amplitude
satisfies even the Mandelstam representation, which is
the double-dispersion relation in energy and momentum
transfer [5].
In the relativistic case, the problem of high-energy

asymptotics for two-particle amplitudes is still open. Even
the single-dispersion relation in energy has been mathe-
matically proven only for the pion-nucleon elastic scatter-
ing in the forward direction or in some finite interval of real
negative (i.e., physical) values of t [16]. Note, however, that
this does not prove the Froissart log-squared behavior of
the pion-nucleon�tot. For the forward dispersion relation to
be true, �tot may grow faster than the canonical Froissart
bound, but not faster than some finite power of s.
For better understanding of the situation, it is interesting

to look for hints from the perturbation theory. Summation
of the Feynman diagrams was most intensively investi-
gated for QED and perturbative QCD (pQCD). In both
cases, sums of essential logarithms for ‘‘one-tower’’ dia-
grams provide the power behavior of the high-energy
asymptotics for �tot. The corresponding exponents are
small: ��2 in QED [17–19] and ��s in pQCD [20].
The difference is due to different forms of interactions
between the corresponding gauge bosons: through electron
loop(s) for the photons in QED, and through gluon ex-
change(s) for the gluons in pQCD.
The authors of Ref. [18] believe that ‘‘unitarity is vio-

lated’’ because of such power behavior. Therefore they
consider it to be transient. As they hope, it will be changed
by the log-squared behavior after summing up all
‘‘multitower’’ diagrams, though the authors agree that
‘‘this method has no mathematical justification’’.
We have seen, however, that violation of the log-squared

asymptotics is not necessarily related to violation of uni-
tarity. It may mean violation of power bounds for non-
physical amplitudes. On the Lehmann ellipse, the values
of momentum transfers may reach large complex values
jtj 
 juj 
 s=2, jImtj 
 jImuj 
 ffiffiffiffiffiffi

str
p

, with tr being fixed
at the given Lehmann ellipse. High-energy behavior
for amplitudes in such configurations has never been
investigated.
There is one more reason why cross section estimates in

QED and/or pQCD might be doubtful. Both theories pro-
vide massless (photon/gluon) exchanges, which generate
z-singularity at the edge of the physical region. For
scattering of charged (colored) objects this singularity is
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nonintegrable (it is the pole due to one-photon/one-gluon
exchange) and makes the total cross section infinite at any
energy. Thus, discussion of any bounds for �tot becomes
meaningless.

However, for neutral (colorless) objects, the correspond-
ing singularities, though being also on the edge of the
physical region, are integrable and do not provide a per-
manently infinite cross section. In such situations, the
nearest singularity(ies), just at the edge of the physical
region, may appear less essential for the asymptotics than
more distant singularities (we have seen above how the
nearest pole could be inessential at high energies, as com-
pared with more distant contributions). Then, the Froissart
approach might be applicable for neutral (colorless) ob-
jects in QED (pQCD), even despite the possibility of
massless exchanges. This needs, however, special inves-
tigation. If confirmed, results of diagram summation for
QED and pQCD, briefly described above, could give in-
deed serious theoretical hints for power (though rather
slow) increase of hadron cross sections.

Strong interaction phenomenology presents also some
other evidences, though indirect, for power increase of the
total cross sections. For example, an essential input to
prove the power asymptotics (and the Mandelstam repre-
sentation) of amplitudes for nonrelativistic scattering in
Yukawa-type potentials was a restricted value of real parts
for Regge trajectories in such potentials [5]. The phenome-
nological evidence for linearity of hadron Regge trajecto-
ries, if true, means that the relativistic amplitudes, at least
in some configurations, may grow faster than any power
of energy. Correspondingly, the total cross sections may
grow faster than ðlogsÞ2.

In summary, the real content of the Froissart theorem is
the much softer high-energy behavior of physical ampli-
tudes (and total cross sections) as compared to behavior of
nonphysical amplitudes. This is implied by the physical
requirements of unitarity and absence of massless ex-
changes, together with the mathematical properties of the
Legendre functions. Dispersion relations, either in energy
or in momentum transfers, are not necessary. Moreover, the
nature of interaction is, by itself, inessential; however,
strong interactions are marked out by the absence of mass-
less particles.

The specific form of the high-energy bound for ampli-
tudes in physical configurations (and, thus, for the total
cross section as well) is directly correlated with the high-
energy behavior for amplitudes in nonphysical configura-
tions (in particular, at large and complex t). The canonical
log-squared bound corresponds to power asymptotics of
the nonphysical amplitudes (which can be ‘‘hidden’’ in
dispersion relations with a finite number of subtractions).
Its violation, contrary to folklore in the literature, would
not mean violation of unitarity. It may mean only that the
amplitude in nonphysical configurations can grow with
energy faster than any power of s. Such possibility does

not seem to contradict any basic principles. Precise mea-
surements of cross sections at very high energies (at LHC,
in particular) can possibly help to discriminate between
logarithmic and/or power asymptotics. Other high-energy
observables may also be helpful.
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APPENDIX A: SUMS AND INTEGRALS
FOR BOUNDARIES

When constructing boundaries for amplitudes in differ-
ent configurations, we need to calculate the high-energy
behavior for sums of the form

S ¼ Xl2
l1

lk � fð�lÞ;

where summation runs on integer values of l, and � ! 0 at
s ! þ1. Let us rewrite the sum as

S ¼ Xl2
l1

lk � fð�lÞ ��l;

where �l ¼ 1. Now, define the new variable y ¼ �l. Then
the sum takes the form

S ¼ ��ðkþ1Þ Xy2
y1

yk � fðyÞ � �y;

with summation running on the y-points, corresponding
to the integer values of l, with intervals �y ¼ �. When
s ! þ1 (i.e., � ! 0), the latter sum tends toward the
integral

S 
 ��ðkþ1Þ Z y2

y1

yk � fðyÞ � dy:

For all our boundaries we have used just such integrals.
As an illustration, let us consider the simple sum

XL�1

0

ð2lþ 1Þ ¼ L2:

The above procedure, with Y ¼ �L, transforms it into
the sum of two integrals

��2
Z ðY��Þ

0
2ydyþ ��1

Z ðY��Þ

0
dy

¼
�
Y � �

�

�
2 þ

�
Y � �

�

�
¼ YðY � �Þ

�2
¼ L2

�
1� 1

L

�
:

If L is growing at s ! þ1, the main term is correctly
reproduced.
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