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Using simple models in D ¼ 0þ 0 and D ¼ 0þ 1 dimensions we construct partition functions and

compute two-point correlations. The exact result is compared with saddle point approximation and

solutions of Schwinger-Dyson equations. When integrals are dominated by more than one saddle point we

find Schwinger-Dyson equations do not reproduce the correct results unless the action is first transformed

into dual variables.
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I. INTRODUCTION

We examine applicability of Schwinger-Dyson equa-
tions in simple models characterized by a nontrivial vac-
uum. An infinite set of Schwinger-Dyson equations (SDEs)
represents integral relations between Green’s functions
that in principle describe the complete dynamics of the
underlying field theory. In terms of loop expansion even a
single SDE contains an infinite series of interaction terms.
For this reason, in QCD, where strong interactions between
quarks and gluons dominate long range dynamics,
Schwinger-Dyson equations have been extensively used
to describe various nonperturbative phenomena; ranging
from confinement and chiral symmetry breaking to appli-
cations in hadron phenomenology [1–3]. Even when the
underlying theory has only a limited number of elementary
interactions, the full set of SDEs generates a complicated
effective potential. In practical applications any approxi-
mation to SDEs eliminates an infinite set of such effective
interactions and therefore it is important to access the
applicability of any such truncation in QCD phenomenol-
ogy. A number of investigations in the ultraviolet, and in
the more relevant for strong QCD, the infrared region, have
been performed [4,5].

There is ample evidence from lattice simulations that
confinement in the QCD vacuum has origin in topology
[6–9]. It has been postulated long ago that both confine-
ment and chiral symmetry breaking originate from instan-
tons. In the case of confinement topological objects like
center vortices or magnetic monopole loops percolate
through Wilson loops and lead to its area law dependence
[10–13]. As such a condensate of magnetic monopoles
ought to screen electric flux lines and produce a finite
gluon-gluon correlation length, i.e. magnetic mass. The
gluon propagator has been extensively studied using SDE
techniques [14–16] and it is therefore worth examining to
what extent topological features are manifested in the
Green’s functions. Examples of such studies in the context
of the gluon propagator can be found in [17–20].

In this work we perform such a study in simple models
where SDE solutions can be compared to exact results. In

particular, with these models we will be able to address the
adequacy of truncated SDE in capturing the underlying,
nontrivial properties of the vacuum. In more realistic mod-
els with nontrivial topology, i.e. the Schwinger model
[21,22] or the Abelian Higgs model [23–26], Green’s
functions have been studied using semiclassical approxi-
mations by introducing dual variables that account for the
topological defects. Here instead we will use models in
which we can compare SD, semiclassical, and exact re-
sults. In particular, we consider the following three models
that we design to capture, in a much simplified way, some
characteristic properties of a topological vacuum of the
more sophisticated modes, like the ones mentioned above.
In Sec. II we compare truncated SDE results with the exact
solution of D ¼ 0þ 0 dimensions models that have either
a unique vacuum or degenerate vacua. In Sec. III we
consider a model with a quasiperiodic vacuum, and finally
in Sec. IV we discuss the role of boundary conditions
following the example of a particle on a circle, i.e., a
D ¼ 0þ 1 field theory. A D ¼ 0þ 1 dimensional theory
describes a quantum particle at finite temperature or
equivalently classical statistical mechanics of a string. A
D ¼ 0þ 0 ‘‘theory’’ may be considered as dimensionally
reduced, heavy mass limit of a D ¼ 0þ 1 model. In the
following, however, we will focus on comparing results of
various approximation schemes, including SDEs rather,
than on their physical interpretation. Conclusions and out-
look are summarized in Sec. V.

II. UNIQUE VS DEGENERATE VACUUM

In D ¼ 0þ 0 dimensions the generating functional
becomes a function of a single source variable j and given
by a one-dimensional integral

ZðjÞ ¼ eWðjÞ ¼
Z

dxe�SðxÞþjx: (1)

For the action SðxÞ we take

SðxÞ ¼ �
x2

2!
þ �

x4

4!
; (2)

PHYSICAL REVIEW D 84, 056011 (2011)

1550-7998=2011=84(5)=056011(7) 056011-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.056011


and depending on � consider both unique and degenerate
vacua: if � ¼ þ1 the action has a single minimum
while for � ¼ �1 there are two degenerate minima at

x ¼ � ffiffiffiffiffiffiffiffiffi
6=�

p
with the x ¼ 0 point corresponding to a local

maximum. In D ¼ 0þ 1 Euclidean dimensions, x ! xð�Þ
and the action

R�
0 d�½ _x2ð�Þ=2mþ Sðxð�ÞÞ� [with SðxÞ de-

fined by (2)] describes thermal fluctuations of a quantum
particle, which in the m ! 1 limit reduces to considera-
tions of integrals as the one given in Eq. (1). We have
assumed that the integral over x is not restricted, i.e. x runs
over the interval ð�1;þ1Þ. The semiclassical approxi-
mation will be valid in the limit of small coupling � ! 0,

as can be easily seen once x is rescaled via x ! �x ¼ �1=2x,

SðxÞ ¼ 1

�

�
�
�x2

2
þ �x4

4!

�
: (3)

In the small-� limit the integral should be well approxi-
mated by the contributions from the saddle points. For
� ¼ þ1 there is one saddle point at x ¼ 0, which in higher
dimensions corresponds to a unique vacuum. For this
reason, in the following we refer to saddle points as vac-
uum contributions, which can be unique, for � ¼ þ1 or
multiple as in the case of � ¼ �1 (and in the more general
case considered in Sec. III). For � ¼ þ1 the saddle point
approximation is equivalent to the leading order standard,
perturbative expansion in powers of �. In particular, the
two-point correlation

hx2i ¼ d2 logZðjÞj¼0

dj2
(4)

can be easily computed by expanding Eq. (1) in powers of
� with the result

hx2i ¼ 1� 1

2
�þ 2

3
�2 � 11

8
�3 þ 34

9
�4 � 619

48
�5

þOð�6Þ: (5)

Comparison between the exact, numerical evaluation of
hx2i and the above perturbative series is shown in Fig. 1. As
expected, as � decreases the accuracy of the saddle point
approximation improves; however, even with corrections
up to Oð�5Þ the perturbative expansion is accurate only for
very small couplings, � & 0:25. This is an indication of the
nonanalytical behavior of ZðjÞ at � ¼ 0. A similar behav-
ior is also expected in QCD. For larger values of the
coupling any reasonable approximation must therefore, at
least partially, resum the perturbative series to all orders.
Since at any order of truncation in the number of effective
interactions Schwinger-Dyson equations do sum up an
infinite number of insertions of �, one expects that a
solution of a truncated set of SDEs will be a better ap-
proximation compared to the truncated perturbative expan-
sion of Eq. (5). The SD equations follow from the identity

F0
�
� 1

�ð2ÞðyÞ
d

dy
þ y

�
¼ ��ð1ÞðyÞ; (6)

where �ðyÞ is the effective action defined by

�ðyÞ ¼ WðjÞ � jy; with y ¼ dWðjÞ
dj

: (7)

With WðjÞ given by Eq. (2), Eq. (6) leads to the master
equation,

�y� �

6

�
�ð3ÞðyÞ

½�ð2ÞðyÞ�3 þ
3y

�ð2ÞðyÞ � y3
�
¼ ��ð1ÞðyÞ; (8)

from which expectation values of any function of x can be
generated by taking the appropriate number of derivatives.
In particular, the SDE for the two-point correlation

hx2i ¼ d2WðjÞj¼0

dj2
¼ � 1

�ð2Þ
0

(9)

is obtained by taking the first derivative of Eq. (8) and
setting the source term to zero. This gives

�þ �

6
ðhx2i3�ð4Þ

0 þ 3hx2iÞ ¼ 1

hx2i : (10)

Since j ¼ 0 implies y ¼ 0, all terms odd in y in the
effective action Eq. (7), vanish and the SD equation for

�ð4Þ is obtained from Eq. (8) by taking two more derivatives
of the master equation,

� �ð4Þ
0

�
� 1 ¼ þ 3

2
hx2i4ð�ð4Þ

0 Þ2 þ 1

6
hx2i3�ð6Þ

0 þ 3

2
hx2i2�ð4Þ

0 :

(11)

Here �ðnÞ
0 ¼ dn�ðyÞy¼0=dy

n is the dimensionless coupling

in the n-point vertex of the effective action. Similarly, one

can derive equations for all higher order vertices, e.g. �ðnÞ
0 ,

n � 6 by taking more derivatives of the master equation.
Most truncation schemes in applications of SDEs are based
on neglecting all but a lowest few vertices. The lowest
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O(λ4)

O(λ5)

FIG. 1 (color online). Comparison of perturbative (dashed
lines), Schwinger-Dyson (dashed-dotted line), and exact, nu-
merical evaluation of the two-point correlation (solid line) for
the action with a unique classical vacuum (� ¼ 1). On this scale
the NLO SDE solution is indistinguishable and coincides with
the exact result.
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order (LO) approximation is obtained by setting �ð4Þ
0 ¼ ��

i.e. neglecting dressing of the bare vertex implied by the
right-hand side of Eq. (11) as well as all higher order
vertices since they are generated by higher order loops.
In the next-to-leading order (NLO) one would keep loop
dressing of the bare vertex, appearing on the right-hand

side of Eq. (11) as terms containing �ð4Þ
0 , while continuing

to neglect vertices generated by higher order loops,

�ðnÞ
0 ¼ 0, n � 6. In LO the two-point correlator is therefore

given by a solution of

hx2i ¼ 1

�þ �
2 hx2i � �2

6 hx2i3
; (12)

while in the NLO one needs to solve a set of the two
coupled nonlinear, algebraic equations, Eq. (10) and (11),

with �ð6Þ
0 ¼ 0. It can be easily verified that the LO solution

has the following expansion in powers of the coupling
constant �:

hx2i ¼ 1� 1
2�þ 2

3�
2 � 9

8�
3 þOð�4Þ; (13)

i.e. it agrees with the exact result only up to the second
order, while for the NLO solution one finds

hx2i¼1� 1
2�þ 2

3�
2� 11

8�
3þ 34

9�
4� 599

48�
5þOð�6Þ; (14)

which agrees with Eq. (5) up to the fourth order. In
Fig. 1 we also compare the saddle point approximation
of Eq. (5) with the LO and NLO solution of SDEs
for � ¼ þ1. Clearly the SDEs result in the two-point
correlation that is significantly more accurate than the
saddle point approximation (also known as perturbation
theory) for large values of �. It is worth noting that this
is not because the solution of the SDEs and the perturba-
tive series match to some high order in �; clearly the
perturbative expansion is quite inaccurate except for
very small �. The agreement between solutions of SDEs
and the exact result originates from the effective all order
resummation of the perturbative series generated by the
nonlinear SDEs. Indeed by comparing the coefficients of
the first few terms in perturbative expansion beyond the
order where SEDs match the exact expansion, e.g. 619=48
vs 599=48, one finds the difference to be only a few
percent.

For strong coupling, � > 1, however, the SDEs are
truncated so that higher vertices (loops) that are removed
fail. This is because higher order vertices in the effective

action, �ðnÞ
0 grow with �. The perturbative expansion near

the x ¼ 0 saddle point can nevertheless be set up by
expanding the integrand in Eq. (1) in terms of the ‘‘kinetic
term,’’ �x2=2, instead of the interaction term, i.e. by ex-

panding in powers of 1=
ffiffiffiffi
�

p
. This leads to

hx2i ¼ 2
ffiffiffi
3

p
�2ð34Þ

�
ffiffiffiffi
�

p
�
1þ X

n¼1

cn

ð ffiffiffiffi
�

p Þn
�
; (15)

where all higher order coefficients, cn can be computed
analytically. It then follows from Eqs. (10) and (11) that for
large �

�ð4Þ
0

�
��0:2960þO

�
1ffiffiffiffi
�

p
�
;

�ð6Þ
0

�3=2
��0:6276þO

�
1ffiffiffiffi
�

p
�
;

(16)

i.e. there is no suppression of higher order vertices,

�ðnÞ=�n=4 ¼ Oð1Þ. For � ¼ �1, SDEs truncated at any
finite order cannot reproduce the exact result. This is
because vertices in the SDEs generated from the master
equation originate from expansion around x ¼ 0, which is
a local maximum and a metastable sate in higher dimen-
sions. For � ¼ �1, hx2i is still positive and as a function of
� it is nonanalytical at � ¼ 0, where it has a pole, while the
LO solution Eq. (12) is analytical and for � ¼ 0 gives
hx2iLO ¼ �1! The action has two minima and in the saddle
point approximation the integral in Eq. (1) is approximated
by a sum of Gaussian fluctuations around each of them
with the difference between the full action and Gaussian
approximation treated as perturbation. This leads to

hx2i ¼ 6

�
� 1� 1

2
�� 2

3
�2 � 11

8
�3 � 34

9
�4

� 619

48
�5 þOð�6Þ (17)

and is compared to the exact, numerical result in Fig. 2.

III. MULTIPLE QUASIDEGENERATE VACUA

In QCD large gauge transformations are not constrained
by the Gauss’s law and result in topologically disconnected
field configurations [27–31]. In the semiclassical approxi-
mation these configurations correspond to degenerate
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O(λ0)
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O(λ5)

FIG. 2 (color online). Saddle-point approximation computed
to a varying order in � (dashed lines) compared with the exact
result for � ¼ �1 obtained by numerical integration (solid line).
The Oð�4Þ perturbative results is indistinguishable form the
exact result. For easier comparison we subtracted the leading
6=� term from hx2i. On this scale the solution of the SDE tends
to �6=� ! �1 as � ! 0.
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classical vacua and the true vacuum state is a linear super-
position of these vacua. To access the applicability of SDEs
in the case of such multiple saddle points, we again make a
simple model for the action inD ¼ 0þ 0. Since there is no
tunneling without the ‘‘time’’ direction, it is possible that
SDEs in the realistic case with instantons are more accurate
then the one ones in the no-time model discussed here.
Furthermore, specific realization of confinement and the
effect of instantons may be gauge dependent to the extent
that other confinement scenarios e.g. à la Gribov-
Zwanziger [32,33], Kugo-Ojima [34] may become preva-
lent and more amendable to the SD approach.

To mimic the effect of multiple vacua in the partition
function we consider the following action:

SðxÞ ¼ 1

g2

�
2ð1� cosðxÞÞ þ x2

�2

�
: (18)

For simplicity, to be able to compare with SDEs we define
x in the ð�1;þ1Þ interval. The multiple saddle points
originate from the cos; term the role of the second term on
right-hand side in Eq. (18) is to make the integral in Eq. (1)
well defined. Because of this term the minima of SðxÞ are
not really degenerate, and their relative contribution de-
pends on �. For weak coupling, g < 1, the expectation
value of hx2i is determined in the saddle point approxima-
tion by the number of minima of the action. For fixed, finite
�, hx2i ! 0 when g ! 0 since in this case the term
x2=ðg2�2Þ is large for all minima of cosx except the one
at x ¼ 0. In this limit, therefore, the integral becomes
dominated by the single minimum at x ¼ 0 and one finds

hx2i ! �2g2

2ð�2 þ g2Þ !
g2

2
: (19)

Since the problem becomes effectively that of a single
vacuum one expects the SDE to yield a similar result.
This indeed is the case as shown in Fig. 4. As � increases
for fixed g < 1 the contribution from the minima of cosx at
x ¼ 2�n, jnj> 0 are no longer suppressed and in the limit
� ! 1 one obtains

hx2i ! �2

2
: (20)

This is an interesting limit, since even though there are
multiple vacua contributing to the partition function inte-
gral, their contribution is approximately equal to that of a
broad minimum given by x2=�2 (c.f. Fig. 3), and it is this
Gaussian distribution that results in Eq. (20).

The SD equations for the action of Eq. (18) are derived
from the operator identity

2

g2
sin

�
� 1

�ð2ÞðyÞ
d

dy
þ y

�
þ 2y

�2
¼ ��ð1ÞðyÞ: (21)

In particular, for the two-point correlation in the LO

approximation, �ð2ÞðyÞ ¼ �ð2Þ
0 , it yields,

2

g2
d

dy
sin

�
� 1

�ð2Þ
0

d

dy
þ y

�
þ 2

�2
¼ ��ð2Þ

0 : (22)

The nonlinear, algebraic equation for hx2i ¼ �1=�ð2Þ
0 can

be derived from the above by noticing that the argument of
the sine can be written as an expectation value of ladder
operators

d

dy
sin

�
� 1

�ð2Þ
0

d

dy
þy

�
¼

ffiffiffiffiffiffiffiffi
hx2i

q �
0jasin

�
aþayffiffiffiffiffiffiffiffihx2ip �

j0
�

(23)
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2
/Λ2

FIG. 3. A typical action used here in a model study of multiple,
quasidegenerate vacua. For large� and/or small g the number of
minima contributing to the partition function is proportional to
�2=g2. For the case shown in this figure, besides the central
minimum, there are additional N ¼ 32 local minima.
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FIG. 4 (color online). Comparison between exact (solid line)
and Schwinger-Dyson, Eq. (24), approximation (dashed line) to
hx2i for the action given by Eq. (18). We used g2=�2 ¼ 0:01
(cf. Fig. 3). The dashed-dotted lines correspond to the two limits
given by Eqs. (19) and (20), were, as discussed in the text
Schwinger-Dyson approximation becomes exact. For the range
of couplings shown, the saddle point approximation of Eq. (25)
is indistinguishable from the exact result and involves summa-
tion over N ¼ 33 saddle points.
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with a � 1=
ffiffiffiffiffiffiffiffihx2ip

d=dy and ay � ffiffiffiffiffiffiffiffihx2ip
y. It finally leads to

the following gap equation

2

g2
e�ðhx2i=2Þ þ 2

�2
¼ 1

hx2i : (24)

It can be verified that for finite � in the g ! 0 limit the
solution of Eq. (24) agrees with Eq. (19) while in the limit
� ! 1 it agrees with Eq. (20). In the former case, as
discussed above, the SD equation reproduces the result of
the problem with a unique vacuum. For large-� on the
other hand, it indeed follows from Eq. (24) that even
though multiple saddle points contribute, the net effect is
equivalent to that of a single minimum with a large width
�� leading to a solution for hx2i that agrees with Eq. (20),
as shown in Fig. 4.

Outside of the two limits, several local minima of he
action contribute to the partition function and the LO SDE
fails. This is seen in Fig. 4 for g in the midrange, 0:2 &
g & 1. In this range, where multiple minima contribute,
one expects summing over integrals around all saddle
points is a better approximation to the generating
functional compared to the SDE. In this saddle point
approximation

hx2i ¼
P

N
i¼1ðx2i þ 1

2!i
Þ e�Sðxi Þffiffiffiffi

!i
pP

N
i¼1

e�Sðxi Þffiffiffiffi
!i

p
; (25)

and comparison with the exact, numerical result is shown
in Fig. 5. Indeed the saddle point approximation works
while SDE fails in this range of couplings.

IV. PARTICLE ON A CIRCLE

In QCD, the domain of a gauge fixed gluon field, i.e. the
fundamental modular region, may be nonflat with a non-
trivial measure specified by the Fadeev-Popov determinant
[32]. This highly complicates the Schwinger-Dyson for-
malism, which needs to take into account the boundary of
the fundamental modular region or the Gribov horizon
[33]. In the following example we investigate what hap-
pens in a model in which the dynamical variable has a
nontrivial boundary under an approximation when this
boundary is ignored. For this purpose we consider quantum
mechanics of a particle on a circle [35], i.e. D ¼ 0þ 1
dimensional field theory. The variable xðtÞ now describes
the location of the particle on a unit circle 0 � xðtÞ< 2�
as a function of time, and for the Hamiltonian we choose
the free kinetic energy for a particle of unit mass 2H ¼
p2 ¼ �@2x. Since the manifold is compact, the wave func-
tion must satisfy the boundary condition c ðxÞ ¼
expði�Þc ðxþ 2�Þ and in the following we take � ¼ 0.
The normalized eigenvectors of the Hamiltonian are

spanned by c mðxÞ ¼ expðimxÞ= ffiffiffiffiffiffiffi
2�

p
with integer m and

the corresponding energies are Em ¼ m2=2. The vacuum
expectation value at the Euclidean time (t ¼ �i�), i.e.
the temperature-dependent correlation function, is then
given by

hxð�Þxð0Þi ¼ h0jxe��Hxj0i ¼ �2 þ X
m�0

e��ðm2=2Þ

m2
: (26)

At low temperatures, T ¼ 1=� ! 0, the correlation func-
tion is dominated by the lowest energy quantum sate and
hxð1Þxð0Þi ! �2. In this case the restriction that x be on a
circle is important. At high temperatures, however, the
system becomes semiclassical, and the particulars of the
topology of the quantum system should become irrelevant.
Also in this limit expectation values should be well ap-
proximated by contributions from small amplitude fluctu-
ations around solutions of the classical equation of motion.
In this case truncated SDEs should also be a good approxi-
mation. In our simple example we assume no interaction;
thus the SDE and the semiclassical, saddle point approxi-
mation give the same results and both of them pertain to a
formulation of the problem in terms of the variable dual
to quantum number m [36]. This variable is just the clas-
sical coordinate x and the duality transformation m $ x is
given by

e��ðm2=2Þ ¼
Z 1

�1
dxffiffiffiffiffiffiffiffiffiffi
2��

p e�ðx2=2�Þ�imx (27)

leading to

hxð�Þxð0Þi ¼
Z 2�

0

dx0

2�

dx

2�
x0hx0; �jx; 0ix; (28)

where
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FIG. 5. Comparison between exact, numerical computation
and the saddle point approximation to hx2i for different values
of g2=�2. As � increases for fixed g so does the number of
saddle points. The three cases shown correspond to N ¼ 3, 7, 33
points, respectively [cf. Eq. (25)]. As � increases, saddle points
become degenerate and Eq. (25) becomes an increasingly better
approximation.

SCHWINGER-DYSON EQUATIONS AND DISORDER PHYSICAL REVIEW D 84, 056011 (2011)

056011-5



hx0; �jx; 0i ¼
ffiffiffiffiffiffiffi
2�

�

s X
q2N

exp

�
�ðx0 � xþ 2�qÞ2

2�

�
: (29)

At finite temperature, q counts the number of times the
particle wraps around the circle. The duality between m
and x is clear; at high temperature, � ! 0 and x is well
defined, (while m is not) since

hx0; �jx; 0i ! 2��ðx0 � xÞ (30)

with only the term with q ¼ 0 contributing. It then imme-
diately follows that hxð0Þxð0Þi ¼ 4�2=3. In the high tem-
perature limit, the quantum variable m is not well defined,
i.e. in the sum in Eq. (26) an infinite number of terms
contribute to give 4�2=3. At low temperatures, on the other
hand, the system is quantum. As � ! 1, m becomes well
defined, m ! 0 (while x is not) and hxð1Þxð0Þi ! �2. To
obtain the low temperature limit of the correlation function
using the classical representation of Eq. (29) it is necessary
to integrate over the entire range of x and x0. Furthermore it
is necessary to allow x (or x0) to wrap around the circle an
arbitrary number of times, i.e. sum over all q 2 N. The
approximation in which the topology of the boundary is
ignored corresponds to retaining only the q ¼ 0 term in the

sum in Eq. (29), which, as follows from the discussion
above, should work fine in the high temperature limit but
fail at low temperatures. This is shown in Fig. 6.

V SUMMARY

Phenomenological applications of Schwinger-Dyson
equations require truncations in the number of retained
effective interactions. It is important to access the reliabil-
ity of such truncation in QCD where Green’s functions are
not necessarily dominated by small fluctuations around the
perturbative vacuum and in addition are gauge dependent.
In particular, confinement is expected to be related to
topologically nontrivial field configurations like magnetic
monoples (as in the dual superconducting picture of the
confinement) and vortices that lie on the Gribov horizon
[37] and produce tunneling between the degenerate, local
minima of the action. If the effective potential for gauge
degrees of freedom were known, in principle one could
compare the SDE approach with other, i.e. semiclassical,
approximations (as can be done, for example, in the case of
compact QED [38]). Here we have done such a comparison
in simple models to illustrate strengths and potential limi-
tations of the SDE approach. In particular, we have shown
that if the partition function integral is dominated by a
single semiclassical configuration (one saddle point of the
action), even the one-loop SDE gives a much better ap-
proximation for a two-point correlation than perturbative
series truncated at some high order. In the case of multiple
saddle points, however, we have shown that the semiclas-
sical approximation, when applicable, is more reliable
while the SDE approach may not necessarily be capturing
the correct physics. In such cases SDEs can, however, be
successful when formulated in dual variables. Clearly the
models studied here are very naive and more realistic
problems need to be considered before definite conclusions
about applicability of truncated SD equations to describe
physics of confinement are made; an initial attempt in
D ¼ 3þ 1 has been outlined, for example, in [20].
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