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We study technicolor models in which all of the technifermions are color-singlets, focusing on the case

in these fermions transform according to the fundamental representation of the technicolor gauge group.

Our analysis includes a derivation of restrictions on the weak hypercharge assignments for the techni-

fermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable

bound states with exotic electric charges. Precision electroweak constraints on these models are also

discussed. We determine some general properties of extended technicolor theories containing these

technicolor sectors.
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I. INTRODUCTION

Electroweak symmetry breaking (EWSB) may occur
dynamically, via the formation of bilinear condensates
h �FFi of a set of fermions fFg subject to a vectorial,
asymptotically free gauge interaction, generically called
technicolor (TC), that becomes strongly coupled at the TeV
scale [1]. To communicate this symmetry breaking to the
standard model (SM) fermions, which are technisinglets,
one embeds technicolor in a larger, extended technicolor
(ETC) gauge theory [2]. This involves gauging the genera-
tional index and combining it with the technicolor index.
We denote the generational, technicolor, and ETC gauge
groups as Ggen, GTC, and GETC. It follows that GETC �
Ggen �GTC. In one class of technicolor models, technifer-

mions form a standard model family. In these models, the
ETC gauge bosons are singlets under the SM gauge group,
GSM ¼ SUð3Þc �GEW, where GEW ¼ SUð2ÞL � Uð1ÞY ,
and the generators of GETC commute with those of GSM:
½GETC; GSM� ¼ ;.

However, the basic aim of technicolor, to break GEW to
electromagnetic Uð1Þem dynamically, can be realized using
purely color-singlet technifermions. A minimal techni-
color model of this type includes one SUð2ÞL doublet of
left-handed technifermions, together with the correspond-
ing SUð2ÞL-singlet right-handed technifermions, all of
which are color-singlets. To maintain the vectorial nature
of the technicolor gauge symmetry (as is necessary in order
that it does not self-break when it forms condensates), the
left- and right-handed chiral components of the technifer-
mions transform according to the same representation of
GTC. We use the abbreviations 1FTC and 1DTC for one-
family and one-SUð2ÞL-technidoublet TC models, respec-
tively [3]. Since ETC gauge bosons mediate transitions that
take quarks to technifermions, it follows that in technicolor
models in which the technifermions are color-singlets,
some of these ETC gauge bosons transform according to
the fundamental and conjugate fundamental representa-
tions of SUð3Þc. Hence, in these models, commutators of

the associated generators of GETC transform as the singlet
and adjoint of SUð3Þc, ½GETC; GSM� � ;, and

GETC � SUð3Þc �Ggen �GTC for 1DTC: (1.1)

In this paper, we shall construct and study technicolor
models in which all of the technifermions are color-
singlets and that are minimal, in the sense of being of
1DTC type. There are several motivations for this work.
One is that 1DTC models can reduce technicolor correc-
tions to W and Z propagators, since they involve fewer
technifermions than 1FTC models. Another is that 1FTC
models predict technivector mesons that transform as
color-octets, and this prediction is in significant tension
with lower bounds on the masses of such particles obtained
by the ATLAS and CMS experiments at the Large Hadron
Collider (LHC), as discussed further below. Yet another
motivation is that 1FTC models have a very large global
chiral symmetry, and when this is broken spontaneously
via the formation of bilinear technifermion condensates,
there may be problematically light (pseudo)-Nambu-
Goldstone bosons. Recently, there has much considerable
interest in 1DTCmodels [4–7]; reviews include Refs. [8,9].
Much of this work has made use of the group SUð2ÞTC with
two technifermions in the adjoint representation (equiva-
lently, the vector representation of an SOð3ÞTC group).
Here, we will give a general discussion that focuses on
1DTC models with technifermions in the fundamental
representation of the technicolor gauge group. Our
model-building will focus on an SUð3ÞTC model, but, as
will be seen, a number of our results, such as restrictions on
hypercharge assignments, will apply rather generally to
1DTC models.
This paper is organized as follows. In Sec. II, to provide

some background, we review one-family technicolor mod-
els and their ultraviolet extension to ETC theories.
Section III contains preliminaries on 1DTC models, and
Sec. IV contains some discussion of properties of models
of this type with an SUð2ÞTC gauge group and technifer-
mions in the fundamental and adjoint representations. In
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Sec. V, we study 1DTC models with an SUð3ÞTC gauge
group and technifermions in the fundamental representa-
tion. In Sec. VI, we derive some properties of ETC
ultraviolet extensions of the SUð3ÞTC theory. Section VII
contains some concluding remarks.

II. BACKGROUND ON ONE-FAMILY
TC/ETC MODELS

To provide a contrasting background perspective for our
study of TC/ETC models with color-singlet technifer-
mions, we briefly discuss one-family TC/ETC models,
which do contain some color-triplet technifermions. We
take GTC ¼ SUðNTCÞTC and Ggen ¼ SUðNgenÞ, where

Ngen ¼ 3 is the observed number of SM fermion genera-

tions. In the most compact model of this type, GETC con-
tains Ggen �GTC as a maximal subgroup. This is arranged

by setting

GETC ¼ SUðNETCÞETC; (2.1)

where

NETC ¼ Ngen þ NTC ¼ 3þ NTC: (2.2)

In accordance with this, one assumes that the technifer-
mions form one SM family. One may assign the SM
fermions and technifermions to the following representa-
tions of GSM �GETC

QL ¼ u

d

 !
L

: ð3; 2; NETCÞ1=3;L
uR: ð3; 1; NETCÞ4=3;R
dR: ð3; 1; NETCÞ�2=3;R

(2.3)

and

LL ¼ �

‘

 !
L

: ð1; 2; NETCÞ�1;L

�R: ð1; 1; NETCÞ0;R
‘R: ð1; 1; NETCÞ�2;R:

(2.4)

Here, the numbers in parentheses are the dimensions of the
representations of the three non-Abelian factor groups in
GSM �GETC, the subscript denotes the weak hypercharge,
and we suppress ETC and color indices. Indicating these
indices explicitly, we have, for example, uR ¼ uaiR , where
a ¼ 1, 2, 3 is the color index and i ¼ 1; . . . ; NETC is the
ETC index. The ETC indices i are ordered such that i ¼ 1,
2, 3 are generation indices (with ua1 ¼ ua, ua2 ¼ ca,
ua3 ¼ ta, ‘1 ¼ e, ‘2 ¼ �, etc.) and 4 � i � NETC

are TC indices. It will be useful to distinguish between
generational and technicolor indices, and so if i is in the
interval 4 � i � NETC, we shall usually label it as �,
standing for TC.

If one makes the minimal choice for GTC, namely
GTC ¼ SUð2ÞTC, then, by Eq. (2.2), it follows that

GETC ¼ SUð5ÞETC. Detailed studies with reasonably
ultraviolet-complete ETC models of this type were carried
out in Refs. [10–16]. Refs. [13,15] also presented a critical
assessment of an alternate type of TC/ETC model in which
down-type quarks and charged leptons of opposite chiral-
ities are assigned to relatively conjugate representations of
SUð5ÞETC, while up-type quarks of opposite chiralities are
assigned to the same representations of this group.
In order to account for the hierarchy in the three gen-

erations of SM quarks and charged leptons, the ETC gauge
symmetry should break in a sequence of scales �ETC;i,

where i ¼ 1, 2, 3, down to the residual exact technicolor
gauge symmetry. The studies of Refs. [11–13] demon-
strated how the sequential breaking of the ETC gauge
symmetry can occur. A typical set of ETC breaking scales
used in these studies is

�ETC;1 ’ 103 TeV;

�ETC;2 ’ 102 TeV;

�ETC;3 ’ fewTeV

(2.5)

for the three SM generations i ¼ 1, 2, 3 [17]. Having an
explicit and reasonably ultraviolet-complete ETC theory, it
was possible to calculate flavor-changing neutral-current
(FCNC) processes, and it was shown that in ETC theories
in which the techniquarks transform in a vectorial manner
underGETC, these can be adequately suppressed because of
approximate residual generational symmetries [11,13,15].
A mechanism was also presented for obtaining lepton
mixing and small neutrino masses [11–13]. The resultant
technicolor gauge interaction confines and breaks chiral
symmetry at the scale �TC, thereby producing electroweak
symmetry breaking. The W and Z pick up masses given to
leading order by

m2
W ¼ m2

Zcos
2�W ¼ g2NDf

2
TC

4
; (2.6)

where g is the SUð2ÞL gauge coupling and ND denotes the
number of SUð2ÞL doublets of technifermions. For one-
family TC models, ND ¼ 4, so fTC ’ 125 GeV.
The ETC interactions lead to a mass for a fermion of the

i’th generation of the generic form

mfi �
���3

TC

�2
ETC;i

; (2.7)

where � is a numerical constant of order 10,

� ¼ exp

�Z �w

�TC

d�

�
�ð�TCð�ÞÞ

�
(2.8)

is a renormalization-group factor, � is the mass anoma-
lous dimension of the technifermions, and �TCð�Þ ¼
gTCð�Þ2=ð4	Þ is the TC running coupling (inherited from
its UV completion in the ETC theory), depending on the
Euclidean reference momentum, �. In Eq. (2.8), �w is the
scale where the coupling rises to O(1). The �3

TC factor in
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Eq. (2.7) arises from the technifermion condensate h �FFi
and the 1=�2

ETC;i factor arises from the propagator(s) of

ETC gauge bosons mediating the transitions between SM
fermions of the i’th generation and technifermions. As is
evident in Eq. (2.7), the largest �ETC;i corresponds to the

smallest fermion masses, namely, those of the first genera-
tion, and so forth for the other generations. It has also been
shown how off-diagonal elements can be generated in the
full 3� 3 fermion mass matrices, whose diagonalization
thus leads to quark and lepton mixing [11,13]. Related
work is in Ref. [18].

Viable TC/ETC theories require a value of � that is not
too small, in order to enhance SM fermion mass generation
via the renormalization-group factor �. This property can
follow naturally if the theory has an approximate infrared
fixed point (IRFP), i.e., IR zero of the TC beta function, so
that the running TC coupling �TCð�Þ becomes large at a
scale �w but runs slowly (walks) as a function of the scale
� [19].

One-family technicolor models are subject to many
constraints, such as those from precision electroweak
data, neutral flavor-changing current processes, etc. In
addition, 1FTC models predict color-octet technihadrons,
in particular, pseudoscalar and vector technimesons. The
vector technimesons are expected to have masses given by

mV;TC

m
;!
’ �TC

�QCD

’ fTC
f	

�
Nc

NTC

�
1=2

; (2.9)

where Nc ¼ 3, f	 ’ 93 MeV, �QCD ’ 330 MeV, and

fTC ’ 125 GeV, so mV;TC ’ 1:0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=NTC

p
TeV. This simple

scaling behavior is approximately borne out in more
sophisticated calculations of technimeson masses using
solutions of the Bethe-Salpeter equation in a technicolor
theory with walking behavior [20]. A similar scaling is
expected to apply for the width �V;TC, so that �V;TC would

be a few hundred GeV. The ATLAS and CMS experiments
at the LHC have set a lower limit of approximately 2 TeV
on color-octet resonances of this type [21,22]. There is
thus significant tension between these LHC data and
one-family technicolor models. This tension is exacerbated
by limits on the (pseudo)-Nambu-Goldstone bosons, de-
noted (P)NGBs, in this model [23–25]. As noted above,
this provides one motivation for exploring TC/ETCmodels
that contain only color-singlet technifermions, since these
technifermions thus do not couple directly to gluons, and
hence the resultant technihadrons are not subject to such
severe experimental limits from current LHC (or Tevatron)
data.

III. TECHNICOLOR MODELS WITH COLOR-
SINGLET TECHNIFERMIONS

In this section, we begin our discussion of 1DTC mod-
els. As will be explained below, these models may, in
general, also contain other technifermions that are

GSM-singlets. These models have the feature that all
technifermions are SUð3Þc-singlets and can thus be de-
noted also as color-singlet technifermion (CSTF) theories.
For the models of interest here, the 1DTC property implies
the CSTF property. The converse does not hold in general,
since, in principle, a technicolor model could contain
only color-singlet technifermions but have more than one
SUð2ÞL technidoublet. However, in practice, given the
requirement of minimizing technicolor corrections to
the W and Z propagators, as long as one considers CSTF
models, one restricts to those of 1DTC type. Hence, in
practice, one has the relation 1DTC , CSTF for these
properties.
The gauge symmetry that is operative at an energy scale

of �1 TeV is assumed to be GSM �GTC. We shall mainly
focus on the case in which the technifermions to be in the
fundamental representation of GTC ¼ SUðNTCÞTC (while
sometimes giving more general results), and shall consider
the possible choices GTC ¼ SUð2ÞTC and GTC ¼ SUð3ÞTC.
The technicolor model is minimal in the sense that it
uses the minimum content of GEW-nonsinglet technifer-
mions necessary to achieve electroweak symmetry break-
ing, with the left-handed and right-handed components of
the technifermions transforming as

F�
L ¼ f�1

f�2

� �
L

: ð1; 2; dRTC
ÞYFL

(3.1)

and

f�1R: ð1; 1; dRTC
ÞYf1R

; f�2R: ð1; 1; dRTC
ÞYf2R

(3.2)

under GSM �GTC, where dRTC
denotes the dimension of

the representation RTC, and we again suppress the TC
index � in the notation. The electric charge operator is
Q ¼ T3L þ ðY=2Þ (in units of e), so the condition that
Uð1Þem be vectorial on these technifermions means that

1

2
þ YFL

2
¼ qf1L ¼ qf1R ¼ Yf1R

2
(3.3)

and

� 1

2
þ YFL

2
¼ qf2L ¼ qf2R ¼ Yf2R

2
: (3.4)

Hence,

1þ YfL ¼ Yf1R ; �1þ YfL ¼ Yf2R : (3.5)

The Lagrangian mass terms mf1
�f1�Lf

�
1R þ H:c: and

mf2
�f2�Lf

�
2R þ H:c: would explicitly break SUð2ÞL �

Uð1ÞY , and therefore these are set to zero.

IV. SUð2ÞTC 1DTC MODELS

Here, we take GTC ¼ SUð2ÞTC. If YFL
¼ 0, then the

theory with the fermions (3.1) and (3.2) is free of any
anomalies in gauged currents. It is also free of any global
SUð2ÞL anomaly, since it contains an even number,
NgenðNc þ 1Þ þ NTC ¼ 14 chiral SUð2ÞL doublets of
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fermions. (Of course, there is also no global SUð2ÞTC
anomaly whether the number of technifermions transform-
ing as fundamental representations of SUð2ÞTC is even or
odd, since these are Dirac fermions, corresponding to the
fact that the SUð2ÞTC theory is vectorial.) However, this
model is disfavored by the fact that, as �TC grows to a size
of order unity and the TC interaction eventually confines
and produces bilinear technifermion condensates and as-
sociated spontaneous chiral symmetry breaking at the scale
�TC, these condensates would most likely have an unde-
sired form. The condensates form in the most attractive
channel (MAC), which is 2� 2 ! 1. Vacuum alignment
arguments imply that the condensates should preserve the
maximal possible gauge symmetry and hence would have
the Majorana forms

h������0F��
L

TCF��0
L i ¼ 2h���0f�1LTCf�

0
2Li (4.1)

and

h���0f�1RTCf�
0

2Ri; (4.2)

where here �, � are SUð2ÞL indices and �, �0 are SUð2ÞTC
indices. These condensates are invariant under all gauge
symmetries, in particular, GEW. Hence, they would not
achieve the basic purpose of technicolor, which is electro-
weak symmetry breaking.

One might try to avoid this by assigning a nonzero weak
hypercharge YFL

to FL, which, by Eq. (3.5), would imply

that at least one of the fjR, j ¼ 1, 2, would also have

nonzero weak hypercharge. This modification would con-
tain nonzero gauge anomalies unless one also added more
fermions. A simple approach is to add an even number of
(color-singlet) technicolor-singlet fermions that transform
as doublets under SUð2ÞL. This number must be even to
avoid producing a global SUð2ÞL anomaly. The minimal
such number is two, and thus we add the following
color-singlet, technicolor-singlet fermions, forming two
left-handed SUð2ÞL doublets and four corresponding
right-handed SUð2ÞL-singlets

c L ¼ c 1

c 2

� �
L
; c jR; j ¼ 1; 2; (4.3)

and

c 0
L ¼ c 0

1

c 0
2

� �
L

; c 0
jR; j ¼ 1; 2; (4.4)

with respective weak hypercharges Yc L
, Yc 1R

, Yc 2R
, and

Yc 0
L
, Yc 0

1R
, Yc 0

2R
. It is a model-building choice whether or

not one attributes a nonzero lepton number to these fermi-
ons. We do not make a definite commitment concerning
this choice and hence do not refer to the c i or c 0

i as
leptons, but simply as color-singlet, technicolor-singlet
fermions. The hypercharges Yc L

, Yc 1R
, Yc 2R

satisfy rela-

tions analogous to (3.3), (3.4), and (3.5),

1

2
þ Yc L

2
¼ qc 1L

¼ qc 1R
¼ Yc 1R

2
(4.5)

and

� 1

2
þ Yc L

2
¼ qc 2L

¼ qc 2R
¼ Yc 2R

2
(4.6)

so that

1þ Yc L
¼ Yc 1R

; �1þ Yc L
¼ Yc 2R

: (4.7)

The Yc 0
L
, Yc 0

1R
, Yc 0

2R
satisfy the analogous relations with

primes. Then the gauge anomalies of the form

U ð1Þ3Y; SUð2Þ2LUð1ÞY; Gr2Uð1ÞY; (4.8)

where Gr denotes graviton, are satisfied if and only if

dRTC
YFL

þ Yc L
þ Yc 0

L
¼ 0: (4.9)

Explicitly, this equation reads 2YF þ Yc þ Yc 0 ¼ 0. The

solutions of this condition form a two-parameter set. In this
case, it is possible that the condensation of the technifer-
mions might proceed in the desired manner, yielding the
Dirac condensates

h �fi�Lf�iRi; i ¼ 1; 2: (4.10)

These condensates are equal for i ¼ 1 and i ¼ 2, up to
small corrections from weak hypercharge interactions, and
hence so are the associated dynamical technifermion
masses for f1 and f2. The condensates (4.10) for each
i ¼ 1, 2 break GEW to Uð1Þem, as desired. They transform
as �T3L ¼ 1=2 and �Y ¼ 1 operators and hence yield the
tree-level mass relation 
 ¼ 1, where


 � m2
W

m2
Zcos

2�W
; (4.11)

as is necessary to agree with experiment.
However, this desired pattern of condensation is not

guaranteed. It is also possible that, even with nonzero
weak hypercharge assignments, the theory would still pre-
fer to form the Majorana condensates (4.1) and (4.2) in-
stead of the Dirac condensates (4.10). If this happened,
then these Majorana condensates (4.1) and (4.2) would
break only the Uð1ÞY part of GEW, while preserving the
SUð2ÞL part. Both of the condensates (4.1) and (4.2) trans-
form as �Y ¼ 2YFL

operators. Indeed, this latter type of

condensation could actually be favored by a vacuum align-
ment argument on the grounds that it only breaks one of the
four generators ofGEW, while the Dirac condensates (4.10)
break all of the generators, leaving one linear combination
(the electric charge, Q) invariant. The use of the SUð2ÞTC
gauge group in the one-family technicolor models does not
encounter this problem because in that case the Majorana-
type condensates would break SUð3Þc and Uð1Þem and
hence are excluded by a vacuum alignment argument [26].
One way of avoiding this problem with undesired

condensates that has been investigated is to assign the
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technifermions to an adjoint representation of SUð2ÞTC
[4–9]. This is also useful in reducing technicolor contribu-
tions to W and Z propagator corrections. This model
often denoted the minimal walking technicolor (MTW)
model, since, first, it includes a minimal content of
GEW-nonsinglet technifermions, and, secondly, it can
achieve walking behavior with a minimal set of technifer-
mions. For our general discussion here, it will be useful to
remark on some properties of this model, especially con-
cerning vacuum alignment. Since the adjoint representa-
tion of SU(2) is equivalent to the vector representation of
SO(3), we may denote the left-handed technifermions as

~F L ¼ ~f1
~f2

 !
L

; (4.12)

and the right-handed technifermions as ~f1R, and ~f2R. The
number of SUð2ÞL chiral doublets is odd (equal to
NgenðNc þ 1Þ þ 3 ¼ 15), and hence one is led to introduce

one such SUð2ÞL, namely, the color-singlet, technisinglet
fermions of Eq. (4.3). The condition of zero gauge anoma-
lies is satisfied if and only if 3YFL

þ Yc L
¼ 0.

A basic question is whether the SUð2ÞTC theory with two
(massless) Dirac fermions in the adjoint representation
evolves into the infrared in the desired manner, with con-
finement and spontaneous chiral symmetry breaking via
the formation of bilinear fermion condensates that break
GEW to Uð1Þem, or whether, instead, it evolves to an infra-
red conformal phase with no such S
SB. Lattice studies
suggest that this theory evolves into the infrared toward an
exactir fixed point (IRFP) which is at a sufficiently small
value of �TC that there is no S
SB or formation of any
fermion condensates. Since one needs such condensates for
electroweak symmetry breaking, one would have to add
requisite four-fermion terms to allow S
SB at a smaller
value of �TC [7]. Presuming such a term is generated by an
ultraviolet completion, one then may examine the conden-
sates that form.

The most attractive bilinear fermion condensation chan-
nel is 3� 3 ! 1, and there are several condensates that,
a priori, could form in this channel. Since the scalar
product of two vectors of SO(3) is symmetric under inter-
change of the vectors, while the weak SUð2ÞL contraction
with ��� is antisymmetric, the resultant Majorana conden-

sate vanishes identically:

h��� ~F�T
L 	 C ~F�

Li ¼ 0: (4.13)

Hence, the ~f1L and ~f2L must condense via Dirac conden-
sates with the corresponding right-handed technifermions.
A vacuum alignment argument leads to the conclusion that
these condensates are

h �~f1L 	 ~f1Ri; h �~f2L 	 ~f2Ri: (4.14)

These transform as�T3L ¼ 1=2,�Y ¼ 1 operators, break-
ing GEW in the desired manner to Uð1Þem. The same

vacuum alignment argument implies that none of the
following condensates form: (i) the Dirac condensates

h �~f1L 	 ~f2Ri and h �~f2L 	 ~f1Ri, which transform as �T3L ¼
1=2 but violate charge, and (ii) the Majorana condensates

h ~fT1R 	 C ~f1Ri and h ~fT2R 	 C ~f2Ri, which preserve SUð2ÞL but
violate charge. For the case YFL

� 0, this argument also

implies that there is no formation of the Majorana conden-

sate h ~fT1R 	 C ~f2Ri, which would preserve SUð2ÞL and trans-
form as a �Y ¼ �Q ¼ 2YFL

operator. If YFL
¼ 0, this

condensate could form, but we shall demonstrate below
that the assignment YL ¼ 0 generically leads to a problem
with unobserved exotically charged matter. We next pro-
ceed to investigate a different class of technicolor models.

V. SUð3ÞTC 1DTC MODELS

A. General construction

Here, we construct and study models with the techni-
color gauge group SUð3ÞTC and technifermions transform-
ing according to the fundamental representation of this
group. These technifermions thus comprise the requisite
special case of Eqs. (3.1) and (3.2). Because the number of
SUð2ÞL chiral doublets is then odd, namely NgenðNcþ1Þþ
NTC¼12þ3¼15, it is necessary to add an odd number of
additional SUð2ÞL doublets to avoid a global SUð2ÞL anom-
aly. We choose to add the minimal number, viz., one, with
the color-singlet, technicolor-singlet fermions of Eq. (4.3).
The resultant theory is free of all anomalies in gauged
currents if and only if

dRTC
YFL

þ Yc L
¼ 0; i:e:; 3YFL

þ Yc L
¼ 0:

(5.1)

The solutions of this condition form a one-parameter set
[27]. It will be useful to give a general classification of the
types of solutions in this set. First, there are three discrete
special cases. We denote these with the abbreviations
ZY, SMY and RSMY, standing for ‘‘zero YFL

and Yc L
’’,

‘‘SM-type Y’’ and ‘‘reversed-sign SM-type Y’’ assign-
ments:

ZY: YFL
¼ Yc L

¼ 0 )
qf1 ¼ qf2 þ 1 ¼ qc 1

¼ qc 2
þ 1 ¼ 1

2
(5.2)

and, with NTC ¼ 3,

SMY: YFL
¼ 1

3
; Yc L

¼ �1 )

qf1 ¼ qf2 þ 1 ¼ 2

3
;

qc 1
¼ qc 2

þ 1 ¼ 0 (5.3)

or
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RSMY: YFL
¼ � 1

3
; Yc L

¼ 1 )

qf1 ¼ qf2 þ 1 ¼ 1

3
;

qc 1
¼ qc 2

þ 1 ¼ 0: (5.4)

Indicating the charges explicitly, we have, for the SUð2ÞL
doublets,

ZY : FL ¼ f�1ð1=2Þ
f�2ð�1=2Þ

� �
L

; c L ¼ c 1ð1=2Þ
c 2ð�1=2Þ

� �
L
;

(5.5)

SMY : FL ¼ f�1ð2=3Þ
f�2ð�1=3Þ

� �
L

; c L ¼ c 1ð0Þ
c 2ð�1Þ

� �
L
;

(5.6)

and

RSMY : FL ¼ f�1ð1=3Þ
f�2ð�2=3Þ

� �
L

; c L ¼ c 1ð1Þ
c 2ð0Þ

� �
L
;

(5.7)

with corresponding charge assignments for the f�jR and

c jR. Note that in the SMY case, even though the techni-

fermions f1 and f2 have the same electric charges as the
up-type and down-type quarks, respectively, they cannot
mix with these quarks, since this would violate the exact
SUð3Þc color symmetry (as well as the exact SUð3ÞTC
technicolor symmetry). The same statement applies for
the RSMY case, where fc2 and fc1 have the same electric
charges as the up-type and down-type quarks, respectively.
The SMY assignments coincide with the usual ones in the
standard model, and the RSMY assignments are obtained
by reversing the signs of the hypercharges in the SMY
case. Only for the SMY and RSMY cases is one of the c j

neutral; for the SMYand RSMY choices, respectively, this
is c 1 and c 2, as indicated in the equations above [28].
Note that one can equivalently describe the RSMY case in
terms of charge-conjugated fermions with SMY hyper-
charge assignments, viz., Fc

�;R, with Y ¼ 1=3, Lc
R with

Y ¼ �1, etc. In this form, the technifermions would trans-
form as conjugate fundamental, rather than fundamental,
representations of SUð3ÞTC. However, without loss of gen-
erality, we will keep the forms as in Eq. (5.4).

The others in the continuous one-parameter set of solu-
tions of the anomaly cancellation condition (5.1) form four
different classes:

I: Yc L
> 1; so qc i

> 0 for both i ¼ 1 and i ¼ 2

(5.8)

II: Yc L
<�1; so qc i

< 0 for both i¼ 1 and i¼ 2

(5.9)

III: � 1< Yc L
< 0; so 0< qc 1

<
1

2
and

� 1< qc 2
<� 1

2
(5.10)

and

IV: 0<Yc L
< 1; so

1

2
<qc 1

< 1 and � 1

2
<qc 2

< 0:

(5.11)

Restrictions on these hypercharge assignments will be
given below.

B. Option of augmenting the model for
walking behavior

As so far constructed, the SUð3ÞTC theory has only
Ntf ¼ 2 (Dirac) technifermions, which is well below the

range of values of Ntf where continuum and lattice studies

indicate that walking behavior occurs. Since this walking
property is desirable to enhance SM fermion masses (pro-
vided that the associated mass anomalous dimension is, in
fact, not too small), one thus looks for ways to augment the
fermion content of the theory so as to produce walking. In
order for this theory to have walking, one would choose the
content of technifermions to be such as to yield an ap-
proximate IR fixed point at a value �TC ¼ �IR that is
slightly greater than the minimum value for spontaneous
chiral symmetry breaking, denoted �cr. The key fact that
one can make use of is that although some technifermions
must be nonsinglets under GEW with representations as
given in Eqs. (3.1) and (3.2), other technifermins may be
GEW-singlets and, indeed, fully GSM-singlets. Since tech-
nifermions transforming like those in Eqs. (3.1) and (3.2)
contribute to W and Z propagator corrections, and since
one would like to minimize these contributions, one is thus
naturally led to choose any additional technifermions to be
GEW-singlets. These must also be color-singlets, since
otherwise some technivector mesons would transform as
color-octets, and one would encounter the same problem
with the LHC lower limits on the masses of such particles
that one does with one-family technicolor models. So the
additional technifermions that would be added for walking
behavior should be GSM-singlets. This type of device has
been used before to get walking, e.g., in [5]. Although it is
not mandatory to take these GSM-singlet technifermions to
transform according to the fundamental representation,
we shall do so here because this makes possible a simpler
embedding of the technicolor model in the eveloping ex-
tended technicolor theory. As we shall show in a later
section, the structure of the ETC ultraviolet extension of
the model is strongly affected by whether one includes or
does not include these additional GSM-singlet, technising-
let fermions.
In contrast to 1FTC models, in which all technifermions

are GSM-nonsinglets, in the present type of model
some technifermions are not just color-singlets, but also
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electroweak singlets. This fact, together with the fact that
the technicolor gauge interaction is vectorial, means that,
at the technicolor level, no gauge symmetry forbids
these GSM-singlet technifermions from having nonzero
Lagrangian masses in the effective Lagrangian that is op-
erative slightly above TeV scale. Consequently, there are, in
principle, two parameters that we may choose in determin-
ing the structure of theGSM-singlet technifermion sector of
the augmented model, namely, the overall number of such
fermions, and their masses. We begin with a discussion of
the case in which all of the technifermions have zero
Lagrangian masses and then proceed to remark on the
more general case in which some GSM-singlet technifer-
mions have nonzero Lagrangian masses. Throughout this
discussion, it should be recalled that all technifermions gain
dynamical masses of order �TC from the confinement and
formation of chiral-symmetry-breaking bilinear conden-
sates that form in the technicolor theory.

Analyses of the ladder approximation to the Dyson-
Schwinger equation for the technifermion propagator
suggest that �cr ¼ 	=ð3CfÞ, where Cf is the quadratic

Casimir invariant for the technifermion representation R
of SUðNTCÞ [19]. Setting this equal to the two-loop value of
�IR yields an estimate forNtf;cr, defined as the value ofNtf

such that, for Ntf < Ntf;cr and Ntf > Ntf;cr, the theory

evolves into the IR with S
SB and without S
SB, respec-
tively. In the former case, where S
SB occurs, the IRFP is
approximate, since when the technifermions condense and
gain dynamical masses, one integrates them out in the
effective low-energy field theory applicable below the
confinement and condensation scale �TC, so that the beta
function changes to a pure gauge beta function, which has
no perturbative IRFP [29]. In contrast, in the latter case of
no S
SB, the IRFP is exact, and the theory is conformal in
the IR. For NTC ¼ 3, this method yields the estimate
Ntf;cr ’ 12 [19]. Although the standard analysis of the

Dyson-Schwinger equation neglects instantons, which en-
hance spontaneous chiral symmetry breaking, it may still
achieve reasonable accuracy because it also neglects an
effect (having to do with a reduction in the integration
interval over virtual Euclidean momenta due to confine-
ment of the technifermions) that goes in the opposite
direction, reducing the tendency to S
SB [30]. There
have been a number of recent lattice studies of this theory
[31]. Higher-order calculations, up to four-loop order, of
the IR zero of the beta function, i.e., the value of the
approximate or exact IRFP, and of the technifermion
mass anomalous dimension � evaluated at this zero, have
also been given [32,33]. Since the model, as constructed so
far, has Nwk ¼ 2 Dirac technifermions in Eqs. (3.1) and
(3.2), one would envision adding Ntf;cr � 2 additional

massless Dirac technifermions. One would choose these
additional technifermions to be singlets under GEW (as
well as SUð3Þc) to ensure that they do not contribute to
modifications of the W and Z propagators. The number of

SUð2ÞL-doublet technifermions is denoted Ntf;ewd and the

additional, GEW-singlet (ews), technifermions is denoted
as Ntf;ews, so that the total number of technifermions in the

theory is Ntf ¼ Ntf;ewd þ Ntf;ews ¼ 2þ Ntf;ews.

More generally, one could allow the possibility that
some of the GSM-singlet technifermions may have nonzero
Lagrangian masses. A constraint on these masses is that
they should be small enough, relative to the scale�w where
�TC grows to O(1), so that the technifermions still contrib-
ute enough to the beta function coefficients to give rise to
the approximate IRFP that, in turn, yields walking behav-
ior. For if this condition were not met, i.e., if some techni-
fermion masses were larger than�w, then they would have
been integrated out of the low-energy effective theory
applicable at scales below �w, and thus would not contrib-
ute to the beta function in this theory. In the absence of
all Lagrangian masses for the technifermions, if one turned
off all other gauge interactions, this theory would have a
large (nonanomalous) global chiral symmetry group
SUðNtfÞL � SUðNtfÞR � Uð1ÞV , which would be spontane-

ously broken by the various condensates, giving rise to
various GSM-singlet Nambu-Goldstone bosons. Since
NGBs have derivative couplings, their interaction ampli-
tudes are attenuated at low energies

ffiffiffi
s

p
by factors offfiffiffi

s
p

=fTC / ffiffiffi
s

p
=�TC. The presence of nonnegligible and,

in general, nondegenerate, Lagrangian masses for these
electroweak-singlet technifermions would reduce the for-
mal global chiral symmetry group and increase the masses
of the (P)NGBs.

C. Instanton breaking of number symmetries

We next discuss the SUð2ÞL instanton-induced breaking
of certain global number symmetries. By an extension of
the analysis carried out in Ref. [34], we see that, in addition
to the breaking of quark number Nq and baryon number,

B ¼ NcNq ¼ 3Nq by SUð2ÞL instantons, these also break

the number symmetry associated with the c L fields and
the SUð2ÞL-doublet technifermions, and hence also total
technibaryon number, BTC, even though a subset of the
fermions contributing to this are SUð2ÞL-singlets. At tem-
peratures low compared with the electroweak scale, these
SUð2ÞL instantons are exponentially suppressed, but at
temperatures higher than this scale, they are not suppressed
[35].

D. Phenomenology of and constraints on c fermions

The color-singlet, technisinglet c fermions are a notable
feature of this type of TC/ETC model, because if one
retains the normal property of the SM, that quarks and
leptons come in families for each generation, then one
cannot assign a generation index to these c fermions, since
there is no corresponding fourth generation of quarks.
Note that, even before dealing with phenomenological
constraints on a fourth generation of quarks, one would
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not want to add them to this model, since this reinstates the
problem of an odd number of SUð2ÞL doublets. Thus, with
the c fermions, one has a qualitatively new kind of (tech-
nisinglet) fermion, namely, one with no usual generational
index. Alternately, if one were to consider the c fermions
as a fourth generation of leptons, then this would, ipso
facto, redefine the meaning of the term ‘‘generation’’,
which hitherto had meant a family of SM quarks and
leptons. This has important implications for an ETC the-
ory, since it requires one to postulate a new kind of ETC
gauge-mediated transition between the c fermions and
technifermions that does not involve the usual generational
index. This transition is necessary in order for ETC inter-
actions to give masses to these c fermions. Indeed, the
masses of c 1 and c 2 must be quite large in order not to
conflict with current lower mass limits from LEP and
hadron colliders. (Actually, c 1 and c 2 are group eigen-
states and not, in general, mass eigenstates; here and below,
when we refer to the masses of c j, j ¼ 1, 2, we mean the

primary mass eigenstates in these group eigenstates.)
The phenomenology of the c fermions depends on the

hypercharge assignment that is made to define the model.
We proceed to derive constraints on this assignment. For
the hypercharge assignments ZY and I–IV, neither c 1 nor
c 2 is electrically neutral. In these cases, no mixing can
occur between c 1 or c 2 (or their conjugates) and the SM
leptons, and, as a consequence, the lighter member of the
set fc 1; c 2g is stable. We denote this lighter (‘) member as
c ‘ and the heavier (h) member as c h. In the early uni-
verse, as the temperature T decreases below the scale of the
mass mc ‘

, there will generically be residual c ‘’s or their

charge conjugates, c c
‘’s, depending on initial c -number

asymmetries and physics in the UV completion of the
theory that could give rise to such asymmetries. First, let
us consider the case in which there is a residual population
of c ‘ fermions. There are then two subcases to analyze.
With hypercharge assignments for which the c ‘ is nega-
tively charged, as the temperature cools sufficiently, this
fermion will form Coulombic bound states with protons,
ðpc ‘Þ. With hypercharge assignments for which the c ‘ is
positively charged, this fermion will form Coulombic
bound states with electrons, ðec ‘Þ. We treat these subcases
in sequence. For the subcase with qc ‘

< 0, which leads to a

ðpc ‘Þ bound state, the binding energy in the ground state
is, to lowest order in �em, [36],

EC½ðpc ‘Þ� ¼
q2c ‘

�2
em�pc ‘

2
’ q2c ‘

�2
emmp

2
; (5.12)

where �ij is the reduced mass

�ij ¼
mimj

mi þmj

: (5.13)

To infer the last equality of Eq. (5.12), we have used the
fact that �pc ‘

’ mp, since mc ‘

 mp as required by

current data. Hence, numerically,

EC½ðpc ‘Þ� ¼ ð25:0 keVÞq2c ‘
: (5.14)

Similarly, for the subcase with qc ‘
> 0, which leads to a

ðec ‘Þ bound state, the binding energy in the ground state is

EC½ðec ‘Þ� ¼
q2c ‘

�2
em�ec ‘

2
’ q2c ‘

�2
emme

2
; (5.15)

where here �ec ‘
’ me, since mc ‘


 me. Hence, numeri-

cally, for this subcase,

EC½ec ‘Þ� ¼ ð13:6 eVÞq2c ‘
: (5.16)

These Coulombic bound states would thus form as kBT
decreases below the respective EC values in Eq. (5.14) or
(5.16). They would be stable heavy states with masses in
excess of 100 GeVand nonintegral electric charges. There
could also be Coulombic bound states involving multiple
c ‘’s with higher-Z nuclei in the case where qc ‘

< 0.

Extensive searches for massive states with exotic, non-
integral charges have been carried out in matter (often as
part of free quark searches), reaching very stringent upper
limits on their concentration, measured in terms of
the number fraction Nec=Nnuc, where ec denotes exotic-
charge, and Nec and Nnuc are the respective numbers of
exotic-charge particles and nucleons in a given sample
[25,37–39]. Let us denote Qec as the charge of the exoti-
cally charged (ec) particle (in units of e, as usual). These
95% CL upper bounds include [38]

Nec

Nnucl

< 1:17� 10�22 for 0:18< jqecj< 0:82; (5.17)

and [37]

Nec

Nnucl

< 4:71� 10�22 for jqecj> 0:16: (5.18)

Many experiments looking for particles with exotic electric
charges have been motivated by the search for free
quarks, and hence have focused on the values jqj ¼ 1=3
and jqj ¼ 2=3 (in units of e). Some of these have reported
considerably more stringent upper limits on Nec=Nnucl,
extending down to �10�26 [40]. A remark is in order
here concerning the possibility that the hypercharge as-
signments are such that jqc ‘

j � 1. There have been a

number of searches for such electrically charged particles
with charges whose magnitude is much smaller than 1 (in
units of e), often called ‘‘milli-charged’’ particles [41].
These have again set very stringent upper limits on such
particles. Recent reviews of searches for fractionally
charged particles include Refs. [25,39].
To complete our discussion, we consider the other case,

where the c -number asymmetry is such that there is a
residual abundance of c c

‘ rather than c ‘ fermions. Then a

similar argument applies. With hypercharge assignments
for which the c c

‘ is negatively charged, as the temperature

cools sufficiently, this fermion will form Coulombic bound
states with protons, ðpc c

‘Þ, and for hypercharge assign-

ments for which the c c
‘ is positively charged, this fermion
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will form Coulombic bound states with electrons, ðec c
‘Þ.

As before, these are ruled out down to extremely low
number densities by experimental searches. These limits
disfavor hypercharge assignments for which neither c 1 nor
c 2 is electrically neutral.
Combining these results, we infer that the hypercharge

assignments ZY and I–IV are generically disfavored by
upper limits on exotic-charged particles in matter. This
leaves the discrete hypercharge assignments (5.3) and
(5.4) as being generically allowed. We note some caveats
concerning this exclusion result. First, it is, in principle,
possible that, in contrast with normal matter, there was a
negligibly small c ‘-particle number asymmetry in the
early universe and the c ‘ and c c

‘ particles annihilated to

very high precision (before forming Coulombic bound
states), leaving an undetectably small residual population
of these fermions or antifermions. A second type of ex-
ception would hold for values of hypercharge such that the
magnitude of the charge jqc ‘

j is extremely close to 1 and

mc ‘
happens to be such that the Coulombic bound states

could be experimentally indistinguishable from neutral
atoms of a usual heavy nucleus. However, we also note
that the type of reasoning that we have used to disfavor
various hypercharge assignments is evidently more general
than the particular case of NTC ¼ 3 and technifermions in
the fundamental representation, and can also be applied to
other TC/ETC models [42]. A comment is in order con-
cerning possible Coulombic bound states of the c fermi-
ons with technibaryons. As will be discussed below, the
lightest technibaryon is likely to be electrically neutral.
Hence, it is unlikely that such bound states would form.

We discuss some further phenomenology pertaining to
the two allowed hypercharge cases denoted SMY and
RSMY. For the SMY case, the c 1 is electrically neutral
and would contribute to the invisible decay width of the Z
unless its mass is greater than mZ=2, and similarly for the
c 2 in the RSMY case. The measurement of the invisible
width of the Z by LEP I and its consistency with three light
SUð2ÞL-doublet neutrinos thus implies that in these two
respective cases, mc ‘

> mZ=2, so that these decays are

kinematically forbidden. Even stronger lower bounds
have been obtained from analyses of LEP II data, which
imply that such a fourth SUð2ÞL-doublet lepton-like fer-
mion, either neutral or charged, must have a mass greater
than about 90–110 GeV, where the range reflects model-
dependent details of how these mix with, and couple to, the
known leptons [25,43].

To give the c i masses that are large enough to satisfy
these experimental constraints poses a challenge for this
type of model. With such large masses, one must also be
careful that the model yields a value of the ratio mc 1

=mc 2

that is sufficiently close to unity to avoid an excessively
large contribution to the 
 parameter measuring the
violation of custodial symmetry. We discuss this further
below.

For the SMY case, c 1 and c 2 can mix with the usual
three generations of neutrinos and charged leptons, respec-
tively. These mixings affect the weak charged-current de-
cays of the c j, j ¼ 1, 2. Moreover, there will also be

decays of the c j, j ¼ 1, 2, that are mediated by weak

neutral currents. To see why these occur, we recall that the
necessary and sufficient conditions for the diagonality of
the leptonic neutral weak current are that leptons of a given
electric charge and chirality must have the same weak T
and T3 (equivalently, weak T and Y) [44]. In general, the
presence of electroweak-singlet neutrinos renders the lep-
tonic neutral weak current nondiagonal, and hence this is
true for the present model, both because of the �i

R in the
standard model augmented to include neutrino masses and
because of the c 1R and c 2R. This follows because we
can write a �R as �c

L for any generation, and c jR as c c
jL.

Consequently, in addition to charged-current decays, there
are also has neutral-current decays of these leptons. A
similar discussion applies for the RSMY case, where
charge conservation allows the c 2 to mix with neutrinos
and the c 1 to mix with charged leptons.

E. Some phenomenology of the technihadrons

Another topic of interest is the technihadrons in the
model. We begin with the technibaryons. There are several
possibilities here. As noted above, the fi have zero
Lagrangian masses, since these would break the electro-
weak gauge symmetry. Because of the formation of the
technifermion condensates (4.10) at �TC, these technifer-
mions f1 and f2 gain dynamical masses that are, up to
small hypercharge corrections, equal to each other. There
are several resultant spin-1=2 and spin-3=2 technibaryons
for this NTC ¼ 3 case. The classification of these is similar
to the classification of the usual baryons composed of u and
d quarks. The lightest technibaryons would be the spin-1=2
techninucleons (using lower indices),

pTC ¼ ðf1f1f2Þ; nTC ¼ ðf2f2f1Þ: (5.19)

These have electric charges

qpTC
¼ 1; qnTC ¼ 0 for SMY case

qpTC
¼ 0; qnTC ¼ �1 for RSMY case

(5.20)

Since the technifermions have zero Lagrangian masses,
and gain dynamical masses that are equal (of order �TC),
up to small electromagnetic corrections, the techniproton
and technineutron are almost degenerate, with masses
given, to leading order, by

mpTC;nTC

mp;n
’ �TC

�QCD

’ fTC
f	

�
Nc

NTC

�
1=2

: (5.21)

Hence, with fTC ’ 125 GeV, and NTC ¼ 3, it follows that

mpTC;nTC ’ 1:25 TeV: (5.22)
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There would be an electromagnetic mass splitting between
these techninucleons (TCNs) of order

jmpTC
�mnTC j �

�em

RTCN

� �em�TC � fewGeV; (5.23)

where RTCN is the spatial size of a techninucleon. The
techninucleon that is charged (viz., pTC for the SMY
case and nTC for the RSMY case) is heavier, because of
its Coulombic self-energy [45]. For the SMY case, the pTC

would thus decay via a weak charged-current transition to
the nTC via the channels

SMY: pTC ! nTC þ eþ þ �e;

pTC ! nTC þ�þ þ ��;

pTC ! nTC þ fhadronsgþ; (5.24)

where in the last line, fhadronsgþ refers to the possible
hadronic final states that can be produced with a few GeV
of energy, including 	þ, 	þ	0, 
þ, and states with higher
pion multiplicity. If the mass splitting between pTC and
nTC is large enough, the decay pTC ! nTC þ �þ þ ��

might also occur, although it would, in any case, be sup-
pressed by the small phase-space available. Since both the
masses and the magnitude of the mass splitting for these
techninucleons are larger than those of the actual nucleons
by the factor fTC=f	, a rough estimate of the decay rate
�ðpTC ! nTC þ ‘þ þ �‘Þ for ‘ ¼ e or ‘ ¼ � could be
obtained by simple scaling as

�ðpTC ! nTCþ ‘þþ�‘Þ ’ �ðn! pþ e�þ ��eÞ
�
�TC

�QCD

�
5
;

(5.25)

where �ðn ! pþ e� þ ��eÞ ¼ 1=�n, with �n ¼
0:886� 103 sec. and �TC=�QCD ’ ðfTC=f	Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=NTC

p ¼
fTC=f	 in the present model with NTC ¼ 3. For the
inclusive weak decay rate, neglecting phase-space sup-
pressed modes, we can estimate �ðpTCÞ ¼
ð2þ NcÞ�ðpTC ! nTC þ ‘þ þ �‘Þ. Combining this with
Eq. (5.25), we obtain the estimate for the lifetime

�pTC
� 1

5

�
f	
fTC

�
5
�n ’ 10�15 sec: (5.26)

The time t in the early universe by which the temperature T
has decreased to T �mpTC

� 1 TeV is t� 10�12 sec.

After this time, within a few e-foldings of the lifetime
�pTC

, most of the pTC techninucleons would have decayed

to nTCs’s.
An analogous discussion, with obvious changes, applies

for the case of RSMY hypercharge assignments. Thus,
here,

RSMY: nTC ! pTC þ eþ ��e;

nTC ! pTC þ�þ ���;

nTC ! pTC þ fhadronsg�: (5.27)

Similarly, the nTC lifetime, �nTC , for the RSMY case, would

be essentially equal to �pTC
for the SMY case. In each of

these two respective cases, the lightest technibaryon would
be stable against weak decay. Although this technibaryon
would be electrically neutral, it would not be a weakly
interacting massive particle (WIMP), for several reasons.
First, it is composed of electrically charged technifer-
mions, and these could interact with a photon via magnetic
and electric form factors, just as is the case with the actual
neutron. Second, it would have residual strong interactions
via exchange of technipions (the longitudinal components
of W and Z bosons), on the length scale �1=mW;Z and

further strong residual interactions via exchange of techni-
vector mesons, on the length scale of �1=ð1 TeVÞ. Some
related work on technibaryons as possible sources of dark
matter is in Refs. [6,46,47]. We shall not pursue this topic
here, but it merits further study.
There would also be heavier, spin-3=2 technibaryons,

split in mass from these techninucleons by the technigluon
hyperfine interaction,

ðf1f1f1Þ; ðf1; f1; f2Þ; ðf1; f2; f2Þ; ðf2; f2; f2Þ
(5.28)

with respective charges 2, 1, 0,�1 and 1, 0,�1,�2 for the
SMY and RSMY cases. The spectrum of the technicolor
theory would also contain mesons with various JPC values
and techniglueballs. The three true Goldstone bosons are
absorbed by the W� and Z, but there would be some
(pseudo) Nambu-Goldstone bosons (PNGBs) involving
the additional GSM-singlet technifermions included for
walking behavior. The masses of these PNGBs would
depend on the bare masses that we assigned to these addi-
tional GSM-singlet technifermions. If these masses were
small compared with�TC, so that the PNGBs were close to
being true NGBs, they would be characterized by deriva-
tive couplings and hence would tend to decouple at ener-
gies low compared with �TC.

F. TC corrections to W and Z propagators

Although perturbation theory cannot be used to estimate
the technicolor contribution to W and Z propagator cor-
rections, since the technicolor interaction is strongly
coupled at the mass scale mW and mZ, one nevertheless
often refers to the perturbative estimate as a crude guide.
The most important of these W and Z propagator correc-
tions are embodied in the S and T parameters [48]. As
background, we recall that the fermions in Eq. (3.1) and
(3.2) have zero Lagrangian masses and gain dynamical
masses from the confinement and spontaneous chiral sym-
metry breaking at the scale �TC, due to their technicolor
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gauge interactions. Since GEW interactions are quite weak
at the scale �TC, these dynamical masses of f1 and f2 are
equal, up to small corrections. In QCD, the constituent
(dynamical) quark masses are roughly 330 MeV, while
f	 ¼ 93 MeV. If one takes the ratio of the dynamical
technifermion mass divided by f	 to be roughly similar
to the ratio ð330 MeVÞ=ð93 MeVÞ ¼ 3:5 in QCD, then the
technifermion dynamical mass �TC ’ 850 GeV. Hence,
m2

Z=�
2
TC ’ 1� 10�2.

We recall that for the case with one doublet of fermions,
as in Eq. (3.1) and (3.2) with masses that are approximately
degenerate and are large compared with mZ, the perturba-
tive contribution to the S parameter is �Spert ¼ 1=ð6	Þ. If
the technicolor theory has ND SUð2ÞL doublets of techni-
fermions and these transform as the representations R of
GTC, then one has

ð�SÞpert ¼
NDdRTC

6	
: (5.29)

For the SUð3ÞTC theory, dRTC
¼ 3, so that the perturbative

estimate of the contributions of the technifermions to S is
ð�SÞpert ¼ 1=ð2	Þ ’ 0:16.

We also need to analyze the effects of the c fields.
Because these are technisinglets, they are weakly interact-
ing at the scale mZ, so that their contributions to loop
corrections to the W and Z propagators can be reliably
calculated perturbatively. For the same reason, higher-loop
corrections due to these c fields are expected to be rea-
sonably small compared to the one-loop correction. We use
the exact one-loop expression for the contribution to S,
which is (e.g., [49])

ð�SÞc ¼ 1

6	
½2ð3þ 2Yc L

Þr1 þ 2ð3� 2Yc L
Þr2

� Yc L
lnðr1=r2Þ þ 1

2
½ð3þ 2Yc L

Þr1 þ Yc L
�Gðr1Þ

þ 1

2
½ð3� 2Yc L

Þr2 � Yc L
�Gðr2Þ�; (5.30)

where

ri ¼
�
mc i

mZ

�
2

(5.31)

and

GðrÞ ¼ �4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r� 1

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r� 1
p

�
: (5.32)

Note that

ð�SÞc is invariant under the interchangemc 1
$ mc 2

with Yc L
! �Yc L

: (5.33)

It follows that ð�SÞc does not depend on Yc L
if

mc 1
¼ mc 2

. For the experimentally allowed range of

mc j
, j ¼ 1, 2, lying about 100 GeV, the exact expression

is well approximated by

ð�SÞpert ¼ 1

6	

�
1� 2Yc L

ln

�
mc 1

mc 2

�
þ ð1þ 4Yc L

Þ
20

�
mZ

mc 1

�
2

þ ð1� 4Yc L
Þ

20

�
mZ

mc 2

�
2 þO

�
m4

Z

m4
c i

��
: (5.34)

If c 1 and c 2 are nearly degenerate, they simply contribute
an additional amount 1=ð6	Þ to S, so that, combining this
with the rough perturbative estimate of the technifermion
contributions, one would obtain, as the estimate of the total
new addition to S, the result ð�SÞpert ¼ ð3þ 1Þ=ð6	Þ ¼
2=ð3	Þ ¼ 0:21. Mixing of the W and Z with charged and
neutral technivector mesons, respectively, also affects
these corrections. The property of walking might reduce
this contribution to S somewhat [50], but one already
knows that in QCD-like theories, the full nonperturbative
contribution to S is larger than the perturbative estimate by
approximately a factor of 2 [48], so it could be challenging
to try to reduce this sufficiently, even in a walking TC
theory. The value S ’ 0:2 is larger than the region of S
values (forming a tilted elliptical region in an S-T plot
[51]) favored by experiment.
Therefore, to minimize the c contributions to S, one

would want to have the following mass orderings:

mc 1
<mc 2

for SMY case (5.35)

and

mc 1
>mc 2

for RSMY case: (5.36)

In both cases, the second term,�2Yc L
lnðmc 1

=mc 2
Þ, in the

square brackets in Eq. (5.34) is negative and helps to
reduce the contribution to S from the first term. Note that
in both of these cases, the mass orderings that minimize the
contribution to S are such that the neutral member of the c
doublet is lighter than the charged member. It will be useful
to consider two illustrative sets of mass values,

SMY : mc 1
¼ 120 GeV; mc 2

¼ 160 GeV (5.37)

and

RSMY : mc 1
¼ 160 GeV; mc 2

¼ 120 GeV (5.38)

as well as a continuous variation of the heavier c in each
case, with the lighter c fixed at the value of 120 GeV. The
amount by which mc 2

=mc 1
can exceed unity in the SMY

case, or mc 1
=mc 2

can exceed unity in the RSMY case, is

constrained in at least two ways. First, it is a challenge in
this model for the ETC interaction to produce such large
masses for both c 1 and c 2, and this challenge is especially
severe for the heavier of these, in the two respective cases.
Given the experimental lower limit on the lighter of the
two,mc ‘

, the more one tries to increase the ratiomc h
=mc ‘

,

the more of a problem it is to achieve this with credible
ETC interactions. Second, the larger the ratio of, and the
splitting between, the masses of the heavier and lighter of
the c s, the greater is the violation of custodial symmetry
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and the larger is the contribution to the 
 parameter. This is
given by

�
 ¼ GF

8	2
ffiffiffi
2

p fðm2
c 1
; m2

c 2
Þ ¼ fðm2

c 1
; m2

c 2
Þ

16	2v2
; (5.39)

where v ¼ 2mW=g ¼ 246 GeV and

fðx; yÞ ¼ xþ y� 2xy

x� y
ln

�
x

y

�
: (5.40)

As is evident from Eq. (5.40), fðx; yÞ ¼ fðy; xÞ and
fðx; xÞ ¼ 0. The corresponding contribution to T is
�T ¼ �emðmZÞ�1�
. By convention, T is defined with
the SM contribution from the t quark removed. Any new
contribution is restricted experimentally to lie within the
tilted elliptical region in the S, T plane [51]. With the
illustrative mass values (5.37) and ((5.38) for the SMY
and RSMY hypercharge assignments, respectively, we
find that the additional contribution from the c fermions
to S is 0.022. For comparison, if c 1 and c 2 had degenerate
masses equal to the smaller value, mc 1

¼ mc 2
¼

120 GeV, then this contribution would be 0.056, while if
they had degenerate masses equal to the larger value,
mc 1

¼ mc 2
¼ 160 GeV, then this contribution would be

0.055, so there is a significant reduction in S due to the
nondegeneracy in masses of c 1 and c 2. Summing this
with the technifermion contribution, we have, for the given
hypercharge assignment and these illustrative sets of c j

values for the SMYand RSMY cases, the total perturbative
estimate that the new GEW-nonsinglet fermions in this
model contribute ð�SÞpert ’ 0:18. This is on the high side

of the values preferred by current global precision electro-
weak fits, but appears to be admissible. For the same c j

masses, we find that the new contribution to T is 0.03,
which is easily small enough to be allowed by experimen-
tal constraints. Thus, the main restriction on how large the
ratio mc h

=mc ‘
can be comes more from the difficulty of

producing such a heavy c h from reasonable ETC inter-
actions than from the 
 (T) parameter.

Generalizing this analysis, in Fig. 1, we show the total
estimate for �S from the technifermions and the c fermi-
ons, as a function of mc 2

>mc 1
for the SMY case, with

mc 1
fixed at the value of 120 GeV. In Fig. 2 we plot the

corresponding contribution from the nondegenerate c 1

and c 2 fermions to T. The same figures apply for the
RSMY case with mc 1

and mc 2
interchanged. If we restrict

�T to be less than, say, 0.1, then this restricts the heavier of
the c js, i.e., mc 2

for SMY and mc 1
for RSMY, to be less

than approximately 195 GeV.
With the mass ordering (5.35) for the SMY hypercharge

case, the ðc 2Þ� will decay to ðc 1Þ0 via a charged-current
weak transition, via a virtual W� which could produce
‘� ��‘ with ‘ ¼ e, �, �, as well as d �u and s �c. Similarly,
with the mass ordering (5.36) for the RSMY hypercharge
case, the ðc 1Þþ will decay to ðc 2Þ0, producing ‘þ�‘, u �d,
and c�s final states. Treating these cases together, it follows

that the inclusive weak decay rate of the c h due to these
charged-current decays would be �ðc hÞ ¼ ð3þ 2NcÞ��,

up to phase-space factors reflecting the substantial mass of
c ‘ relative to c h. If we neglect mixing effects, then for the
illustrative values (5.37), using a calculation of the phase-
space suppression factor, of 3� 10�3, from Ref. [52], we
obtain the rough estimate

�c h
’ 1

9
� ð3� 102Þ

�
m�

mc 2

�
5
��

’ ð10�20 secÞ
�
160 GeV

mc h

�
5
: (5.41)
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FIG. 1. Contribution to S from technifermions and the c
fermions, as a function of mc 2

in units of GeV, with mc 1
fixed

at the illustrative value mc 1
¼ 120 GeV, for the SMY hyper-

charge assignments of Eq. (5.3). The same figure applies to the
RSMY hypercharge assignments with mc 1

and mc 2
inter-

changed.
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FIG. 2. Contribution to T from the c fermions, as a function of
mc 2

in units of GeV, with mc 1
fixed at the illustrative value

mc 1
¼ 120 GeV. The contribution to T is invariant under the

interchange of mc 1
and mc 2

.
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There will also be mixing effects that would allow c h to
undergo charged-current decays without such phase-space
suppression, but this is already a very short lifetime. We
note that, owing to the fact that the leptonic weak neutral-
current contains nondiagonal terms [44], the c h could also
decay via neutral-current reactions, which would reduce its
lifetime.

VI. EXTENDED TECHNICOLOR THEORIES
CONTAINING 1DTC SECTORS

A. General

So far we have studied technicolor models which have a
minimal, single SUð2ÞL doublet of left-handed technifer-
mions, together with corresponding right-handed techni-
fermions (all of which are color-singlets), as in Eqs. (3.1)
and (3.2), focusing on the case of GTC ¼ SUð3ÞTC with
technifermions in the fundamental representation. We have
analyzed some phenomenological restrictions on this
model and have noted the optional addition of a set of
GSM-singlet technifermions to get walking behavior. We
now proceed to analyze properties of extended technicolor
theories that contain these technicolor sectors. We use the
term ‘‘ultraviolet extension’’ to refer to these, rather than
the more ambitious term ‘‘ultraviolet completion’’, be-
cause additional ingredients would be needed to account
fully for the precise values of the fermion masses and
mixings, etc.

The basic purpose of extended technicolor is to
communicate the electroweak symmetry breaking in the
technifermion sector to the SM fermions, which are tech-
nisinglets, and thereby to give them masses. As was noted
in the introduction, because some ETC gauge bosons trans-
form as fundamental representations of SUð3Þc, it follows
that commutators of the corresponding generators of GETC

with their hermitian conjugates yield generators that trans-
form according to the singlet and adjoint representation
of SUð3Þc, which implies the structural property (1.1). With
Ggen ¼ SUð3Þgen and GTC ¼ SUð3ÞTC, Eq. (1.1) takes the
form, for non-Abelian factor groups,

GETC � SUð3Þc � SUð3Þgen � SUð3ÞTC: (6.1)

In 1DTC models the ETC gauge bosons also carry weak
hypercharge, Y. The structure of the ETC theory depends
on whether or not one includes the additional GSM-singlet
fermions. To have a compact notation to refer to these two
types of 1DTC theories, we introduce the abbreviations
1DTCM and 1DTCA for the minimal 1DTC model and the
1DTC model augmented with the additional GSM-singlet
technifermions. Although the 1DTCM model, without ad-
ditional ingredients, does not exhibit walking behavior, it
serves as a useful contrast to the 1DTCA model as regards
respective ETC theories. The structural formula, Eq. (6.1)
holds for both 1DTCM and 1DTCA models; however, as

we will show, GETC also includes SUð2ÞL as a subgroup in
the case of the 1DTCA model.

B. ETC Ultraviolet extension of a 1DTCM model

Although the exchanges of ETC gauge bosons that
produce the masses of the SM fermions and of the c
fermions involve strong coupling and nonperturbative
physics, the quantum numbers carried by the ETC gauge
bosons can be determined by an analysis of the basic
perturbative vertices. For the 1DTCM model, one can
group the various types of fermions of a given chirality

 ¼ L, R in the two sets

½fuaig; f�ig; f�1 ; c 1�
 (6.2)

and

½fdaig; f‘ig; f�2 ; c 2�
; (6.3)

where a, i, and � are color, generation, and technicolor
gauge indices, and fuaig and fdaig denote the respective sets
of Q ¼ 2=3 and Q ¼ �1=3 quarks, each with NgenNc ¼ 9

members, f�ig and f‘ig denote the corresponding sets of
Ngen ¼ 3 neutrinos and leptons, and the other fermions

were given in Eqs. (3.1), (3.2), and (4.3). Some ETC-
mediated transitions operate within each set. Among these
are, first, vectorial transitions of the form qai ! qbi, where
q ¼ u or q ¼ d, mediated by the color gluons in the
SUð3Þc subgroup of Eq. (1.1). Secondly, there are vectorial
technicolor transitions f�j ! f�

0
j , j ¼ 1, 2, mediated by the

technigluons of theGTC subgroup in Eq. (1.1). Third, there
are transitions involving generational indices, qai ! qaj,
where q ¼ u or q ¼ d, �i ! �j, and ‘i ! ‘j, involving
ETC gauge bosons in the SUð3Þgen subgroup in Eq. (1.1).

Then there are the ð42Þ ¼ 6 types of ETC-mediated transi-
tions between each group of fermions in the set (6.2) and,
separately, in the set (6.3). Of these six types of transitions,
three enable the SM fermions and the c fermions to make
transitions to technifermions and hence pick up masses.
The other three involve transitions between the subsets of
fermions fuaig, f�jg, and c 1 on the one hand, and, sepa-
rately, between fdaig, f‘jg, and c 2. Moreover, various
commutators of the nondiagonal ETC generators corre-
sponding to these gauge bosons and their hermitian con-
jugates produce diagonal generators in Cartan subalgebras
of GETC.
An important property of the 1DTCMmodel is that there

is a 1–1 correspondence between the fermions in the set
(6.2) and in the set (6.3). This reflects a kind of left-right
extension of the basic SUð2ÞL symmetry according to
which the upper member of an SUð2ÞL doublet can be
transformed into the lower member of the same doublet.
In particular, this means that all ETC-mediated transitions
occur between chiral fermions that transform in the same
way under SUð2ÞL (as doublets for all left-handed fermi-
ons, and singlets for all right-handed fermions). Therefore,
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in the 1DTCM model, all ETC gauge bosons are SUð2ÞL
singlets, and

½GETC; SUð2ÞL� ¼ ; for 1DTCMmodel: (6.4)

This commutativity does not hold in 1DTCA models, as
will be discussed below.

An analysis of the basic vertices and associated transi-
tions determines the quantum numbers of the ETC gauge
bosons. In addition to the gauge bosons in the SUð3Þc,
SUð3Þgen, and SUð3ÞTC subgroups of GETC, we have, for

both 1DTCM and 1DTCA models, the following transi-
tions involving fermions, where, as before, a, i, and �
are color, generation, and technicolor gauge indices and

 ¼ L, R:

uai
 ! f�1
 þ Vai
� ; dai
 ! f�2
 þ Vai

� ; (6.5)

�i

 ! f�1
 þ Vi

�; ‘i
 ! f�2
 þ Vi
�; (6.6)

and

c 1
 ! f�1
 þ V�; c 2
 ! f�2
 þ V�: (6.7)

Three other types of transitions, with their associated ETC
gauge bosons, are

uai
 ! �j

 þ Vai

j ; dai
 ! ‘j
 þ Vai
j ; (6.8)

uai
 ! c 1
 þ Vai; dai
 ! c 2
 þ Vai; (6.9)

and

�i

 ! c 1
 þ Vi; ‘i
 ! c 2
 þ Vi: (6.10)

One can read off from these transitions the representation
content of the associated ETC gauge bosons under the
product group (6.1). We list these in Table I. Hermitian
conjugates of ETC gauge bosons corresponding to
nondiagonal generators are understood; for example,
V�
ai ¼ ðVai

� Þy, etc. ETC gauge bosons corresponding to
diagonal, Cartan generators occur in a block-diagonal

manner in accordance with the subgroup structure of
Eq. (6.1). Since the ETC gauge bosons are
SUð2ÞL-singlets for a 1DTCM model, it follows that their
electric charges are given by QV ¼ YV=2.
As for one-family TC/ETC models, in order for ETC

interactions to account for the generational hierarchy
in SM fermion masses, the SUð3Þgen part of the ETC gauge

symmetry should break sequentially at scales �i, i ¼
1, 2, 3, where i is a generation index. Typical values of
these scales for the one-family TC/ETC models of
Refs. [11–15] were listed in Eq. (2.5), and roughly similar
values would apply here. At each stage of this sequential
generational ETC symmetry breaking, the ETC gauge
bosons corresponding to generators in the coset space
gain masses of order the respective breaking scale. Thus,
the ETC gauge bosons containing a generational index i
gain masses of order �i, and the ETC gauge bosons that
contain two generational indices, such as Vi

j, gain masses

of order �k, where k ¼ minði; jÞ. Thus, for example, V1
2

and V1
3 would gain masses ��1, etc. Because the c

fermions must gain masses greater than about 100 GeV,
the V� ETC gauge bosons involved in the transitions con-
necting these c ’s with the technifermions must gain
masses of order the lowest ETC symmetry-breaking scale,
�3. These properties are indicated in Table I. As with
fermions, the actual mass eigenstates of the vector bosons
resulting from ETC symmetry breaking would involve
linear combinations of the ETC group eigenstates, in ac-
cordance with the symmetries that are operative at the
given mass scale. (This is the ETC analogue of the mixing
of the electroweak gauge bosons of SUð2ÞL and Uð1ÞY to
form the physical vector boson mass eigenstates W and Z
in the process of EWSB.)
We come next to the choice of a possible ETC group,

GETC, for this 1DTCM model. Here the ETC group is
considerably more complicated than was the case for the
one-family TC/ETC models, where one had the simplify-
ing commutativity property ½GETC; GSM� ¼ ; and the

TABLE I. Properties of ETC gauge bosons (g.b.) in 1DTCM models. Here fa; bg, fi; jg; and f�; �0g are SUð3Þc color, SUð3Þgen, and
SUð3ÞTC gauge indices, respectively, and A denotes adjoint representation. In the comments column, seq. bk. refers to the fact that
these gauge bosons have masses corresponding to the sequential breaking of the SUð3Þgen gauge symmetry at the scales �i, i ¼ 1, 2, 3.

The YFL
values for the SMY and RSMY cases are given in Eqs. (5.11) and (5.18).

ETC g.b. SUð3Þc SUð3Þgen SUð3ÞTC Uð1ÞY comments

Va
b A 1 1 0 exact color sym.

Vi
j 1 A 1 0 seq. bk.

V�
�0 1 1 A 0 exact TC sym.

Vai
� h h �h 1=3� YFL

seq. bk.

Vi
� 1 h �h �1� YFL

seq. bk.

V� 1 1 �h �4YFL
bk., �3

Vai
j h A 1 4/3 seq. bk.

Vai h h 1 1=3þ 3YFL
seq. bk.

Vi 1 h 1 �1þ 3YFL
seq. bk.
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relation (2.2). One way to embed the SUð3Þgen and SUð3ÞTC
groups in an ETC group is to choose the latter to be
SUðNETCÞETC with

NETC ¼ NgenðNc þ 1Þ þ NTC þ 1 ¼ 12þ 3þ 1 ¼ 16;

(6.11)

with the left-handed and right-handed chiral fermions as-
signed to the vectorlike representations of SUð16ÞETC,

F 
 ¼ fuaig f�ig f�1 c 1

fdaig f‘ig f�2 c 2

 !



; 
 ¼ L; R: (6.12)

This construction is somewhat analogous to the SUð14ÞETC
model of Ref. [53], with the difference that here we use an
SUð3ÞTC group rather than an SUð2ÞTC group for the rea-
sons discussed above, which also necessitated the inclusion
of the c fermions [54]. We also note the toy ETC model in
[54] that focuses on the third generation and can account
for the t quark mass.

Clearly, this SUð16ÞETC group is a much more compli-
cated ETC group than the SUð5ÞETC group for the one-
family TC/ETC theory analyzed in detail in Refs. [10–15].
To proceed, one would choose an appropriate set of addi-
tional ETC-nonsinglet fermions that would render the full
ETC theory a chiral gauge theory. A necessary property of
this set of additional ETC fermions would be that the ETC
theory would be asymptotically free and, as the reference
energy scale � decreased from large values, some of them
would form bilinear condensates in such a manner as to
produce a sequential breaking of the ETC gauge symmetry
down to the residual exact SUð3ÞTC subgroup. To account
for the mass hierarchy of the three SM fermion genera-
tions, the ETC symmetry would break in a sequence of
three scales, �ETC;i, i ¼ 1, 2, 3. Presumably, the breaking

scales would be roughly comparable to those of Eq. (2.5).
Since a formula similar to Eq. (2.7) also applies to the mass
generation for the c 1 and c 2 fermions, and since these
have to have quite large masses, it would be necessary that
the V� ETC gauge bosons gain masses at approximately the
�ETC;3 scale, as indicated in Table I. Some ingredients for

the requisite ETC gauge symmetry breaking could be
adopted from the previous studies of one-family models,
as well as generalizations thereof [55]. As in the models
analyzed in Ref. [12], it would be necessary to break the
left-right symmetry of the representations in Eq. (6.12) so
as to avoid conflict with experimental upper limits on right-
handed charged currents. As was demonstrated in [12], this
can also produce the chirally nonsymmetric weak hyper-
charge assignments for SM fermions. It would also be
necessary to address all of the usual issues with ETC
models, including producing large enough SM fermion
masses while respecting constraints from flavor-changing
neutral-current processes, generating the large mass
splitting between the t and b quarks, producing very
small nonzero neutrino masses, designing the additional
ETC-nonsinglet fermion sector in such a manner that the

desired sequential breaking pattern and associated conden-
sate formation is plausible, within the context of the most
attractive channel formalism, etc.

C. ETC Ultraviolet extension of a 1DTCA model

In a 1DTCA model, the chiral fermions can be grouped
into the sets (6.2) and (6.3) together with the set of
GSM-singlet technifermions, which we shall label s�p;
,

where 
 ¼ L, R and p is a copy (flavor) index. Hence, in
a 1DTCA model, the ETC-mediated transitions between a
fermion in the set (6.2) with 
 ¼ L and s�p;L or between a

fermion in the set (6.3) with 
 ¼ L and s�p;L involve the

emission of an ETC gauge boson that transforms as the
fundamental (doublet) representation of SUð2ÞL. The com-
mutators of the generators corresponding to these
SUð2ÞL-doublet ETC gauge bosons and their hermitian
conjugates produce the singlet and adjoint representation
of SUð2ÞL. Hence, the gauge group of the ETC ultraviolet
extension of a 1DTCA model is larger than that for a
1DTCM model. In particular, this means that Eq. (1.1) is
expanded to

GETC � SUð3Þc � SUð2ÞL �Ggen �GTC

for a 1DTCAmodel; (6.13)

and, in contrast to the commutativity property (6.4) for a
1DTCM model, we have

½GETC; SUð2ÞL� � ; for a 1DTCAmodel: (6.14)

The electric charge of an ETC gauge boson in a 1DTCA
model is given by the full formula QV ¼ T3;V þ ðYV=2Þ.
The quantum numbers of the ETC gauge bosons in a

1DTCA model can be worked out in a manner similar to
those of a 1DTCM model. They include the gauge bosons
in the 1DTCM model, as summarized in Table I, together
with others, generically denoted as X-type gauge bosons,
that are involved in transitions of fermions in the sets (6.2)
and (6.3) to the s�p;
 fermions. For example, the transition

Qai�
L ! s�p;L þ Xai�

� ; (6.15)

where � is an SUð2ÞL gauge index, involves the emission
of an ETC gauge boson Xai� that transforms as the funda-
mental representation,h, under SUð3Þc,h under SUð3Þgen,
�h under SUð3ÞTC, andh under SUð2ÞL, with Y ¼ 1=3. The
quantum numbers of the otherX-type ETC gauge bosons in
a 1DTCA model can be worked out in a similar manner.
Evidently, the ETC ultraviolet extension of a 1DTCA
model is more complicated than the SUð16ÞETC extension
of the 1DTCM model.

VII. CONCLUSIONS

In this paper, we have investigated some TC/ETC mod-
els with color-singlet technifermions and a single SUð2ÞL
doublet of technifermions. We have considered two types

TECHNICOLOR MODELS WITH COLOR-SINGLET . . . PHYSICAL REVIEW D 84, 056009 (2011)

056009-15



of models, with and without additional GSM-singlet
technifermions. We have analyzed a number of constraints
on these models, including constraints on hypercharge
assignments for the technifermions and for the associated
color-singlet, technisinglet fermions c arising from the
necessity to avoid exotically charged Coulombic bound
states, on which there are very stringent experimental
upper limits. We have also determined some properties
of ETC ultraviolet extensions of these technicolor models.

The results are of use for further studies of theories with
dynamical electroweak symmetry breaking. Data that are
forthcoming from the LHC will soon elucidate whether
electroweak symmetry breaking is, indeed, dynamical.
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