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There are many charmless B decay pairs whose amplitudes are related by U spin (d $ s) or flavor

SU(3). The theoretical uncertainty in any analysis involving such pairs must take into account U-spin/

SU(3) breaking. In the past, such considerations generally used theoretical input, but we show that this can

be experimentally measured. We present lists of two- and three-body decay pairs from which the size of

the breaking can be obtained. We detail the values of U-spin/SU(3) breaking given by the present

experimental data. One pair—B0
d ! �þ�� and B0

d ! ��Kþ—may exhibit large nonfactorizable break-

ing, depending on the value taken for the B0
d ! �þ�� direct CP asymmetry. We present other signals of

SU(3) breaking in two- and three-body decays, and discuss further tests for nonfactorizable effects.

Finally, we also point out that the pure-penguin decay B0
s ! �K0 �K0K0 is intriguing because it can be used

to cleanly probe the B0
s- �B

0
s mixing phase.
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I. INTRODUCTION

In the standard model (SM), CP violation is due to the
presence of a nonzero complex phase in the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix V.
This phase information is elegantly displayed in the uni-
tarity triangle, in which the CP-violating interior angles
are�,�, and � [1]. By measuring theseCP phases in many
different ways, one can test the SM.

Much theoretical work has gone into elucidating clean
methods for obtaining �, �, and � from B decays. In
1999, it was pointed out that, apart from CKM matrix
elements, the amplitudes for the decays B0

d!�þ�� and

B0
s ! KþK� are equal under U-spin symmetry (d $ s)

[2]. With one additional piece of information, the phase �
can be obtained. Subsequently, all B decay pairs that are
related by U spin were tabulated [3], and another method
for extracting weak-phase information using a different
U-spin pair (B0

s ! �þK� and B0
d ! ��Kþ) was pro-

posed [4].
In order to determine the theoretical uncertainty of a

particular method, it is necessary to address the issue of
U-spin breaking. In general, theoretical input is used.
However, one of the purposes of the present paper is to
note that, in fact, this can be experimentally measured.
The point is that, under U-spin symmetry, four of the
experimental observables—the branching ratios and direct
CP asymmetries of the two decays—are related, i.e. they
are not independent. Thus, the experimental values of
these observables, and the extent to which the relation
among them is not satisfied, gives a measure of U-spin
breaking. Note: This is not a completely new result.

The relation among the four observables already appears
in a number of papers. However, in general, it is used
as a theoretical constraint, rather than an experimental
result.
In addition, one can go further. If one neglects annihi-

lation- and exchange-type diagrams (which are expected to
be small) in the B decay amplitudes, there are other pairs of
amplitudes which are equal, apart from CKM matrix ele-
ments [5]. In this case, it is not U spin that is assumed, but
rather full flavor SU(3) symmetry.1 Here there are many
more pairs whose amplitudes are related. Because the
relation among the four observables holds in the SU(3)
limit, it is possible to measure SU(3)-breaking effects
using any of these decay pairs.
In fact, there are a number of two-body B decay pairs

for which this information is presently available. Furthe-
rmore, in such decays, the factorizable contribution to the
breaking is often under good theoretical control. If this is
taken into account, the measurement of U-spin/SU(3)
breaking then tells us the size of nonfactorizable effects.
In most cases, the data shows that such effects are small.
However, as we show below, there is one decay pair—
B0
d ! �þ�� and B0

d ! ��Kþ—for which the effect is

not clear. There may or may not be large nonfactorizable
breaking, depending on whether one uses the BABAR or
Belle measurement of the B0

d ! �þ�� direct CP asym-

metry. Although this result is not definitive, it does raise
questions about analyses which neglect nonfactorizable
U-spin/SU(3) breaking.
We begin in Sec. II with a discussion of U spin and

U-spin breaking as it applies to a pair of charmless �b ! �d
and �b ! �s decays. We show how the measurement of the
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1Note: Because isospin is a good symmetry, in practice there is
little difference between U spin and SU(3).
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branching ratios and direct CP asymmetries of these two
decays allows one to experimentally measure the breaking.
In Sec. III, we turn to an examination of two-body B
decays. We present lists of five U-spin pairs and 11 addi-
tional SU(3) pairs whose U-spin/SU(3) breaking can be
measured using this method. We show the latest data
for five of these pairs. For two of these, the measurements
are reasonably accurate, and one pair may show signs of
significant nonfactorizable U-spin/SU(3) breaking. Finally,
we discuss several pairs of decays whose amplitudes
are equal, including CKM factors, within SU(3). A mea-
sure of SU(3) breaking is given by comparing the branch-
ing ratios of the two decays, as well as the direct CP
asymmetries.

We discuss three-body decays in Sec. IV. There are
seven decay pairs whose amplitudes are related by
U spin—the amount of breaking can be measured experi-
mentally using the above method. In passing, we note that
the pure-penguin decay B0

s ! �K0 �K0K0 is interesting.
Given that the final state is a CP eigenstate, the measure-
ment of the indirect CP asymmetry in this decay cleanly
probes the B0

s- �B
0
s mixing phase, and might be easier ex-

perimentally than what is done at the moment. We also
present the list of an additional 24 decay pairs whose
amplitudes are related by SU(3). In this case, all final-state
particles are identical, and so permutations of these parti-
cles must be considered. We show that, in (almost) all
cases, the amplitudes are equal only for the totally sym-
metric final state jSi, so that this state must be isolated
experimentally in order to measure SU(3) breaking.
We also point out the decay pairs whose amplitudes are
equal, including CKM factors, within SU(3) for jSi. In
principle, these can also give information about SU(3)
breaking. We conclude in Sec. V.

II. U SPIN AND U-SPIN BREAKING

Consider charmless �b ! �d and �b ! �s decays.2 Their
amplitudes can be written as

Að �b ! �dÞ ¼ Au�
ðdÞ
u þ Ac�

ðdÞ
c þ At�

ðdÞ
t ;

Að �b ! �sÞ ¼ A0
u�

ðsÞ
u þ A0

c�
ðsÞ
c þ A0

t�
ðsÞ
t ;

(1)

where the Ai and A0
i (i ¼ u; c; t) each represent a linear

combination of diagrams, and �ðqÞ
p ¼ V�

pbVpq. Using the

unitarity of the CKM matrix (�ðqÞ
u þ �ðqÞ

c þ �ðqÞ
t ¼ 0), we

can reduce the number of terms in the amplitudes from

three to two. For instance, if the �ðqÞ
c piece is eliminated, we

have

Að �b ! �dÞ ¼ ðAu � AcÞ�ðdÞ
u þ ðAt � AcÞ�ðdÞ

t

¼ ðAu � AcÞ
�
j�ðdÞ

u jei� þ ðAt � AcÞ
ðAu � AcÞ j�

ðdÞ
t je�i�

�

¼ C½j�ðdÞ
u jei� þ j�ðdÞ

t jrei�re�i��;
Að �b ! �sÞ ¼ ðA0

u � A0
cÞ�ðsÞ

u þ ðA0
t � A0

cÞ�ðsÞ
t

¼ ðA0
u � A0

cÞ
�
j�ðsÞ

u jei� � ðA0
t � A0

cÞ
ðA0

u � A0
cÞ j�

ðsÞ
t j
�

¼ C0½j�ðsÞ
u jei� � j�ðsÞ

t jr0ei�0
r�; (2)

where C�ðAu�AcÞ, C0 � ðA0
u � A0

cÞ, rei�r � ðAt � AcÞ=
ðAu � AcÞ, and r0ei�0

r � ðA0
t � A0

cÞ=ðA0
u � A0

cÞ. Above we
have explicitly written the weak-phase dependence, in-
cluding the minus sign from V�

tbVts.

If the two amplitudes are given by a similar combination
of diagrams, then under U-spin symmetry, which ex-
changes d and s quarks, we have A0

i ¼ Ai, so that

C0 ¼ C; r0 ¼ r; �0
r ¼ �r; (3)

and the two amplitudes are described by four unknown
theoretical parameters: �, jCj, r, �r (� has been measured
quite accurately through the indirect CP asymmetry in
B0
d ! J=cKS [1], and is therefore taken to be known).

In general, there are four observables in the �b ! �d and
�b ! �s processes:

Bd ¼ jAð �b ! �dÞj2 þ jAðb ! dÞj2;
Bs ¼ jAð �b ! �sÞj2 þ jAðb ! sÞj2;

Ad ¼ jAð �b ! �dÞj2 � jAðb ! dÞj2
jAð �b ! �dÞj2 þ jAðb ! dÞj2 ;

As ¼ jAð �b ! �sÞj2 � jAðb ! sÞj2
jAð �b ! �sÞj2 þ jAðb ! sÞj2 :

(4)

Bd and Bs are related to theCP-averaged �b ! �d and �b ! �s
decay rates, while Ad and As are direct CP asymmetries.
The CP-conjugate amplitude Að �b ! �qÞ is obtained from
Aðb ! qÞ by changing the signs of the weak phases.
Since there are four unknown theoretical parameters in

the amplitudes in the U-spin limit, one might imagine that
these can be determined from measurements of Bd;s and

Ad;s. However, this is not true. It is straightforward to show

that, in this limit, X ¼ 1, where

X � � As

Ad

Bs

Bd

: (5)

Thus, there are only three independent observables. This
implies that

� jAð �b ! �sÞj2 � jAðb ! sÞj2
jAð �b ! �dÞj2 � jAðb ! dÞj2 ¼ 1: (6)2Much of the material in this section can be found in

Refs. [3,6].
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Explicitly, we have

� jAð �b! �sÞj2�jAðb! sÞj2
jAð �b! �dÞj2�jAðb!dÞj2¼

j�ðsÞ
u jj�ðsÞ

t jsin�jC0j2r0 sin�0
r

j�ðdÞ
u jj�ðdÞ

t jsin�jCj2rsin�r

:

(7)

Now, the sine law associated with the unitarity triangle
gives

sin�

j�ðdÞ
t j ¼

sin�

j�ðdÞ
c j ¼

sin�

j�ðdÞ
u j : (8)

We therefore have

� jAð �b! �sÞj2�jAðb! sÞj2
jAð �b! �dÞj2�jAðb!dÞj2¼

j�ðsÞ
u jj�ðsÞ

t jjC0j2r0 sin�0
r

j�ðdÞ
u jj�ðdÞ

c jjCj2rsin�r

¼jVusjjVtbjjVtsjjC0j2r0 sin�0
r

jVudjjVcbjjVcdjjCj2rsin�r

¼jC0j2r0 sin�0
r

jCj2rsin�r

; (9)

where jVusjjVtbjjVtsj=jVudjjVcbjjVcdj ¼ 1. The above ratio
equals 1 only in the U-spin limit. Thus, (X � 1) is a
measure of U-spin breaking.

Until now, when this breaking was taken into account,
it was only through theoretical estimates (e.g. see
Refs. [2,7]). However, in fact it can be obtained from
the experimental data. This can be combined with the
theoretical calculations to look for large nonfactorizable
corrections (we will see this explicitly in Sec. III E).
Furthermore, if the theoretical prediction of U-spin break-
ing is accurate, one can use the measurement of (X � 1) to
search for new physics [6].

III. TWO-BODY DECAYS

A. U-spin pairs

We begin with B ! PP decays (P ¼ pseudoscalar),
focusing on those �b ! �d and �b ! �s processes that are
related by U spin. [It is straightforward to extend our
analysis to other two-body decays, such as B ! VP
(V ¼ vector).] There are five U-spin pairs:

(1) B0
d ! �þ�� and B0

s ! KþK�,
(2) B0

s ! �þK� and B0
d ! ��Kþ,

(3) Bþ ! Kþ �K0 and Bþ ! �þK0,
(4) B0

d ! K0 �K0 and B0
s ! �K0K0,

(5) B0
d ! KþK� and B0

s ! �þ��.
The first (second) decay is �b ! �d ( �b ! �s). In all cases,

the two decays within a pair are related by U-spin reflec-
tion (d $ s). This applies not only to the particles in the
process (e.g. �þ $ Kþ, B0

d $ B0
s , etc.), but also to the

individual diagrams involved. For any pair, one can mea-
sure the two branching ratios and direct CP asymmetries in
order to obtain X [Eq. (5)], and measure U-spin breaking.

B. SU(3) pairs

U-spin pairs have been discussed at some length in
Refs. [3,6]. However, one can go further. First, one pair
which is not included in the list in Sec. III A, but appears in
Refs. [3,6], is B0

s ! �0 �K0 and B0
d ! �0K0. The reason it

is not included is that the two decays are not related by

U spin. There are a number of ways to see this. First, �0 ¼
ðd �d� u �uÞ= ffiffiffi

2
p

, so that it does not transform into itself
under U spin. Second, one diagram that contributes to
B0
s ! �0 �K0 is the penguin P, involving the quark-level

transition �b ! �dd �d. Under U-spin reflection, this becomes
�b ! �ss�s, which does not contribute to B0

d ! �0K0. What

is going on is the following: it is true that the amplitudes
for B0

s ! �0 �K0 and B0
d ! �0K0 have the same diagram-

matic decomposition [5], and so they satisfy Eq. (3). How-
ever, the diagrams assume isospin invariance in addition to
U spin, so that the symmetry is really flavor SU(3). Thus,
B0
s ! �0 �K0 and B0

d ! �0K0 is not a U-spin pair, but is in

fact an SU(3) pair.
Second, it is standard to express the amplitudes for

B ! PP decays in terms of diagrams [5]. Certain of these
diagrams—those of annihilation and exchange type—are
expected to be smaller than the others. If these diagrams
are neglected, then there are additional pairs of decays
which satisfy Eq. (3). These are not related by U spin,
but are instead related by SU(3). The complete list of
SU(3) pairs (which includes some U-spin pairs) is
(i) (B0

d ! �þ��, B0
s ! �þK�) and (B0

d ! ��Kþ,
B0
s ! KþK�),

(ii) (B0
d ! �0�0, B0

s ! �0 �K0, B0
s ! �8

�K0) and

(B0
d ! �0K0, B0

d ! �8K
0),

(iii) (B0
d ! K0 �K0, Bþ ! Kþ �K0, B0

d ! �0�8) and

(Bþ ! �þK0, B0
s ! K0 �K0).

[Here, �8 is a member of the octet of SU(3). The physical
� and �0 are linear combinations of �8 and the SU(3)
singlet, �0.] The decays in the first (second) parentheses
are �b ! �d ( �b ! �s) transitions. [Note that, depending on the

pair, there may be an additional factor (e.g.
ffiffiffi
2

p
) in relating

the �b ! �d and �b ! �s decays.] From this list, we see that
there are, in fact, 16 possible pairs of decays rather than the
five of Sec. III A.
If (X � 1) is obtained using a pair from Sec. III A, then

U-spin breaking is measured. However, if an SU(3) pair is
used, then what is probed is not U-spin breaking, but rather
SU(3) breaking. Interestingly, we have data for a number of
the decays in the above list, so that it is possible to get X,
and obtain an experimental measurement of U-spin/SU(3)
breaking in these decays. This is done in Sec. III D.

C. Estimates of As;d

As described above, one can measure U-spin/SU(3)
breaking through X. This quantity involves the direct CP
asymmetries Ad;s, which arise due to the interference of

two amplitudes with different weak and strong phases. The
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maximal size of Ad;s is roughly equal to the ratio of the

magnitudes of the two interfering amplitudes.
In two-body decays, the �b ! �s diagrams3 are expected

to obey the approximate hierarchy [5],

1: jP0
tcj;

��: jT0j; jP0
EW j;

��2: jC0j; jP0
ucj; jP0C

EWj;
(10)

where �� ’ 0:2. Since all �b ! �s decays in the list in
Sec. III B receive contributions from P0

tc, As is sizable
[& Oð ��Þ � 20%] only if the decay amplitude also includes
T0. If there is no T0, but only C0 or P0

uc, then As is small
[& Oð ��2Þ � 5%]. In this case, the relative experimental
error will necessarily be large, which will then translate
into a large error on (X � 1).

The expected approximate hierarchy4 of the �b ! �d dia-
grams is [5]

1: jTj;
��: jCj; jPtcj; jPucj;
��2: jPEW j;
��3: jPC

EW j:

(11)

Since all �b ! �d decays in the list in Sec. III B receive
penguin contributions, Ad is always sizable [at least
& Oð ��Þ � 20%].

Thus, the most promising pairs for measuring U-spin/
SU(3) breaking are those whose �b ! �s decay amplitude
includes a T0. These are given in the first entry in the list in
Sec. III B.

There are two types of contributions to U-spin/SU(3)
breaking—factorizable and nonfactorizable. The factoriz-
able effects depend essentially on form factors and decay
constants, and can be reliably calculated. It has been shown
that factorization holds well for T=T0 diagrams [8]. Thus,
for those decay pairs which include these diagrams—i.e.
the most promising for measuring X—the ratio jC0=Cj is
dominated by factorizable U-spin/SU(3) breaking.

The U-spin relations r0 ¼ r and �0
r ¼ �r are not affected

by factorizable breaking effects,5 as thevarious form factors
and decay constants cancel [2,7]. On the other hand, they
could be altered by nonfactorizable effects, and these can-
not be calculated theoretically. Still, it is thought that non-
factorizable U-spin/SU(3) breaking is not large, being
higher order in 1=mb. As we show below, this can be
checked experimentally through the measurement of
(X � 1).

D. Numerical analysis

The four quantities required for the measurement of X
are Bd;s and Ad;s [Eq. (4)]. The Bd;s’s are related to the

branching ratios by

�ðqÞpcðqÞBq ¼ 8�m2
BðqÞBðqÞ; (12)

where, for a �b ! �q process (q ¼ d, s), �ðqÞ is the B-meson

lifetime, pcðqÞ is the momentum of the final-state mesons in

the B rest frame,mBðqÞ is the rest mass of the Bmeson, and

BðqÞ is the CP-averaged branching ratio. The Ad;s’s are

equal to �CCP, where CCP is the direct CP asymmetry in
a given decay.
At present, there are five different pairs of two-body

decays for which we have the data required by the method
of Sec. II for measuring U-spin/SU(3) breaking:
(1) B0

d ! �þ�� and B0
d ! ��Kþ,

(2) B0
s ! �þK� and B0

d ! ��Kþ,
(3) Bþ ! Kþ �K0 and Bþ ! �þK0,
(4) B0

d ! K0 �K0 and Bþ ! �þK0,

(5) B0
d ! �0�0 and B0

d ! �0K0.

The current experimental values are given in Table I. The
values of the B masses and lifetimes can be found in
Ref. [1].
With these inputs, one can compute the value of (X� 1)

obtained for each of the five decay pairs using Eq. (5). The
results are shown in Table II. Note that, as described in
Sec. III C, the direct CP asymmetries in Bþ ! �þK0 and
B0
d ! �0K0 are expected to be quite small, leading to a

very large error on (X � 1). This is indeed what is found
[pairs (3), (4), and (5)].
Finally, the decays B0

d ! �þ�� and B0
s ! KþK� form

a U-spin pair. From the updated QCD light-cone sum-rule
calculation of Ref. [12], we have

��������C
0

C

��������fact
¼ fK

f�

fþBsK
ðM2

KÞ
fþBd�

ðM2
�Þ
�M2

Bs
�M2

K

M2
Bd
�M2

�

�
¼ 1:41þ0:20

�0:11: (13)

Here and below, we take fþðM2
KÞ ’ fþðM2

�Þ ’ fþð0Þ since
the variation of the form factors over this range of q2 falls
well within the errors of their calculation [13]. Thus, using
the data from Table I and Eq. (20) below, we expect

ACPðB0
s ! KþK�Þ ¼ �

��������C
0

C

��������
2

fact
ACPðB0

d ! �þ��Þ

�BðB0
d ! �þ��Þ

BðB0
s ! KþK�Þ

¼
��0:11� 0:04 ðBABARÞ;
�0:23� 0:07 ðBelleÞ: (14)

Similarly, the decays B0
s ! �þK� and B0

s ! KþK� form
an SU(3) pair, so that

3The diagrams include the magnitudes of the associated CKM
matrix elements.

4C0 and C in Eqs. (10) and (11) represent color-suppressed tree
diagrams, and are not the parameters in Eq. (2).

5Decays such as B0
d ! �0K0 constitute an exception to this

rule, as they can be factorized in two different ways. However,
there are very few such decays.
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ACPðB0
s ! KþK�Þ ¼ �

��������C
0

C

��������
2

fact
ACPðB0

s ! �þK�Þ

�BðB0
s ! �þK�Þ

BðB0
s ! KþK�Þ

¼ �0:12� 0:06; (15)

where jC0=Cjfact ¼ fK=f�. These predictions are in
agreement with one another and will be tested when
ACPðB0

s ! KþK�Þ is measured.

E. Measurement of nonfactorizable SU(3) breaking

The theoretical expression for X is given in Eq. (9). As
discussed above, within factorization, only the ratio jC0=Cj
contributes to X. Therefore, given an experimental mea-
surement of X and a theoretical calculation of jC0=Cjfact,
one can obtain

r0 sin�0
r

r sin�r

¼
��������C

C0

��������
2

fact
X (16)

and see whether it is consistent with 1 (small nonfactoriz-
able U-spin/SU(3) breaking).

For the first two pairs of the previous subsection, which
yield reasonably precise measurements of X, we have

pair ð1Þ:
��������C

0

C

��������fact
¼ fK

f�

fþBd�
ðM2

KÞ
fþBd�

ðM2
�Þ
�M2

Bd
�M2

�

M2
Bd

�M2
�

�

� fK
f�

¼ 1:20;

pair ð2Þ:
��������C

0

C

��������fact
¼ fK

f�

fþBd�
ðM2

KÞ
fþBsK

ðM2
�Þ
�M2

Bd
�M2

�

M2
Bs
�M2

K

�

¼ 1:01þ0:07
�0:15: (17)

The ratio fK=f� and the value in the second line are taken
from Ref. [12]. (We have neglected small errors in fK=f�.)
These give

pair ð1Þ: r0 sin�0
r

r sin�r

¼
�
1:0� 0:3 ðBABARÞ;
0:47� 0:09 ðBelleÞ;

pair ð2Þ: r0 sin�0
r

r sin�r

¼ 0:90� 0:43:

(18)

For pair (2), the theoretical prediction for factorizable
U-spin breaking is consistent with the experimental mea-
surement of Table II. However, for pair (1), things are more
complicated. With the BABAR direct CP asymmetry mea-
surement of Table I, there is no evidence of a nonfactoriz-
able SU(3)-breaking correction. On the other hand, with
the Belle measurement, there is a 6	 deviation of the value
of jC=C0j2factX from 1, which implies large nonfactorizable

breaking. There is thus a significant discrepancy between
the two measurements, and so it will be important to pay
attention to this pair in the future. This does illustrate the
importance of measuring X experimentally, and this in as
many different decay pairs as possible.
In Ref. [7], the discrepancy between the BABAR

and Belle measurements was noted. It was observed
that, within SU(3) (including factorizable corrections),
ACPðB0

d ! �þ��Þ is equal to

TABLE II. Output values for the quantity (X� 1) for the five
pairs of decays.

Decay pair (X� 1)

(1) 0:49� 0:47 (BABAR)

�0:32� 0:13 (Belle)

(2) �0:08� 0:42
(3) �2:3� 3:6
(4) �4� 16
(5) 1:0� 2:1 (BABAR)

�2:8� 2:0 (Belle)

TABLE I. Input values for the experimental quantities [1,9] (unless otherwise indicated,
averaged over all measurements). Data for the B0

d ! �þ�� direct CP asymmetry taken from

Refs. [10] (BABAR) and [11] (Belle). For asymmetric error bars, we take the average of both
errors and assume a Gaussian distribution.

Decay B½�106� �CCP pc ½MeV=c�
B0
d ! �þ�� 5:16� 0:22 0:25� 0:08 (BABAR) 2636

0:55� 0:09 (Belle)

B0
d ! ��Kþ 19:4� 0:6 �0:098þ0:012

�0:011 2615

B0
s ! �þK� 5:0� 1:1 0:39� 0:17 2659

Bþ ! Kþ �K0 1:36þ0:29
�0:27 0:12þ0:17

�0:18 2593

Bþ ! �þK0 23:1� 1:0 0:009� 0:025 2614

B0
d ! K0 �K0 0:96þ0:21

�0:19 0:06� 0:26 2592

B0
d ! �0�0 1:55� 0:19 0:43þ0:25

�0:24 2636

B0
d ! �0K0 (BABAR) 10:1� 0:6� 0:4 �0:13� 0:13� 0:03 2615

B0
d ! �0K0 (Belle) 8:7� 0:5� 0:6 0:14� 0:13� 0:06
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�
�
f�
fK

�
2BðB0

d!��KþÞ
BðB0

d!�þ��ÞACPðB0
d!��KþÞ

¼0:26�0:03: (19)

In addition, LHCb recently measured the direct CP asym-
metry in B0

s ! �K, which differs from B0
d ! �þ�� only

in its spectator quark, to be 0:27� 0:08 [14]. Both of these
results are consistent with the BABAR measurement, and
suggest that this result is favored (which implies no non-
factorizable correction).

Although there is no definitive evidence of nonfactoriz-
able SU(3)-breaking corrections, this does call into ques-
tion any analysis which does not include such effects.
The point is that it is straightforward to take this into
account. Within U-spin/SU(3) symmetry, the four observ-
ables Bd;s and Ad;s are not independent. However, if one

allows U-spin/SU(3) breaking, this no longer holds. If one
assumes that �0

r ¼ �r, i.e. the phase is unaffected by the
breaking, and takes jC0=Cj from factorization, then non-
factorizable U-spin/SU(3) breaking contributes only to
r0=r. That is, there is one additional theoretical parameter
(r0=r), but there is one additional measurement, so that the
nonfactorizable breaking can be obtained. This is essen-
tially just the measurement of X.

Now, pair (1) is useful for another reason. As detailed
previously, it is not possible to obtain the theoretical
parameters in the amplitudes solely from the measure-
ments of Bd;s and Ad;s—additional input is needed.

This has been discussed for two of the U-spin pairs. For
B0
d ! �þ�� and B0

s ! KþK�, it has been noted that �
can be extracted through the additional measurement of the
indirect CP asymmetry in B0

d ! �þ�� [2,7]. Similarly, �
can be obtained from B0

s ! �þK� and B0
d ! ��Kþ with

the added information coming from the measurement of
the branching ratio of Bþ ! �þK0 [4].

Both of these pairs appear in the list in Sec. III A.
However, if one expands the symmetry from U spin
to SU(3), they can be combined, producing the pair
B0
d ! �þ�� and B0

d ! ��Kþ [pair (1), in the list in

Sec. III B]. � can then be extracted using the method of
Ref. [2], taking Bd, Ad, and A

CP
ind from B0

d ! �þ��, and Bs

from B0
d ! ��Kþ instead of B0

s ! KþK�. Since [9,15]

BðB0
d ! ��KþÞ ¼ ð19:4� 0:6Þ � 10�6;

BðB0
s ! KþK�Þ ¼ ð23:9� 3:9Þ � 10�6;

(20)

one sees that the first (experimental) error is smaller than
the second one. Thus, the error on � is also smaller.
Alternatively, suppose that the technique of Ref. [4] is
used, taking Bs and As from B0

d ! ��Kþ, and Bd from

B0
d ! �þ�� instead of B0

s ! �þK� [information from

BðBþ ! �þK0Þ is added]. The error on � will still be
smaller since [9]

BðB0
d ! �þ��Þ ¼ ð5:16� 0:22Þ � 10�6;

BðB0
s ! �þK�Þ ¼ ð5:0� 1:1Þ � 10�6:

(21)

The point is that the branching ratios of B0
d decays are

measured much more accurately than those of B0
s decays,

so that the extracted value of � is more precise if pair (1) is
used, rather than either U-spin pair.
In fact, this method was proposed many years ago,

in 1995 [16]. In this paper, information from both
ACP
indðB0

d ! �þ��Þ and BðBþ ! �þK0Þ is added simulta-

neously. In addition, perfect SU(3) symmetry is not
imposed, so there are a total of six independent measure-
ments. It is assumed that jC0=Cj ¼ fK=f� [Eq. (17)] and
that �0

r ¼ �r, but r
0 and r are left as independent. This

means that the amplitudes are written in terms of four
hadronic theoretical parameters and two weak phases. In
Ref. [16], it is argued that both weak phases can be
extracted. However, this method can be modified: if we
assume that � is known from ACP

indðB0
d ! J=cKSÞ, then we

have the freedom to take �0
r and �r as independent. Now

there are six equations in six unknowns (C, r0, r, �0
r, �r, �),

so that one can solve for the theoretical parameters
(numerically, if necessary). This analysis was partially
performed in Ref. [17]. We must stress here that no as-
sumption about the size of nonfactorizable effects in r0=r
and sin�0

r= sin�r is made here—this information is taken
from the experimental data.

F. Other signals of SU(3) breaking

There are pairs of decays whose amplitudes are equal at
the quark level, including CKM factors, under SU(3).
At the meson level, the processes are those within paren-
theses in the list in Sec. III B. The amplitudes for the two
decays can be written

Ai ¼ Cð0Þ
i ½�ðqÞ

u þ �ðqÞ
t rð0Þi ei�

ð0Þ
r;i�; (22)

where i ¼ 1; 2 and q ¼ d; s (the hadronic parameters
have primes for q¼ s). Assuming only factorizable SU(3)

breaking, rð0Þ1 ¼ rð0Þ2 and �ð0Þ
r;1 ¼ �ð0Þ

r;2. We therefore expect the

branching ratios and direct CP asymmetries for the two
decays to satisfy

B 2 ¼
��������C

ð0Þ
2

Cð0Þ
1

��������
2

fact
B1; ACP;2 ¼ ACP;1: (23)

(We neglect any mass and lifetime differences between the
two decaying B mesons.) Any deviation from these rela-
tions is a sign of nonfactorizable SU(3) breaking.
The pairs or amplitude relations are (all experimental

data is taken from Ref. [9]):
(1) B0

d ! ��Kþ and B0
s ! KþK�:��������C

0
1

C0
2

��������fact
¼ fþBd�

ðM2
KÞ

fþBsK
ðM2

KÞ
�M2

Bd
�M2

�

M2
Bs
�M2

K

�
¼ 0:85þ0:07

�0:12:

(24)

(This is based on the results of Ref. [12].) The data
for the branching ratios for these decays are given in
Eq. (20). We expect
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��������C
0
2

C0
1

��������
2

fact

BðB0
d ! ��KþÞ

BðB0
s ! KþK�Þ (25)

to be consistent with 1. It equals 1:12� 0:26,
so there is no evidence of nonfactorizable SU(3)
breaking.
We also expect that

ACPðB0
s ! KþK�Þ ¼ ACPðB0

d ! ��KþÞ
¼ �0:098þ0:012

�0:011: (26)

(2) B0
d ! �þ�� and B0

s ! �þK�: here, jC1=C2jfact ¼
0:85þ0:07

�0:12, as in Eq. (24). The experimental data is:

BðB0
d ! �þ��Þ ¼ ð5:16� 0:22Þ � 10�6,BðB0

s !
�þK�Þ ¼ ð5:0� 1:1Þ � 10�6. We expect��������C2

C1

��������
2

fact

BðB0
d ! �þ��Þ

BðB0
s ! �þK�Þ (27)

to be consistent with 1. It equals 1:43� 0:40. We
also expect the direct CP asymmetries to be equal.
As noted above, LHCb finds ACPðB0

s ! �þK�Þ ¼
0:27� 0:08 [14]. This is in good agreement with the
BABAR measurement of ACPðB0

d ! �þ��Þ in

Table I, but not that of Belle. Thus, at this point
the question of nonfactorizable SU(3) breaking in
this decay pair is not clear.

(3) AðB0
d ! �0K0Þ ¼ ffiffiffi

3
p

AðB0
d ! �8K

0Þ: we expect

BðB0
d ! �0K0Þ ¼ jC0

1=C
0
2j2fact3BðB0

d ! �8K
0Þ and

ACPðB0
d ! �0K0Þ ¼ ACPðB0

d ! �8K
0Þ.

(4) AðB0
d!�0�0Þ¼AðB0

s!�0 �K0Þ¼ ffiffiffi
3

p
AðB0

s!�8
�K0Þ:

this leads to the prediction that ACPðB0
s ! �0 �K0Þ ¼

ACPðB0
s ! �8

�K0Þ ¼ 0:43þ0:25
�0:24. Also, we expect that

BðB0
s ! �0 �K0Þ ¼ ð1:55� 0:16Þ � 10�6, BðB0

s !
�8

�K0Þ ¼ ð0:52� 0:05Þ � 10�6, modulo factoriz-
able SU(3) corrections.

(5) AðBþ ! �þK0Þ ¼ AðB0
s ! K0 �K0Þ, so that the di-

rect CP asymmetries are expected to be equal for
these decays, and we expect BðBþ ! �þK0Þ ¼
jC0

1=C
0
2j2factBðB0

s ! K0 �K0Þ.
(6) AðB0

d!K0 �K0Þ¼AðBþ!Kþ �K0Þ¼ ffiffiffi
3

p
AðB0

d!�0�8Þ:
we expect the direct CP asymmetries for these three
decays to be equal. Also, we expect that BðB0

d!
K0 �K0Þ¼BðBþ!Kþ �K0Þ¼3BðB0

d!�0�8Þ, mod-

ulo factorizable SU(3) corrections.
Note: It would not be a surprise to see evidence of signifi-
cant nonfactorizable effects in the decays in items 4–6, as
these are dominated by diagrams for which factorization is
not expected to hold.

IV. THREE-BODY DECAYS

We now turn to B ! PPP decays. In the past, such
decays were little studied—most of the theoretical work
looking at clean methods for obtaining the weak phases
focused on two-body B decays. This is essentially for

two reasons: (i) final states such as cKS, �
þ��, etc. are

CP eigenstates, and (ii) when there is a second decay
amplitude, with a different weak phase, it has been possible
to find methods to remove this ‘‘pollution,’’ and cleanly
extract weak-phase information.
Things are not the same in the case of three-body B

decays. First, because there are three particles, final states
such as KS�

þ�� are not CP eigenstates—the value of its
CP depends on whether the relative �þ�� angular mo-
mentum is even or odd. Second, even if it were possible to
distinguish the states of CP þ and �, one still has the
problem of removing the pollution due to additional decay
amplitudes. For these reasons, the conventional wisdom
has been that it is not possible to obtain clean weak-phase
information from three-body decays.
Recently, it was shown that, by doing a diagrammatic

analysis, one can address these two problems [18]. First, a
Dalitz-plot analysis can be used to experimentally separate
the CPþ and� final states. Second, one can often remove
the pollution of additional diagrams and cleanly mea-
sure the CP phases. In Ref. [19], the procedure for extract-
ing� fromB ! K�� decays was described in detail. Thus,
in fact, it is possible to use three-body decays to obtain
weak-phase information and search for new physics.
In this paper, the goal is to find pairs of �b ! �d and �b ! �s

decays which satisfy Eq. (3) and permit themeasurement of
X. Aswewill see, in order to do thiswith three-body decays,
the diagrammatic decomposition of Ref. [18] is necessary.

A. U-spin pairs

As with B ! PP decays (Sec. III A), we look for pairs of
�b ! �s and �b ! �d decays that are related by U-spin reflec-
tion. We find that there are seven such pairs of three-body
decays:
(1) B0

s ! KþK� �K0 and B0
d ! K0�þ��,

(2) B0
s ! �K0�þ�� and B0

d ! KþK0K�,
(3) B0

d ! K0K��þ and B0
s ! Kþ �K0��,

(4) B0
d ! Kþ �K0�� and B0

s ! K0K��þ,
(5) Bþ ! �þ�þ�� and Bþ ! KþKþK�,
(6) Bþ ! KþK��þ and Bþ ! Kþ�þ��,
(7) B0

s ! �K0 �K0K0 and B0
d ! K0K0 �K0.

In order to show that these pairs do indeed satisfy Eq. (3),
one has to compare the amplitudes of the decays within a
pair.
Under U spin, the d and s quarks are in a doublet, as are �s

and� �d. Thus,Kþ and�þ, andK� and��, are considered
to be identical particles. We therefore see that the final
states of pairs 1–4 contain no identical particles. One can
straightforwardly compare the amplitudes of the decays
within these pairs. We refer to Ref. [18] for a description of
the diagrams; here we label each diagram D by an index q
(q ¼ u; d; s) denoting the flavor of the quark pair
‘‘popped’’ from the vacuum. Under isospin symmetry,
Du ¼ Dd, under U spin, Dd ¼ Ds, and under full SU(3),
Du ¼ Dd ¼ Ds. We have:
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pair 1:

AðB0
s ! KþK� �K0Þ ¼ �T1;se

i� � C1;se
i� � P̂a;uce

i� � P̂a;tce
�i� � 2

3PEW1;se
�i�

þ 1
3PEW1;ue

�i� � 2
3P

C
EW1;se

�i� þ 1
3P

C
EW2;ue

�i�;

AðB0
d ! K0�þ��Þ ¼ �T0

1;de
i� � C0

1;de
i� � ~P0

a;uce
i� þ ~P0

a;tc þ 2
3P

0
EW1;d � 1

3P
0
EW1;u þ 2

3P
0C
EW1;d � 1

3P
0C
EW2;u; (28)

pair 2:

AðB0
s ! �K0�þ��Þ ¼ �T2;de

i� � C1;de
i� � ~Pb;uce

i� � ~Pb;tce
�i� � 2

3PEW1;de
�i� þ 1

3PEW1;ue
�i�

þ 1
3P

C
EW1;ue

�i� � 2
3P

C
EW2;de

�i�;

AðB0
d ! KþK0K�Þ ¼ �T0

2;se
i� � C0

1;se
i� � P̂0

b;uce
i� þ P̂0

b;tc þ 2
3P

0
EW1;s � 1

3P
0
EW1;u � 1

3P
0C
EW1;u þ 2

3P
0C
EW2;s; (29)

pair 3:

AðB0
d ! K0K��þÞ ¼ �T2;se

i� � P̂b;uce
i� � P̂b;tce

�i� þ 1
3P

C
EW1;ue

�i� � 2
3P

C
EW2;se

�i�;

AðB0
s ! Kþ �K0��Þ ¼ �T0

2;de
i� � ~P0

b;uce
i� þ ~P0

b;tc � 1
3P

0C
EW1;u þ 2

3P
0C
EW2;d;

(30)

pair 4:

AðB0
d ! Kþ �K0��Þ ¼ �T1;se

i� � P̂a;uce
i� � P̂a;tce

�i� � 2
3P

C
EW1;se

�i� þ 1
3P

C
EW2;ue

�i�;

AðB0
s ! K0K��þÞ ¼ �T0

1;de
i� � ~P0

a;uce
i� þ ~P0

a;tc þ 2
3P

0C
EW1;d � 1

3P
0C
EW2;u;

(31)

where

~P a � P1;d þ P2;u; ~Pb � P1;u þ P2;d; P̂a � P1;s þ P2;u; P̂b � P1;u þ P2;s: (32)

For �b ! �d transitions, the diagrams are written without primes; for �b ! �s transitions, they are written with primes. (The
overall signs of the amplitudes assume �u is negative, as with isospin. If one takes �d to be negative, as with U spin, one may
obtain a different overall sign. But the physics does not change.)

There are two truly identical particles in the final states in pair 5 (�þ in Bþ ! �þ�þ�� and Kþ in Bþ ! KþKþK�),
so the overall wave function must be symmetric with respect to the exchange of these two particles:

AðBþ ! �þ�þ��Þsym ¼ �T2;de
i� � C1;de

i� � ~Pb;uce
i� � ~Pb;tce

�i� � 2
3PEW1;de

�i� þ 1
3PEW1;ue

�i�

þ 1
3P

C
EW1;ue

�i� � 2
3P

C
EW2;de

�i�;

AðBþ ! KþKþK�Þsym ¼ �T0
2;se

i� � C0
1;se

i� � P̂0
b;uce

i� þ P̂0
b;tc þ 2

3P
0
EW1;s � 1

3P
0
EW1;u � 1

3P
0C
EW1;u þ 2

3P
0C
EW2;s: (33)

The penguin diagrams are defined in Eq. (32).
The final states of pair 6 contain the identical particles (under U spin)Kþ and �þ. The overall wave function of the final

Kþ�þ pair must be symmetrized with respect to the exchange of these two particles. If the relative angular momentum is
even (odd), the U-spin state must be symmetric (antisymmetric):

AðBþ ! KþK��þÞsym ¼ �T2;se
i� � C1;se

i� � P̂b;uce
i� � P̂b;tce

�i� þ 1
3PEW1;ue

�i� � 2
3PEW1;se

�i�

þ 1
3P

C
EW1;ue

�i� � 2
3P

C
EW2;se

�i�;

AðBþ ! KþK��þÞanti ¼ T2;se
i� þ C1;se

i� þ P̂b;uce
i� þ P̂b;tce

�i� þ 1
3PEW1;ue

�i� � 2
3PEW1;se

�i�

þ 1
3P

C
EW1;ue

�i� � 2
3P

C
EW2;se

�i�;

AðBþ ! Kþ�þ��Þsym ¼ �T0
2;de

i� � C0
1;de

i� � ~P0
b;uce

i� þ ~P0
b;tc � 1

3P
0
EW1;u þ 2

3P
0
EW1;d � 1

3P
0C
EW1;u þ 2

3P
0C
EW2;d;

AðBþ ! Kþ�þ��Þanti ¼ �T0
2;de

i� � C0
1;de

i� � ~P0
b;uce

i� þ ~P0
b;tc þ 1

3P
0
EW1;u � 2

3P
0
EW1;d þ 1

3P
0C
EW1;u � 2

3P
0C
EW2;d; (34)

where, for the antisymmetric amplitudes, diagrams with the Kþ above (below) the �þ are multiplied by þ1 (� 1). The
penguin diagrams are defined in Eq. (32).

Both the �K0 and K0 are contained in a U-spin triplet, and so these are considered as identical particles. Thus, the final
states of the decays in pair 7 contain three identical particles and the group S3 must be used to describe their permutations.
Fortunately, for these decays, the situation is less complicated. For K0K0 �K0, in any diagram, the position of the �K0 cannot
change, so that only exchanges of the two K0’s need be considered. Things are similar for �K0 �K0K0. Thus, in order to show
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that these decays do indeed form a pair which respects Eq. (1), it is sufficient to examine the amplitudes which are
symmetric in the exchange of the two truly identical particles. We have

AðB0
s ! �K0 �K0K0Þsym ¼ P a;uce

i� þ P a;tce
�i� � 1

3PEW1;se
�i� � 1

3PEW1;de
�i� � 1

3P
C
EW1;se

�i� � 1
3P

C
EW2;de

�i�;

AðB0
d ! K0K0 �K0Þsym ¼ P 0

b;uce
i� � P 0

b;tc þ 1
3P

0
EW1;s þ 1

3P
0
EW1;d þ 1

3P
0C
EW1;d þ 1

3P
0C
EW2;s;

(35)

where

P a � P1;s þ P2;d; P b � P1;d þ P2;s: (36)

Now, under U spin, primed diagrams are equal to un-
primed diagrams with the exchange d $ s, i.e. they differ

only by �ðdÞ
p $ �ðsÞ

p . Thus, D0
s �Dd, D

0
d �Ds, D

0
u �Du,

~P0
a � P̂a, ~Pa � P̂0

a, ~P0
b � P̂b, ~Pb � P̂0

b, and P a � P b.
We therefore see that (almost all) the amplitudes for the
�b ! �d and �b ! �s decays in pairs 1–7 have the same form,
modulo CKM factors (recall that the �b ! �s amplitudes
include the minus sign from V�

tbVts [P
0
tc and electroweak-

penguin diagrams (EWP’s)]). The single exception is
AðBþ ! KþK��þÞanti and AðBþ ! Kþ�þ��Þanti in
pair 6. Here, recall that the contribution of a diagram is
positive (negative) if theKþ is above (below) the�þ in that
diagram. However, since the U-spin transformation
switches Kþ $ �þ, we expect the antisymmetric ampli-
tudes to have a relative � sign, and this is indeed what is
found. We therefore see that, in all pairs, the amplitudes of
the �b ! �d and �b ! �s decays respect Eq. (3), so that (X � 1)
(U-spin breaking) can be measured using these processes.

Previously, in discussing two-body decays, we noted
that the U-spin/SU(3) corrections could be separated into
two types—factorizable and nonfactorizable—and that the
factorizable corrections could be reliably calculated. As
such, the measurement of X can be translated into a deter-
mination of the nonfactorizable corrections. In principle,
this can be applied to three-body decays. In practice,
however, things are more complicated. In particular, while

the Tð0Þ diagram in two-body decays is, within factoriza-
tion, proportional to the product of a decay constant and
a form factor, in three-body decays, new structures appear.

The Tð0Þ
1 diagram is proportional to the product of a

h2 particles jðV � AÞj0i matrix element and a form factor,

and the Tð0Þ
2 diagram is proportional to the product of a

decay constant and a h2 particles jðV � AÞjBi matrix ele-
ment. To date, there have been no definitive calculations of
these matrix elements. They have been studied in Ref. [20],
but more work is clearly needed.

To this end, the measurement of X can help. Given that
nonfactorizable U-spin/SU(3) breaking is expected to be
subdominant compared to factorizable breaking, X as mea-
sured in the above decay pairs can be considered to be a
factorizable correction (especially pairs 1–6, which have

Tð0Þ
1 =Tð0Þ

2 contributions). The knowledge of the precise val-
ues of such factorizable effects will guide the calculation of
the new matrix elements.

Finally, a natural question is whether clean weak-phase
information can be extracted from these decays. For ex-
ample, the pair B0

s ! KþK� �K0 and B0
d ! K0�þ�� is the

three-body equivalent of B0
d ! �þ�� and B0

s ! KþK�.
Can one adapt the method of Ref. [2] to obtain �?
Unfortunately, the answer is no. In two-body decays, addi-
tional information is provided by the measurement of the
indirect CP asymmetry in B0

d ! �þ��. Here, however,
because B0

d ! K0�þ�� is a three-body decay, the relative

�þ�� angular momentum is not fixed, and so the final
state is not a CP eigenstate. Thus, the measurement of the
indirect CP asymmetry in this decay does not give clean
information. The situation is the same for the second pair,
B0
s ! �K0�þ�� and B0

d ! KþK0K�.
In a similar vein, B0

d ! K0K��þ and B0
s ! Kþ �K0�� is

the three-body equivalent of B0
s!�þK� and B0

d!��Kþ.
Can the method of Ref. [4], in which additional informa-
tion comes from BðBþ ! �þK0Þ, be adapted to this situ-
ation? Unfortunately, here too the answer is no. Unlike the
two-body situation, here there is no other three-body decay
which provides the appropriate additional information.
This holds as well for pairs 4–6.
On the other hand, pair 7, B0

s ! �K0 �K0K0 and B0
d !

K0K0 �K0 is intriguing. The key point here is that, because
there are truly identical particles in the final state, their
relative angular momentum is even, and so the final state is
a CP eigenstate. Now, the diagram contributing to the ei�

piece of the �b ! �s amplitude is P 0
b;uc. In Sec. III C, we

noted that jP0
ucj is expected to be small in two-body decays,

and so a direct CP asymmetry which is proportional to this
diagram will also be small. If the same property holds in
three-body decays, the measurement of the indirect CP
asymmetry in the pure-penguin decay B0

s ! �K0 �K0K0

cleanly probes the B0
s- �B

0
s mixing phase (experimentally,

this might be easier than performing the angular analysis in
B0
s ! J=c
, which is presently done). However, if P 0

b;uc

is not small, as could happen if there are significant
rescattering effects, then As is not negligible, and the
method of Ref. [2] can be applied to this pair to obtain
�. Here, U-spin symmetry is assumed, but, as noted above,
it is possible to measure X, which gives the size of U-spin
breaking.

B. SU(3) pairs

Unlike two-body decays, with three-body decays one
cannot obtain additional pairs satisfying Eq. (3) by simply
neglecting annihilation- and exchange-type diagrams.
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However, there is another possibility. If, as in the two-body
case, one takes isospin into account in addition to U-spin
symmetry, one effectively assumes full flavor SU(3) sym-
metry. Under this symmetry, �’s and K’s are identical
particles, so that the final state in all decays contains three
identical particles. In this case, the six permutations of
these particles (the group S3) must be considered. This
was analyzed in Ref. [18]. For a given decay, there are six
possibilities for the S3 state of the three particles: a totally
symmetric state jSi, a totally antisymmetric state jAi, or
one of four mixed states jMii (i ¼ 1–4). The states are
defined as follows. The final-state particles are numbered
1, 2, 3, so that the six possible orders are 123, 132, 312,
321, 231, 213. Under S3,

jSi� 1ffiffiffi
6

p ðj123iþj132iþj312iþj321iþj231iþj213iÞ;

jM1i� 1ffiffiffiffiffiffi
12

p ð2j123iþ2j132i�j312i�j321i

�j231i�j213iÞ;
jM2i� 1ffiffiffi

4
p ðj312i�j321i�j231iþj213iÞ;

jM3i� 1ffiffiffi
4

p ð�j312i�j321iþj231iþj213iÞ;

jM4i� 1ffiffiffiffiffiffi
12

p ð2j123i�2j132i�j312iþj321i

�j231iþj213iÞ;
jAi� 1ffiffiffi

6
p ðj123i�j132iþj312i�j321iþj231i�j213iÞ:

(37)

One can show that certain pairs of decays, related by
SU(3) and not by U spin, satisfy Eq. (1), but only for
the state jSi (in most cases). This applies to the following
SU(3) pairs6 (as is standard, we neglect annihilation- and
exchange-type diagrams):

(i) (Bþ!�þK�Kþ, Bþ!�þ�0�0, Bþ!�þ�þ��,
B0
s ! �K0�þ��) and (B0

d ! KþK�K0, Bþ !
KþKþK�, Bþ ! Kþ�þ��),

(ii) (Bþ ! Kþ �K0�0, Bþ ! �K0Kþ�8) and (Bþ !
K0�þ�0, B0

d ! Kþ���0, Bþ ! K0�þ�8),

(iii) B0
s! �K0 �K0K0 and (Bþ!KþK0 �K0,B0

d!K0K0 �K0),

(iv) B0
d ! �0�0�0 and B0

d ! K0�0�0,

(v) (B0
d ! K�Kþ�0, B0

d ! K�Kþ�8) and (B0
s !

�0�0�8, B
0
s ! �þ���8),

(vi) B0
s ! �K0�0�0 and B0

d ! K0�0�0,

(vii) B0
s ! �K0�0�8 and B0

d ! K0�0�8,

(viii) B0
s ! �K0�8�8 and B0

d ! K0�8�8.

The decays in the first (second) parentheses are �b ! �d
( �b ! �s) transitions.
In order to establish which states are the same (modulo

CKM factors) for the decays within a pair, one writes the
amplitudes for each decay in terms of diagrams, noting the
order of the final-state particles for each diagram. It is this
order which determines which S3 states are common to
both decays. The state jSi is symmetric in all possible
orders. Thus, as long as the two amplitudes are comprised
of the same diagrams, the final-state order is unimportant,
and the two decays are related by SU(3) for jSi. For jAi, if
the first decay amplitude contains the diagram D with the
order ijk, the second decay amplitude must containD with
a cyclic permutation of ijk, or �D with a anticyclic
permutation of ijk.
Themixed states aremore complicated. The six elements

of S3 are: I (identity),P12 (exchanges particles 1 and 2),P13

(exchanges particles 1 and 3), P23 (exchanges particles 2
and 3), Pcyclic (cyclic permutation of particle numbers, i.e.

1 ! 2, 2 ! 3, 3 ! 1), Panticyclic (anticyclic permutation of

particle numbers, i.e. 1 ! 3, 2 ! 1, 3 ! 2). The point is
that, under the group transformations, jM1i and jM3i trans-
form among themselves. Writing

jM1i � 1
0

� �
; jM3i � 0

1

� �
; (38)

we can represent each group element by a 2� 2 matrix:

I¼ 1 0

0 1

 !
; P12¼

�1
2

ffiffi
3

p
2ffiffi

3
p
2

1
2

0
@

1
A;

P13¼
�1

2 �
ffiffi
3

p
2

�
ffiffi
3

p
2

1
2

0
@

1
A; P23¼

1 0

0 �1

 !
;

Pcyclic¼
�1

2

ffiffi
3

p
2

�
ffiffi
3

p
2 �1

2

0
@

1
A; Panticyclic¼

�1
2 �

ffiffi
3

p
2ffiffi

3
p
2 �1

2

0
@

1
A: (39)

Similarly, if we write

jM2i � 1
0

� �
; jM4i � 0

1

� �
; (40)

the S3 matrices take the same form, showing that jM2i and
jM4i also transform among themselves.
From the above matrices, we see that the first rows of the

matrices are the same for (I, P23), (P12, Pcyclic) and (P13,

Panticyclic). This indicates that the symmetric mixed states

(jM1i and jM2i) are the same for the two decays if the
particle orders for a given diagram are [(123) or (132)],
[(213) or (231)], or [(321) or (312)]. For the antisymmetric
mixed states (jM3i and jM4i), things are the same, except
that there is an additional minus sign if the particle order is
anticyclic (this can be seen from the second rows of the
matrices).

6Note: This list includes some U-spin pairs. These pairs are
related for all S3 states.
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To demonstrate how this works, we present several examples. First, consider the decays Bþ ! �þK�Kþ and B0
d !

KþK�K0. For Bþ ! �þK�Kþ we take particle 1 as �þ, particle 2 as K�, and particle 3 as Kþ. The amplitude is

AðBþ ! �þK�KþÞ ¼ �T2;se
i�ð123Þ � C1;se

i�ð132Þ � P̂b;uce
i�ð123Þ � P̂b;tce

�i�ð123Þ þ 1
3PEW1;ue

�i�ð231Þ
� 2

3PEW1;se
�i�ð321Þ þ 1

3P
C
EW1;ue

�i�ð321Þ � 2
3P

C
EW2;se

�i�ð321Þ; (41)

where the particle order for each diagram (top to bottom) is given in parentheses. We have continued to label each diagram
by an index denoting the flavor of the popped quark pair, but under SU(3), these are all equal. For B0

d ! KþK�K0, we take
particle 1 as Kþ, particle 2 as K�, and particle 3 as K0. The amplitude is

AðB0
d ! KþK0K�Þ ¼ �T0

2;se
i�ð123Þ � C0

1;se
i�ð312Þ � P̂0

b;uce
i�ð123Þ þ P̂0

b;tcð123Þ � 1
3P

0
EW1;uð213Þ þ 2

3P
0
EW1;sð123Þ

� 1
3P

0C
EW1;uð321Þ þ 2

3P
0C
EW2;sð321Þ: (42)

The penguin diagrams for the two decays are defined in Eq. (32). Comparing the two amplitudes, we see that, due to C1;s

and PEW1;s, jAi and the mixed states are not common. Therefore, the two decays are related only for jSi.
Consider B0

s ! K0 �K0 �K0 and Bþ ! KþK0 �K0. For B0
s ! K0 �K0 �K0, particle 1 is K0, and particles 2 and 3 are �K0

(consistent with the choice of mixed states above), so that jM3i ¼ jM4i ¼ jAi ¼ 0. The amplitude is

AðB0
s ! �K0 �K0K0Þ ¼ P a;uce

i�ð213Þ þ P a;tce
�i�ð213Þ � 1

3PEW1;se
�i�ð123Þ � 1

3PEW1;de
�i�ð213Þ

� 1
3P

C
EW1;se

�i�ð213Þ � 1
3P

C
EW2;de

�i�ð213Þ: (43)

For Bþ ! KþK0 �K0, we take particle 1 as Kþ, particle 2 as K0, and particle 3 as �K0. The amplitude is

ffiffiffi
2

p
AðBþ ! KþK0 �K0Þ ¼ P 0

b;uce
i�ð231Þ � P 0

b;tcð231Þ þ 1
3P

0
EW1;sð231Þ þ 1

3P
0
EW1;dð321Þ þ 1

3P
0C
EW2;sð132Þ þ 1

3P
0C
EW1;dð132Þ:

(44)

The penguin diagrams for the two decays are defined in Eq. (36). Because of the EWP’s, we see that the two decays are
related only for jSi.

Consider Bþ ! �0 �K0Kþ and Bþ ! �0K0�þ. For Bþ ! �0 �K0Kþ, we take particle 1 as �0, particle 2 as �K0, and
particle 3 is Kþ. The amplitude is

ffiffiffi
2

p
AðBþ ! Kþ �K0�0Þ ¼ �T1;se

i�ð321Þ � C2;se
i�ð321Þ þ P b;uce

i�ð123Þ � P̂a;uce
i�ð231Þ þ P b;tce

�i�ð123Þ
� P̂a;tce

�i�ð231Þ � PEW2;se
�i�ð123Þ � 1

3P
C
EW1;de

�i�ð321Þ � 2
3P

C
EW1;se

�i�ð132Þ
þ 1

3P
C
EW2;ue

�i�ð132Þ � 1
3P

C
EW2;se

�i�ð321Þ: (45)

The penguin diagrams are defined in Eqs. (32) and (36). For Bþ ! �0K0�þ, we take particle 1 as�0, particle 2 asK0, and
particle 3 is �þ. The amplitude is

ffiffiffi
2

p
AðBþ ! K0�þ�0Þ ¼ �T0

1;de
i�ð321Þ � C0

2;de
i�ð321Þ þ P0

EW2;dð123Þ þ 1
3P

0C
EW1;uð312Þ þ 2

3P
0C
EW1;dð132Þ: (46)

Under SU(3), P b ¼ P̂a Thus, in order for the gluonic-penguin contribution to cancel in Eq. (45) above, we need a state
which is symmetric in ð123Þ $ ð231Þ. This is jSi or jAi—mixed states are excluded. However, jAi is itself excluded by the
PC
EW1 contribution—apart from CKM factors, it has the same sign in the two amplitudes, despite the particle order being

cyclic in one case and anticyclic in the other. Thus, the two decay amplitudes are related only for jSi.
Finally, consider Bþ ! ���þ�þ and Bþ ! ��Kþ�þ. For Bþ ! ���þ�þ, particle 1 is ��, and particles 2 and 3

are �þ. This implies that jM3i ¼ jM4i ¼ jAi ¼ 0. The amplitude is

AðBþ ! ���þ�þÞ ¼ �T2;de
i�ð213Þ � C1;de

i�ð231Þ � ~Pb;uce
i�ð213Þ � ~Pb;tcð213Þ þ 1

3PEW1;uð123Þ � 2
3PEW1;dð213Þ

þ 1
3P

C
EW1;uð213Þ � 2

3P
C
EW2;dð213Þ: (47)

For Bþ ! ��Kþ�þ, take particle 1 as ��, particle 2 as Kþ, and particle 3 is �þ. All six S3 states allowed. The ampli-
tude is
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AðBþ ! ��Kþ�þÞ ¼ �T0
2;de

i�ð213Þ � C0
1;de

i�ð231Þ � ~P0
b;uce

i�ð213Þ þ ~P0
b;tcð213Þ � 1

3P
0
EW1;uð132Þ þ 2

3P
0
EW1;dð312Þ

� 1
3P

0;C
EW1;uð312Þ þ 2

3P
0;C
EW2;dð312Þ: (48)

The penguin diagrams for the two decays are defined in
Eq. (32). All states with 2 $ 3 symmetry are allowed.
Thus, unlike the above cases, the two decay amplitudes
are related for jSi, jM1i, and jM2i. This is a special case.
Here, the processes are identical, save for the flavor of the
decay quark (d or s). As a result, the amplitudes are equal
for all nonzero states. There is one other pair like this—
Bþ ! K��þKþ and Bþ ! K�KþKþ. For all other pairs,
the two decay amplitudes are related only for jSi (or for all
S3 states in the case of U-spin pairs).

Now, in Refs. [18,19] it was shown how the S3 states
can be determined experimentally. Below we review the
method, focusing on the state jSi. Consider the decay
Bþ ! �þK�Kþ. The Dalitz-plot events can be described
by sþ¼ðp�þ þpKþÞ2 and s� ¼ ðp�þ þ pK�Þ2, so that the
decay amplitude, Mðsþ; s�Þ, can be extracted. We intro-
duce the third Mandelstam variable, s0 ¼ ðpKþ þ pK�Þ2. It
is related to sþ and s� as follows:

sþ þ s� þ s0 ¼ m2
B þm2

� þ 2m2
K: (49)

The totally symmetric SU(3) decay amplitude is then
given by

jSi ¼ 1ffiffiffi
6

p ½Mðsþ; s�Þ þMðs�; sþÞ þMðsþ; s0Þ

þMðs0; sþÞ þMðs0; s�Þ þMðs�; s0Þ�: (50)

The state jSi can be determined for the other decays
similarly. With this, the size of U-spin/SU(3) breaking
can be found through the measurement of X using any of
the SU(3) pairs.

C. Other signals of SU(3) breaking

Finally, we note that there are certain decays which have
identical amplitudes for the totally symmetric state jSi.
They are given by the processes within parentheses in the
list in Sec. IVB. For these, the branching ratios and direct
CP asymmetries should be equal in the SU(3) limit. Thus,
by obtaining the state jSi for these decays, the measure-
ment of these quantities constitutes a further test of SU(3)
breaking.

V. CONCLUSIONS

Within U-spin symmetry (d $ s), the amplitudes for
certain charmless �b ! �d and �b ! �s decays are equal, apart
from CKMmatrix elements. Using this, two methods were
proposed for extracting weak-phase information frommea-
surements of particular U-spin decay pairs. The theoretical
uncertainty of these methods must include the issue of
U-spin breaking. In general, theoretical input is used to
address this. However, one of the points of the present

paper is that this breaking can be measured experimentally.
Under U spin, the branching ratios and direct CP asymme-
tries of the two decays are not independent—there is a
relation among them. Thus, one can determine U-spin
breaking by measuring the four observables, and seeing
the extent to which this relation is not satisfied.
Furthermore, if one neglects annihilation- and exchange-

type diagrams, there are additional pairs of B decays whose
amplitudes are equal, apart from CKM matrix elements. In
this case, the symmetry is flavor SU(3). Here, too, the
relation among the four observables holds in the SU(3)
limit, so that SU(3)-breaking effects can be determined
from the measurements of these quantities.
In this paper, we present the list of two-body B decay

pairs from which the size of the breaking can be obtained.
In fact, there are five such pairs for which these measure-
ments have been done. We present this data, along with the
determination of U-spin/SU(3) breaking. In many such
decays, the calculation of the factorizable contribution to
the breaking is reliable. Taking this into account, one can
measure the size of nonfactorizable effects. It is expected
that these are small. However, there is one decay pair—
B0
d ! �þ�� and B0

d ! ��Kþ—which may exhibit large

nonfactorizable breaking, depending on whether one uses
the BABAR or Belle measurement of the B0

d ! �þ��
direct CP asymmetry. Although this result is not conclu-
sive, it does raise questions about analyses which neglect
nonfactorizable U-spin/SU(3) breaking.
We also present the list of three-body B decay pairs

whose amplitudes are the same, apart from CKM factors.
However, here the situation is more complicated. Under
SU(3), the final-state particles are all identical, and the
equality of amplitudes holds (almost always) only for the
totally symmetric final state jSi. Thus, this state must be
isolated experimentally in order to measure SU(3) break-
ing, and we describe how to do this.
We discuss the decay pairs whose amplitudes are equal,

including CKM factors, within SU(3). For two-body de-
cays, the size of SU(3) breaking is indicated by comparing
the branching ratios and direct CP asymmetries of the two
decays. For three-body decays, once again the equality of
amplitudes holds only for jSi, so that this state must be
distinguished in order to probe SU(3) breaking.
Finally, we note in passing that the pure-penguin decay

B0
s ! �K0 �K0K0 is particularly interesting. Here the final

state is a CP eigenstate. Thus, given that the direct CP
asymmetry is expected to be small, the measurement of the
indirect CP asymmetry in this decay cleanly probes the
B0
s- �B

0
s mixing phase. This might be easier experimentally

than performing the angular analysis in B0
s ! J=c
,

which is what is done at present.
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