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We consider the consequences of the presence of metric fluctuations upon the properties of a hydrogen

atom. Particularly, we introduce these metric fluctuations in the corresponding effective Schrödinger

equation and deduce the modifications that they entail upon the hyperfine structure related to a hydrogen

atom. We will find the change that these effects imply for the ground state energy of the system and obtain

a bound for its size comparing our theoretical predictions against the experimental uncertainty reported in

the literature. In addition, we analyze the corresponding Lamb shift effect emerging from these

fluctuations of spacetime. Once again, we will set a bound to these oscillations resorting to the current

experimental outcomes.
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I. INTRODUCTION

Nowadays gravitational physics faces several profound
conundrums. Among them we may consider the quest for a
quantum theory of gravity. The present difficulties can be
categorized, roughly, as conceptual and mathematical
[1,2]. The lack of a consistent theory has several implica-
tions, one of them is the absence of testable experimental
predictions.

This current condition has spurred the search for infor-
mation which could provide some clue about the correct
direction. This topic is usually denoted as quantum gravity
phenomenology, i.e., the observational and experimental
search for deviations from Einstein’s general relativity or
from quantum field theory. It has to be stressed that nowa-
days it is a very active realm. In this context string theory
and loop gravity entail conjectures which imply small
modifications from general relativity; for instance, devia-
tions from the 1=r potential and violations of the equiva-
lence principle [3,4] or deformed versions of the dispersion
relation [5,6].

Both loop gravity [7] and string theory [8,9] imply
induced modifications to the field equations governing
the motion of spin- 12 particles. Based upon string theory,

Kostelecky and co-workers have initiated an intensive
study of modifications of the standard model of elementary
particle physics [10–12]. In the search of experimental
tests the main difficulty lies in the smallness of the pre-
dicted effects. The proposed experiments range from mod-
ifications to the standard model of elementary particle
physics [13,14], interferometric tests [15,16], modification
of Maxwell’s equations [17], or the use of Bose-Einstein
condensates [18] in this context [19–22]. In other words,
the proposals run from high energy tests to low energy
experiments. A fruitful realm in the direction of precision

tests is atomic physics. Indeed, the Hughes-Drever experi-
ment shows us the power of this resource [23]. One of the
advantages of atomic physics is related to the fact that
some of the most accurately tested effects lie within this
context. Indeed, the relative experimental uncertainty re-
lated to the measurement of the hyperfine splitting of the
ground state of the hydrogen atom can be considered
among the most accurate experiments, i.e., it does not
exceed 10�12 [24].
The idea in the present work is to take advantage of this

high experimental precision for the fine and hyperfine ef-
fects and determine bounds for some quantum gravity
effects. In particular, we will address the issue of the con-
sequences of the presence of metric fluctuations [25,26]
upon the properties of a hydrogen atom. The main ingre-
dient in this aspect corresponds to a Minkowskian back-
ground and in addition small spacetime fluctuations are also
present. One of the assumptions in this approach is related
to the fact that these spacetime fluctuations emerge as
classical fluctuations of the background metric.
In addition, we will introduce these metric fluctuations

in the corresponding effective Schrödinger equation and
deduce the modifications that they entail upon the hyper-
fine structure related to a hydrogen atom. We will find the
change that these effects imply for the ground state energy
of the system and set a bound to these oscillations resorting
to the current experimental outcomes [24]. It will be shown
that, in the simplest case, these fluctuations can be inter-
preted as redefinitions of the inertial mass.
We also analyze the corresponding Lamb shift effect

[27] emerging from these fluctuations of spacetime and
obtain a bound for its size comparing our theoretical
predictions against the experimental uncertainty reported
in the literature. The possibility of the emergence of a
Lamb-type-like shift induced by the fluctuations of the
metric is the issue to be addressed as a part of the present
work. The absence of a quantum electrodynamic theory
predicts for the hydrogen atom an accidental degeneracy
between the 2S1=2 and 2P1=2 levels, i.e., they have the same
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energy. The formulation of a quantum version of electro-
dynamics breaks down this aforementioned accidental
degeneracy. Indeed, the effects of the fluctuations of the
electric and magnetic fields with the vacuum entails a
perturbation to the solutions stemming from the
Coulombian potential. The Lamb shift has been a corner-
stone in the development of several areas of physics,
among them, atomic physics and quantum electrodynam-
ics. The experimental uncertainty in this realm offers one
of the best scenarios for precision tests. For the sake of
completeness, let us provide an explanation of how these
metric fluctuations can give rise to an effect similar to the
Lamb shift. The point here is that in the usual model [27]
the electron and proton positions are shifted, due to the
fluctuations to the electromagnetic field, r ! rþ �r. This
last and simple comment explains in a very intuitive man-
ner why metric fluctuations shall also impinge upon this
aspect. Indeed, the presence of this kind of fluctuations
implies that the physical distance between the electron and
proton oscillates and therefore the main conditions, re-
quired for the Lamb shift, are here also present.

II. ATOMIC STRUCTURE AND
SPACETIME FLUCTUATIONS

A. Perturbation procedure

As stated before, this work addresses the relation be-
tween metric fluctuations and atomic physics. Let us men-
tion briefly the idea of metric fluctuations. In this direction
we have a spacetime which can be regarded as a classical
background on which quantum fluctuations exist [25].
Clearly, they emerge as a consequence of a quantum theory
of gravity. The effects of these spacetime fluctuations upon
our current physics appear, in the first-order effects, in the
form of average properties of these oscillations, which
modify, for instance, the motion equations. In this general
scheme the fluctuations imply a modified Schrödinger
equation, in which the Laplacian operator becomes
�ℏ2=ð2mÞð�ij þ �ijÞ@i@j, where �ij > 0 [25,26]. The sim-

plest case involves the so-called conformal fluctuations
defined by the following conditions: �ij ¼ 0, if i � j,
whereas �xx ¼ �yy ¼ �zz ¼ �. In other words, the idea
of conformal fluctuations can be easily understood consid-
ering them as matrices proportional to the unit matrix.
Under these conditions our fluctuations can be compre-
hended (at least partially) as redefinitions of the inertial
mass [26]. For instance, the new inertial mass for the
electron (meff

e ) is given by

meff
e ¼ með1þ �Þ�1: (1)

In this last expression metric fluctuations are encoded in
this parameter �. It has to be mentioned that it has to be
considered very small (otherwise its existence would be a
proved experimental fact). In addition, we do assume that it
has a particular sign, namely, it has to be positive [26]. It

has to be clearly stated that this parameter (�) depends
upon the type of particle.
This interpretation of the kinematical effects of � as a

redefinition of the mass parameter allows us to state that
the reduced mass of the system has the form,me andmn are
the electronic and nuclear masses, respectively,

� ¼ memn

me þmn

: (2)

To lowest order in the parameterme=mn we have that the
new reduced mass of the system (�eff) shows the effects of
the metric fluctuations (here � is related to the electron).
The absence of the corresponding variable for the proton
stems from the fact that it appears as a higher-order term,
and we keep here the dominant contribution,

�eff ¼ �ð1þ �Þ�1: (3)

This last remark allows us to estimate, roughly, the
effects of the metric perturbations, i.e., the functional
dependence upon �. Indeed, a fleeting glimpse at the
modifications caused by the fine and hyperfine terms for
a hydrogen atom, here we take as an example the case of
the 1s level, allows us to deduce the fine structure contri-
bution: �Ef ¼ � 1

8�c2�2, whereas the hyperfine modifi-

cation is given by �Eh � m2
e

mp
c2�4. In this sense we may

understand �E� �c2�2

2 ��1 as a correction to the fine

structure contributions, i.e., it goes like ��2, and not
��4. Here c is the speed of light and � stands for the
fine structure constant [28].
The first part of the present work addresses the issue of

the effects of these metric fluctuations upon the hyperfine
levels of a hydrogen atom. The particular structure of our
model reads

Ŵ ¼ 1

2�
�ijP̂iP̂j; i; j ¼ x; y; z: (4)

In this last expression P̂i denotes the momentum opera-
tor and �ij are the effects upon the effective Schrödinger
equation of the metric fluctuations [25,26], and � the
reduced mass of the hydrogen atom.

This last operator Ŵ will be considered as a perturbation
upon the eigenkets associated to a hydrogen atom. In these
eigenkets the fine and hyperfine effects will be included,
i.e., our initial eigenkets shall contain the information
involving fine and hyperfine structures. At this point we
must explain the reasons behind this procedure. Indeed, it
is already known that the fine structure Hamiltonian has a
larger magnitude than the one related to the hyperfine
effects [28], their ratio goes like �2, i.e., the square of
the fine structure constant. This argument tells us that we
must first calculate the modifications upon energies and
kets of the hydrogen atom resorting to the fine structure
Hamiltonian. Afterwards, the hyperfine terms will be in-
troduced into the energies and kets obtained in the first
step. Finally, we assume, from the very beginning, that (4)
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is a very tiny contribution to the atomic behavior, i.e., the
smallest of all of them, and, in consequence, according to
perturbation theory it has to be the last term to be included
in this approximation procedure.

The idea is to find a bound for the order of magnitude
associated to �ij resorting to the comparison between our
theoretical predictions and the current experimental
bounds. As previously mentioned, the relative experimen-
tal uncertainty related to the measurement of the hyperfine
splitting of the ground state of the hydrogen atom can be
considered among the most accurate experiments, i.e., it
does not exceed 10�12 [24].

Let us for a moment consider only the effects of (4). The
most general case, concerning the structure of the space-
time fluctuations, does not consider any kind of condition
upon the involved parameters, namely, �ij. Under this
general situation it turns out that some properties of the
hydrogen atom, stemming from spherical symmetry, will
be lost. Let us explain better this last assertion. It is already
known that any vector operator, like the momentum opera-
tor ðPx; Py; PzÞ, defines, uniquely, a spherical tensor of rank
k ¼ 1 [29], whose components, for this particular case,

read Tðk¼1Þ
ðq¼0Þ ¼ Pz and Tðk¼1Þ

ðq¼�1Þ ¼ �1ffiffi
2

p fPx � iPyg. An addi-

tional theorem [29] implies that an expression like (4) can
be cast as the sum of three different types of spherical
tensors, namely, of ranks k ¼ 0; 1; 2 (a consequence of the
conditions that the Clebsch-Gordan coefficients satisfy).
These last arguments imply that, for example, the spherical
tensor of rank k ¼ 2 associated to (4) will break down the
inherent degeneracy of this atom. This can be understood
noting that if we take two different kets of the hydrogen
atom, with the same energy (same quantum number n) and
same angular momentum (same l), then according to
Wigner-Eckardt theorem [29]

hn; l; mjTðk¼2Þ
ðqÞ jn; l; m̂i

¼ hn; ljjTðk¼2Þjjn; liffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p hl; m̂; k ¼ 2; qjl; k ¼ 2; l; mi: (5)

Here we follow the usual notation employed in the
context of this theorem [28]. For instance, jl; k ¼ 2; l; mi
denotes an element of the base of the Hilbert space asso-
ciated to the angular momentum of a system comprising
two particles such that this ket is an eigenvector of the total
angular momentum of the two particles (J1 and J2) but also
of the total angular momentum of the system J (here J ¼
J1 þ J2) and of the total projection along the z axis (Jz).
The rules satisfied by the Clebsch-Gordan coefficients
imply that (5) vanishes if m̂þ q � m or if l =2 ½jk� lj; kþ
l� [29]. In other words,

hn¼ 2; l¼ 1;m¼þ1jTðk¼2Þ
ðqÞ jn¼ 2; l¼ 1; m̂¼�1i

� hn¼ 2; l¼ 1;m¼þ1jTðk¼2Þ
ðqÞ jn¼ 2; l¼ 1; m̂¼þ1i:

(6)

According to perturbation theory of degenerate levels
the last expression leads us to conclude that (in the sub-
space of l ¼ 1) the matrix defined by (5) is not a matrix
proportional to the identity matrix, i.e., it has more than
one eigenvalue and eigenvector. These last arguments tell
us, in a rough way, the modifications due to these metric
fluctuations. Notice that for l ¼ 0, the case in which we
are interested, one of the Clebsch-Gordan conditions
(l =2 ½jk� lj; kþ l�) means that only for k ¼ 0 it could
be different from zero, because 0 =2 ½2; 2� and 0 =2 ½1; 1�.
In other words, the fourfold degeneracy of the ground state
(taking into account electronic and protonic spins) will not
be broken by anisotropic fluctuations. It is readily seen that
this last comment entails the fact that spherical symmetry
cannot be broken. In general (for nonvanishing values of
the orbital angular momentum), the role of metric fluctua-
tions becomes richer if the restriction of conformal condi-
tion is released. In this case, spherical symmetry will
be broken and the degeneracy, inherent and accidental,
can be lost.
In the present work the simplest case will be considered,

namely, �ij ¼ 0, if i � j, whereas �xx ¼ �yy ¼ �zz ¼ �.
This is due to the fact that we are interested in the case
l ¼ 0. Clearly, as already shown, the situation cannot lead
to the breakdown of spherical symmetry, though it does not
mean that the case is uninteresting. Indeed, it leads to a
modification of the ground energy of the hydrogen atom,
and the modification of this energy due to the fluctuations
has the structure (this statement will be proved latter)

�E� �c2�2

2 ð1þ �Þ�1, in the leading contribution.

B. Hierarchy of perturbation terms

The fine structure Hamiltonian reads [28]

Ŵ f ¼ � P4

8�3c2
þ 1

2�2c2
1

r

dV

dr
~L � ~Sþ ℏ2

8�2c2
r2VðrÞ:

(7)

Here VðrÞ denotes the Coulombian potential. Let us,
briefly, explain each one of the three contributions appear-
ing in the right-hand side of this last expression. The first
term can be understood as the first relativistic correction to
the dispersion relation. The second one takes into account
the fact that the electron moves with respect to the nucleus
and, therefore, according to special relativity, it must feel
the magnetic field of the nucleus. Finally, the last term,
called Darwin’s operator, is a consequence of the
Zitterbewegung of the electron [28].
There is an additional contribution that has to be in-

cluded, namely, the hyperfine [28]

Ŵh¼��0

4�

�
q

�r3
~L � ~MIþ 1

r3
½3ð ~n � ~MIÞð ~n � ~MSÞ� ~MS � ~MI�

þ8�

3
~MS � ~MI�ðrÞ

�
: (8)
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In this last expression the first term on the right-hand
side describes the interaction of the nuclear magnetic mo-
ment with magnetic field created by the orbital angular
momentum of the electron; the middle operator is related
to the dipole-dipole interaction between the magnetic mo-
ments of the electron and the nucleus; whereas the last
element, called Fermi’s contact term, is connected to the
fact that the nucleus is not a point, i.e., it has a nonvanish-
ing spatial extension.

The procedure to be followed here is: (i) the initial
eigenkets will be those associated to the hydrogen atom
[30]. The fine structure Hamiltonian will be used as a
perturbation and the corresponding perturbed energies
and kets will be obtained. (ii) Then these last results will
be employed as original energies and kets and the hyper-
fine structure Hamiltonian will be introduced as a pertur-
bation. (iii) Once again, the corresponding energies and
kets will be deduced and they will be the starting data and
(4) will at this point play the role of a time-independent
perturbation. Clearly, this entails that the effects of the
fluctuations will be calculated in such a way that fine and
hyperfine effects are included as fundamental elements of
atomic physics.

As a first case we consider conformal fluctuations
[25,26], namely, �ij ¼ 0, if i � j, whereas �xx ¼ �yy ¼
�zz ¼ �. These conditions reduce (4) to

Ŵ ¼ 1

2�
�P̂2: (9)

At this point it seems to be a plain and simple redefini-
tion of the concept of inertial mass, i.e., � ! �

1þ� , and we

may wonder if this kind of effect can be detected. The
answer to this question is a very simple one and can be
understood recalling the general form of the fine structure
effect. Indeed, the energy modification due to this contri-
bution is given by �Ef � 1

8�c2�4. If we introduce the

aforementioned redefinition, we obtain that the new modi-
fication reads �Ef � 1

8�c2�4ð1þ �Þ�1. Therefore, in

principle, it can be detected.

C. Fine structure

1. General procedure

We will focus on the modifications to the ground state
energy, the ionization energy. Since the fine structure

effects are larger than the hyperfine one, jŴh=Ŵfj � �2

[28], then we start our analysis considering first fine struc-
ture terms (7). The ground state of the hydrogen atom has a
fourfold degeneracy (due to the spin degrees of freedom of
the electron and proton). Since l ¼ 0, for the ground state,
then the spin-orbit coupling does not contribute. In other
words, the fine structure cannot entail the breakdown of the
spherical symmetry for the ground state. This comment

also implies that for l ¼ 0 Ŵf has a diagonal matrix.

Hence, the four corresponding states move in the same
way, namely, the first-order correction to these eigenstates
reads

j1i ¼ X1
n¼2

X1
l¼0

Xl
m¼�l

hn; l;m;ms;mIjŴfjn ¼ 1; l ¼ 0;m ¼ 0;ms;mIi
� 1

2�c2�2 þ 1
2n2

�c2�2
jn; l;m;ms;mIi: (10)

There is an additional property which simplifies this last
expression. Indeed, the Darwin term vanishes for all states
such that l � 0 [28].

2. Perturbed kets and energies

The modified kets can be written as usual as

j~0i ¼ j0i þ j1i; (11)

where j1i is the contribution due to the perturbation.
Calculation of this part yields for the new ground state
(see Appendix A 1)

j~0i ¼ jn ¼ 1; l ¼ 0;m ¼ 0;ms;mIi

þ �2
X1
n¼2

n2

n2 � 1

�
1

n3=2
� 1

n3

�
jn; l ¼ 0;m ¼ 0;ms;mIi:

(12)

Notice that this last expression tells us that the depen-
dence of the perturbed ket upon jn; l ¼ 0;m ¼ 0;ms;mIi,
with n � 2, is much smaller than that related to the case

n ¼ 1. Indeed, it is readily seen that those kets associated
to n � 2 are multiplied by �2 � 10�4. This assertion is a
consequence of the fact that the fine structure terms behave
as �4, and when the corresponding matrix element is
divided by the difference between the two involved states

(�E� �c2�2

2 ) we obtain this aforementioned behavior.

D. Hyperfine structure

This new ground state (j~0i) will be now employed for the
deduction of the first-order energy correction due to the
hyperfine structure terms (8),

E1 ¼ h~0jŴhj~0i: (13)

At this point let us rewrite this last energy. In order to do
that, let us remember that the definition of the nuclear Bohr
magneton, �n ¼ ðgpℏ=ð2mpÞ, involves this parameter gp
which is approximately equal to 5.585 [28], and then the
energy can be cast in the following form:
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E1 ¼ �gp
�e

mp

ð�ec
2�4Þ

�
1þ X1

n¼2

n2�2

n2 � 1

�
1

n3
� 1

n9=2

�

þ
�X1
n¼2

n2�2

n2 � 1

�
1

n3
� 1

n9=2

��
2
�
: (14)

Riemann’s function [�ð�Þ ¼ P1
l¼1 1=l

�] allows us to

find a simple expression to the first-order energy correction
(see Appendix

X1
n¼2

n2

nsðn2 � 1Þ �
4

3
ð�ðsÞ � 1Þ: (15)

This approximation allows us to write the first-order
energy correction as

E1 ¼ �gp
�e

mp

ð�ec
2�4Þ

�
1þ 4�2

3
ð�ð3Þ � �ð9=2ÞÞ

�
:

(16)

The calculation of the perturbed kets has to be done
resorting to (12). Once again, this ground state is fourfold
degenerate, nevertheless, let us mention that the term

involving ~L � ~MI vanishes since our ground state implies
l ¼ 0. Similarly, the contribution involving the dipole-
dipole interaction turns out to be zero (due to spherical
symmetry) [28]. The only term that participates is the last
one, the so-called contact term. Here we must calculate
terms with the following structure:

hn;l¼0;m¼0;ms;mI

��������
8�

3
~MS � ~MI�ðrÞ

��������~n;l¼0;m¼0; ~ms; ~mIi¼8�

3
Rðn;l¼0Þðr¼0ÞRð~n;l¼0Þðr¼0Þhms;mIj ~MS � ~MIj ~ms; ~mIi:

(17)

In this last expression Rðn;l¼0ÞðrÞ denotes the radial part of
the corresponding wave function. We now define (as usual,
since ~MS and ~MI are proportional to ~S and ~I, respectively)

~F ¼ ~Sþ ~I: (18)

Therefore we have that

~F 2 ¼ ~S2 þ ~I2 þ 2 ~I � ~S: (19)

According to the rules of addition of angular momentum

we have F ¼ 0; 1. In the eigenkets of ~F2 (here denoted
jF;mFi) we have
hn;F ¼ 0; mF ¼ 0jŴhjn̂ ¼ 1;F ¼ 0; mF ¼ 0i

¼ � q2ℏ2gp�0

4�a30n
3=2�emp

; (20)

and

hn;F ¼ 1; mFjŴhjn̂ ¼ 1;F ¼ 1; mFi ¼
q2ℏ2gp�0

12�a30n
3=2�emp

:

(21)

We may now write down the perturbed kets, which
contain the effects of fine and hyperfine structures.
Notice that the correction related to F ¼ 0 implies a lower
energy than those three cases associated to F ¼ 1. In other
words, the ground state now is given by

j0̂i ¼ jn ¼ 1; ; l ¼ 0; ml ¼ 0;F ¼ 0; mF ¼ 0i þ �2
X1
n¼2

n2

n2 � 1

�
1

n3=2
� 1

n3

�
jn; l ¼ 0; ml ¼ 0;F ¼ 0; mF ¼ 0i

þ 2
gp�e

mp

�2
X1
n¼2

n2

n2 � 1

1

n3=2
jn; l ¼ 0; ml ¼ 0;F ¼ 0; mF ¼ 0i þ � � � : (22)

Now the consequences of the metric fluctuations upon this ground state are deduced

h0̂j 1

2�
�P̂2j0̂i ¼ � 1

2
�c2�2�

�
1� 16

3
�2

�
�ð5=2Þ � �ð4Þ þ 2

gp�e

mp

ð�ð5=2Þ � 1Þ
�
þOð�4Þ

�
: (23)

Finally, the energy of the ground state, which is the ionization energy is

E0 ¼ � 1

2
�ec

2�2

�
1þ 1

4
�2 þ 2gp

�e

mp

�2ð1� 1:82�Þ þ �ð1� 1:376�2Þ
�
: (24)

If � ! 0, then we recover the usual result [28]. It is also readily seen that the effects of metric fluctuations appear here as a
modification to the ionization energy of the hydrogen atom
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�E0 ¼ � 1

2
�ec

2�2�

�
1� 1:376�2 � 3:64gp

�e

mp

�2

�
:

(25)

III. SPACETIME FLUCTUATIONS
AND LAMB SHIFT

We now address the issue of a possible connection
between metric fluctuations and a Lamb-type-like shift
[31]. In addition to the modification imposed by the zero-
point fluctuations of the electromagnetic field, since the
potential VðrÞ is a function of r then the presence of these
spacetime fluctuations entails a change of the position of
the electron (of course, also of the proton), r ! rþ �r,

�V ¼ Vðrþ �rÞ � VðrÞ
¼ �~r � rVðrÞ þ 1

2ð�~r � rÞ2VðrÞ þ � � � : (26)

The method provides the correct order of magnitude of
this effect since it reproduces the Bethe formula [31,32].
The assumption of conformal fluctuations implies [25,26]
that the average of this change (here denoted by h�Vi)

h�Vi ¼ h12ð�~r � rÞ2VðrÞi: (27)

The meaning of h�Vi entails two different averages:
(i) an average over metric fluctuations and (ii) a second
average over atomic states. Indeed, isotropy leads us to
conclude that the average over metric fluctuations

h�~riðmfÞ ¼ 0: (28)

Let us now explain how the average over metric fluctua-
tions is to be carried out. Here the background metric is the
Minkowskian one,

ds2 ¼ ec ðxÞ�00dt
2 þ ec ðxÞ�ijdx

idxj: (29)

We assume (with the condition jc ðxÞj 	 1)

hc ðxÞiðmfÞ ¼ 0; (30)

h@�c ðxÞiðmfÞ ¼ 0: (31)

Therefore we have

h�xi ¼ hec ðxÞx�xxiðmfÞ ¼ ð1þ 1
2hðc Þ2iðmfÞ þ � � �Þx�xx;

(32)

hec ðxÞ�00iðmfÞ ¼ ð1þ 1
2hðc Þ2iðmfÞ þ � � �Þ�00; (33)

and similarly for the remaining coordinates. The imposed
condition (30) implies (28). It is easily seen that these
conditions contain isotropy and homogeneity of spacetime.
Indeed, it does not define a privileged direction nor a
privileged point.

We now notice that, explicitly,

1

2
ð�~r � rÞ2VðrÞ ¼ �~r

2
� ½ð�~r � rÞrV þ ðrV � rÞ�~r

þ �~r
r
 ðrVÞ þ rV 
r
 �~r�:
(34)

The conformal condition imposed upon these fluctua-
tions allow us to simplify the calculations. Indeed, isotropy
and independence of the fluctuations along the different
directions can be rephrased as follows:

h�x�yiðmfÞ ¼ h�xiðmfÞh�yiðmfÞ; (35)

hð�xÞ2iðmfÞ ¼ 1
3hð�~rÞ2iðmfÞ: (36)

Hence, the average over the metric fluctuations can be
reduced to

1
2 hð�~r � rÞ2iðmfÞ ¼ 1

6hð�~rÞ2iðmfÞr2: (37)

Until now we have only introduced, explicitly, metric
fluctuations (h� � �imf). At this point we require an assump-

tion for one of our parameters, namely, the behavior of
some of the statistical properties of the fluctuations have to
be given. We introduce [33]

hð�~rÞ2iðmfÞ ¼ 	2: (38)

In this last expression 	 is a constant. We may now
conclude

h�Vi ¼ 	2

6

	
r2

��q2

r

�

ðatÞ

: (39)

This average (h� � �iðatÞ) denotes a calculation over

atomic states, i.e.,

	2

6

	
r2

��q2

r

�

ðatÞ

¼ � q2	2

6

Z
jc ðn;l;mÞð~rÞj2r2

�
1

r

�
d3r:

(40)

Finally, r2ð1rÞ ¼ �4��ðrÞ, and we obtain

h�Vi ¼ 4�
q2	2

6

Z
�ðrÞjc ðn;l;mÞð ~rÞj2d3r: (41)

This last result, as in the usual Lamb shift effect [27],
implies that metric fluctuations, in this context, can modify
only those states with vanishing angular momentum

(l ¼ 0), due to the fact that c ðn;l;mÞð~0Þ ¼ 0 if l � 0 [28].

Then, for the particular case of n ¼ 2 we have (here a0
denotes Bohr radius)

q2	2

6
jc ð2;0;0Þð~0Þj2 ¼ � 1

96

�
	

a0

�
2 q2

a0
: (42)
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IV. DISCUSSION AND RESULTS

Let us now discuss the results and their perspectives,
always in the context of precision tests.

A. Hyperfine splitting

Our result concerning the ionization energy of the
hydrogen atom is provided by (25). The first term
[� ð0:5Þ�ec

2�2�] can be comprehended as a conse-
quence of the redefinition of the concept of inertial mass,
see (1). Indeed, it is quadratic in the fine structure constant,
a fact that discards any relation with the fine or hyperfine
structure.

The second contribution [ð0:688Þ�ec
2�4�] has to be

related to the fine structure. Of course, the dominant effect
(since �� 1=137) corresponds to �ð0:5Þ�ec

2�2�. The
emergence of � in this last term is also a consequence of
this redefinition of the inertial mass. Indeed, take, for in-
stance, the Darwin term, ½ℏ2=ð8�2

ec
2Þ�rVðrÞ. Its average

for an unperturbed eigenstate (with quantum numbers n,
l ¼ 0, m ¼ 0) of the hydrogen atom behaves like
ℏ2=ð8n2�2

ec
2a30Þ. The fine structure constant is defined as

� ¼ ℏ=ð�eca0Þ, and therefore, this average has the order of
magnitude�ec

2�4=n2. If we redefine�eff ¼ �eð1þ �Þ�1,
then we deduce that the Darwin term is also modified,
namely, �ec

2�4=n2 ! �ec
2�4ð1þ �Þ�1=n2. In other

words, this redefinition of the inertial mass is the first
modification that emerges in the present context, either in
connection with the unperturbed energy levels, or in asso-
ciation with the fine structure terms.

The third and last contribution (1:82�ec
2�4�gp

�e

mp
)

corresponds to the modifications upon the hyperfine energy
due to these fluctuations and, once again, it can be under-
stood as a consequence of this redefinition of the inertial
mass. The hyperfine splitting of the ground state of the
hydrogen atom can be considered among the most accu-
rately detected physical quantities [24]. The related uncer-
tainty is associated to several possibilities, for instance,
correction terms of higher-order QED effects, or the proton
electromagnetic structure induced by strong interactions. A
very rough bound for the magnitude of � can be deduced
from [24], Eq. (1). Indeed, according to this experimental
result the uncertainty related to the hyperfine splitting of
the hydrogen atom reads

�E
ðexpÞ
0 ¼ �0:0009 Hz: (43)

We now relate our third term (1:82�ec
2�4�gp

�e

mp
) to the

experimental uncertainty

1:82�ec
2�4�gp

�e

mp

� ℏ�EðexpÞ
0 : (44)

In this way we obtain a rough bound for �:

� � 10�18: (45)

B. Lamb shift

The Lamb shift has been used as a tool for the detection
of the radius of the proton, etc. [34]. In our case it allows us
to pose, in an independent way from the previous situation,
a bound to some statistical properties of the metric fluctu-
ations. Indeed, we may use the uncertainty (�E) men-
tioned in [35] (�E=ℏ ¼ 4:8 MHz),

1

96

�
	

a0

�
2 q2

a0
� �E; (46)

and obtain as a bound

	 � 10�18 m: (47)

C. Models of spacetime fluctuations and precision tests

It has to be emphasized that these two bounds [(45) and
(47)] cannot be compared directly. Indeed, � is not equal
to 	 (�ij in the general situation) [25,26]. They corre-
spond to different statistical features of the involved fluc-
tuations of spacetime. Of course, they are related and at
this point we mention their connection. The effective
Schrödinger equation used in the context of hyperfine
structure contains an average process of metric fluctua-
tions involving a spacetime interval [see expression (3) in
[25] ]. The averaging method involved in the calculations
of the Lamb shift [33] has a resemblance of the first
procedure, though it is not the same kind of fluctuation,
as expression (4) in [25] explicitly manifests. Indeed, in
this last approach the average of these fluctuations defines
a background field, whereas in [33] the average of these
fluctuations does not define this parameter. This lack of
coincidence in the context of our employed fluctuations
shall be no surprise [36], i.e., the possibilities in the type
of fluctuations is not restricted to those mentioned in [25]
or in [33]. This fact can be considered a drawback of
quantum gravity phenomenology since a very large num-
ber of options are to be included, as possible cases.
Concerning (45) our parameter � is closely related (in a

weak field approach) to perturbations of the Minkowskian
metric, in a similar way as in the case of linear gravitational
waves. It can be seen that the present bound is 3 orders of
magnitude larger than the strength of a gravitational wave
whose source is a stellar binary [37].
In relation with (47) we may also find a bound for jh�rij.

Indeed, we know that the standard deviation is defined as

�r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � ðh�riÞ2p

. Therefore we find (since �r � 0)
that jh�rij � 10�18 m. Notice that according to (28) we
have that h�~riðmfÞ ¼ 0, but this result does not imply that

�r ¼ 0. A physical consequence of jh�rij � 10�18 m is
that any distance measurement below this value would be
meaningless.
Let us add a final comment concerning the relation

between fluctuations and physical effects involved in our
paper. Clearly, different fluctuations can be considered as
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possible candidates and several effects can be used as tools
in this quest for precision tests. Our particular choices in
this manuscript have been done looking for the easiest
nontrivial cases.
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APPENDIX

1. Calculation of the matrix elements

Let us now provide an explanation that allows us to
conclude that the contribution referring to the perturbation
of the ground state ket reads

j1i ¼ �2
X1
n¼2

n2

n2 � 1

�
1

n3=2
� 1

n3

�
jn; l ¼ 0;m ¼ 0;ms;mIi:

(A1)

In this direction notice thatH0 ¼ P2

2� � q2

r , hence
P4

8�3c2
¼

1
2�c2

ðH0 þ q2

r Þ2, and in consequence we deduce

hn; l; mj P4

8�3c2
jn̂; l̂; m̂i

¼ 1

2�c2
hn; l; mj

�
H0 þ q2

r

�
2jn̂; l̂; m̂i: (A2)

From this last condition it turns out

1

2�c2
hn; l; mj

�
H0 þ q2

r

�
2jn̂; l̂; m̂i

¼ 1

2�c2

�
ðEnÞ2�n;n̂�l;l̂�m;m̂ � 2Enhn; l; mjq

2

r
jn̂; l̂; m̂i

þ hn; l; mj q
4

r2
jn̂; l̂; m̂i

�
: (A3)

We now mention the fact that these two operators ( q
2

r

and q4

r2
) are both spherical operators of rank k ¼ 0, i.e.,

they cannot modify the orbital angular momentum or the
projection of it along the z axis. This last remark entails

hn;l;mj1
r
jn̂; l̂;m̂i¼�l;l̂�m;m̂

Z 1

0
Rðn;lÞðrÞRðn̂;l̂ÞðrÞrdr; (A4)

hn;l;mj 1
r2
jn̂; l̂;m̂i¼�l;l̂�m;m̂

Z 1

0
Rðn;lÞðrÞRðn̂;l̂ÞðrÞdr: (A5)

Here the wave functions are c ðn;l;mÞ ¼ Rðn;lÞðrÞYðlÞ
ðmÞ [30]

and

Rðn;lÞðrÞ ¼
��

2

na0

�
3
�ðn� l� 1Þ!
2nðnþ lÞ!

��
1=2

exp

�
� r

na0

�



�
2r

na0

�
l
L2lþ1

n�l�1

�
2r

na0

�
: (A6)

Here L2lþ1
n�l�1ð 2rna0

Þ denotes the Laguerre associated

polynomials, and a0 the Bohr radius [30].
Additionally, it is already known [Reð
Þ> 0 and s > 0]

[38]

Z 1

0
e�
xxsdx ¼ s!


sþ1
: (A7)

Resorting to this integral and the explicit expression for
Laguerre polynomials [38], we may write down

Z 1

0
Rðn;lÞðrÞRðn̂;lÞðrÞrdr

¼ 1

nn̂a0

��ðn� l� 1Þ!
ðnþ lÞ!

��ðn̂� l� 1Þ!
ðn̂þ lÞ!

��
1=2


 Xn̂�l�1

s¼0

Xn�l�1

t¼0

�ð�1Þsþtðnþ lÞ!ðn̂þ lÞ!ðn̂nÞ2lþ3þsþt

t!s!ðn� l� 1� tÞ!ðn̂� l� 1� sÞ!


 ð2lþ sþ tþ 1Þ!
ðsþ 2lþ 1Þ!ðtþ 2lþ 1Þ!


 22lþ2þsþt

ðnÞlþtðn̂Þlþsðnþ n̂Þ2lþsþtþ2

�
: (A8)

In order to calculate our required expressions let us point

out that since H0 ¼ P2

2� � q2

r we have that

hn; l; mj P
2

2�
jn̂; l̂; m̂i

¼ ��c2�2

�
1

2n2
�n;n̂ � hn; l; mjq

2

r
jn̂; l̂; m̂i

�
: (A9)

We mention this expression because it will help us out in
the evaluation of (A8). Indeed, the value of this last ex-
pression when n ¼ n̂ is already known [39],

hn; l; mj P
2

2�
jn; l; mi ¼ �c2�2

2n2
: (A10)

Therefore we conclude that if in (A8) we impose the
condition n ¼ n̂ (here we drop out the term 1=a0 since it
plays no role in the evaluation of this summation)

1

n2
¼ 1

n2

��ðn� l� 1Þ!
ðnþ lÞ!

��ðn� l� 1Þ!
ðnþ lÞ!

��
1=2


 Xn�l�1

s¼0

Xn�l�1

t¼0

�ð�1Þsþtðnþ lÞ!ðnþ lÞ!ðnÞ4lþ6þ2sþ2t

t!s!ðn� l� 1� tÞ!ðn� l� 1� sÞ!


 ð2lþ sþ tþ 1Þ!
ðsþ 2lþ 1Þ!ðtþ 2lþ 1Þ!


 22lþ2þsþt

ðnÞlþtðnÞlþsð2nÞ2lþsþtþ2

�
: (A11)
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Immediately we see that

1¼
��ðn� l�1Þ!

ðnþ lÞ!
��ðn� l�1Þ!

ðnþ lÞ!
��

1=2


 Xn�l�1

s¼0

Xn�l�1

t¼0

�ð�1Þsþtðnþ lÞ!ðnþ lÞ!ðnÞ4lþ6þ2sþ2t

t!s!ðn� l�1� tÞ!ðn� l�1� sÞ!


 ð2lþ sþ tþ1Þ!
ðsþ2lþ1Þ!ðtþ2lþ1Þ!

22lþ2þsþt

ðnÞlþtðnÞlþsð2nÞ2lþsþtþ2

�
:

(A12)

Let us, at this point, sum up our conclusions concerning
this summation. On one hand, we know the result if n ¼ n̂.
On the other hand, we point out the fact that in (A8) the
summations in s and t are, functionally, the same; they
differ only in the upper limit, i.e., it is either n� l� 1, or
n̂� l� 1. Let us now delve a little bit deeper in this
direction. In order to do this let us define

gðs; t;n; n̂Þ ¼
��ðn� l� 1Þ!

ðnþ lÞ!
��ðn̂� l� 1Þ!

ðn̂þ lÞ!
��

1=2



�ð�1Þsþtðnþ lÞ!ðn̂þ lÞ!ðn̂nÞ2lþ3þsþt

t!s!ðn� l� 1� tÞ!ðn̂� l� 1� sÞ!

 ð2lþ sþ tþ 1Þ!

ðsþ 2lþ 1Þ!ðtþ 2lþ 1Þ!

 22lþ2þsþt

ðnÞlþtðn̂Þlþsðnþ n̂Þ2lþsþtþ2

�
: (A13)

This remark concerning the functional dependence upon
s and t means that if

Xn�l�1

t¼0

gðs; t; n; n̂Þ ¼ fðs; n� l; n; n̂Þ; (A14)

then

Xn̂�l�1

s¼0

gðs; t; n; n̂Þ ¼ fðn̂� l; t; n; n̂Þ: (A15)

where f is the same function in both equations. Of course,
we have, on the right-hand side of (A14) and (A15), the
same function as a consequence of this aforementioned
equality in the functional dependence in terms of s and t.
Clearly, this fact implies that

Xn̂�l�1

s¼0

Xn�l�1

t¼0

gðs; t; n; n̂Þ ¼ hðn� l; n̂� lÞ (A16)

is a function of n� l and n̂� l in which the functional
dependence upon these two variables is the same. In addi-
tion, hðn� l; n� lÞ ¼ 1, and this 8n 2 N, here l is a
constant parameter.

We now proceed to prove that hðn; n̂Þ ¼ jðnÞjðn̂Þ, i.e.,
we have l ¼ 0. Indeed, notice that our task is the evaluation
of the integral shown in (A8). In the mathematical litera-
ture there are several variants denoted the second mean

value theorem for integrals. The usual ones cannot be used
in the present context since they require as a premise that
(at least) one of the two functions under the sign of integral
has to be an integrable positive function [40]. In the present
case since Rðn;lÞðrÞ involves the Laguerre associated

polynomials then they may change its sign, and this fact
violates the premise of this theorem. The correct theorem is
a generalization of the second mean value theorem for
integrals done by Okamura [41]; if f: ½a; b� ! R is a
monotonically decreasing function and g: ½a; b� ! R an
integrable function, then there is c 2 ða; b� such that

Z b

a
fðxÞgðxÞdx ¼ fðcÞ

Z b

a
gðxÞdx: (A17)

It is already known that for the case of l � 0 the wave
function for the hydrogen atom vanishes at the origin, this
fact is a consequence of the continuity of the solutions to
this potential [28,30]. This remark entails that for l � 0 the
radial part of the solution is an increasing function from
r ¼ 0 to a certain value, say r0. This is not the case for
those radial parts of the solution associated to l ¼ 0, since
in this case they do not vanish at r ¼ 0 [28,30]. They have
a decreasing behavior from r ¼ 0 to a certain value given
by the corresponding associated Laguerre polynomial.
Indeed, if l ¼ 0 we have that

Rðn;l¼0ÞðrÞ¼
��

2

na0

�
3
�
1

2n2

��
1=2

exp

�
� r

na0

�



�
1�ðn�1Þ

�
r

na0

�
þðn�1Þ

�
r

na0

�
2þ���

þð�1Þn�1ðn�1Þ
�

r

na0

�
n�1

�
: (A18)

This last expression shows us that for r 2
½0; nðn� 1Þa0�, 8n � 2, this is a decreasing function. In
addition, we know that for large values of r the function is
clearly monotonically decreasing, i.e., they represent
bound states. These arguments allow us to accept (as a
good approximation) that there is c 2 ð0;1Þ:

Z 1

0
Rðn;l¼0ÞðrÞRðn̂;l¼0ÞðrÞrdr

¼ Rðn;l¼0ÞðcÞ
Z 1

0
Rðn̂;l¼0ÞðrÞrdr: (A19)

This last expression is the product of a function depend-
ing only upon n [Rðn;l¼0ÞðcÞ] and another whose indepen-

dent variable is n̂ [
R
b
0 Rðn̂;l¼0ÞðrÞrdr].

This argument proves that hðn; n̂Þ ¼ jðnÞjðn̂Þ, i.e., our
function hðn; n̂Þ can be written as the product of two
functions, one depending on n and the other upon n̂.
Joining these two features we have hðn; nÞ ¼ ½jðnÞ�2 ¼

1 ) jðnÞ ¼ �1. This leads us to conclude that
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�1¼
��ðn�1Þ!

ðnÞ!
��ðn̂�1Þ!

ðn̂Þ!
��

1=2


 X̂n�1

s¼0

Xn�1

t¼0

� ð�1ÞsþtðnÞ!ðn̂Þ!ðn̂nÞ3þsþt

t!s!ðn�1� tÞ!ðn̂�1�sÞ!


 ðsþ tþ1Þ!
ðsþ1Þ!ðtþ1Þ!

22þsþt

ðnÞtðn̂Þsðnþ n̂Þsþtþ2

�
: (A20)

The ambiguity concerning the sign appearing in this last
expression fades away noting that the integral (A8) has to
be non-negative, i.e., we must take the plus sign.

We may now write down

Z 1

0
Rðn;l¼0ÞðrÞRðn̂;l¼0ÞðrÞrdr ¼ 1

nn̂a0
: (A21)

The same kind of arguments can be used if the operator
1=r is replaced by 1=r2. These results are to be introduced
in the corresponding matrix elements of (10) and, in this
way, we are led to (A1) which corresponds to the particular
case in which n̂ ¼ 1.

We may now, with these results, proceed to the calcu-
lation of the perturbed kets and energies.

2. Approximation of the series
by Riemann’s Zeta function

Let us explain the approximation

X1
n¼2

n2

nsðn2 � 1Þ �
4

3
ð�ðsÞ � 1Þ: (A22)

Notice that

X1
n¼2

n2

nsðn2 � 1Þ ¼
X1
n¼2

n2 � 1þ 1

nsðn2 � 1Þ

¼ X1
n¼2

1

ns
þ X1

n¼2

1

nsðn2 � 1Þ ; (A23)

therefore

X1
n¼2

n2

nsðn2 � 1Þ ¼ �ðsÞ � 1þ X1
n¼2

1

nsðn2 � 1Þ : (A24)

We now take the second term on the right-hand side of
this last expression:

X1
n¼2

1

nsðn2 � 1Þ ¼
1

3
 2s
þ 1

8
 3s
� � �

� 1

3

X1
n¼2

1

ns
¼ 1

3
ð�ðsÞ � 1Þ: (A25)

Hence,

X1
n¼2

n2

nsðn2 � 1Þ �
4

3
ð�ðsÞ � 1Þ: (A26)

In order to have a deeper understanding of this approxi-
mation we have calculated some exact results as well as our
expression. The relative error between these two cases has
also been carried out. This has been done for three different
values of s, as the table below shows. The choice for these
values of s has been done in terms of their relevance for the
final energy expression. It is readily seen that the relative
error decreases as s grows, it goes from, approximately,
10% to 2%.

Parameter s
P1

n¼2
n2

nsðn2�1Þ
4
3 ð�ðsÞ � 1Þ Relative error

s ¼ 5=2 0.411 992 20 0.455 316 4 0.105 157 82

s ¼ 4 0.105 065 93 0.109 764 3 0.044 718 588

s ¼ 5 0.047 943 09 0.049 237 1 0.026 990 330
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