
Yukawa alignment from natural flavor conservation

Graham Cree* and Heather E. Logan†

Carleton University, Ottawa, Ontario K1S 5B6, Canada
(Received 7 July 2011; published 26 September 2011)

We study the charged Higgs couplings to fermions in the democratic three-Higgs-doublet model, in

which one doublet couples to down-type quarks, one to up-type quarks, and one to charged leptons.

Flavor-changing neutral Higgs couplings are absent because the Glashow-Weinberg-Paschos condition for

natural flavor conservation is in effect. We show that this model reproduces the coupling structure of the

charged Higgs boson in the recently-proposed Yukawa-aligned two-Higgs-doublet model, with two subtle

constraints that arise from the unitarity of the charged-Higgs mixing matrix. Adding a fourth Higgs

doublet with no couplings to fermions eliminates these constraints.
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I. INTRODUCTION

It has long been known that extending the Higgs sector
of the standard model (SM) to include one or more addi-
tional Higgs doublets leads generically to flavor-changing
neutral Higgs couplings, which are severely constrained by
experiment. The most commonly-applied way to suppress
these flavor-changing couplings is to impose the condition
of natural flavor conservation—proposed by Glashow,
Weinberg and Paschos in 1977 [1]—which stipulates that
all right-handed fermions with a given electric charge
couple to exactly one Higgs doublet. With two Higgs
doublets, this condition allows for four1 different coupling
assignments [8]: the usual Type I [9] and II [10] two-
Higgs-doublet models (2HDMs), as well as the less-well-
known lepton-specific [11–14] and flipped [11–13,15,16]
2HDMs (for a recent review, see Ref. [17]).2 Natural
flavor conservation traces the absence of flavor-changing
neutral Higgs couplings to the discrete symmetries that
act on particular right-handed fermions and Higgs
doublets in order to enforce the structure of the Yukawa
Lagrangian.

An alternative approach to avoiding flavor constraints is
to impose minimal flavor violation [20,21]. Models with
minimal flavor violation have the fermion flavor group
(five copies of SU(3), for the three generations of each of
QL, uR, dR, LL, and ‘R) broken only by the three usual

Yukawa coupling matrices.3 In a multi-Higgs-doublet
model, therefore, minimal flavor violation attributes the
absence of flavor-changing neutral Higgs couplings to
the fundamental origin of the Yukawa matrices them-
selves. The weak-scale Higgs doublets do not carry
flavor-distinguishing quantum numbers.4

Because of the very different light that these two possi-
bilities could shed on the origin of flavor violation, it is
interesting to consider the prospects for distinguishing
them experimentally. The simplest implementation of
minimal flavor violation in an extended Higgs sector, the
so-called Yukawa-aligned 2HDM, was introduced in
Ref. [23]. In this model, both Higgs doublets couple to
all types of fermions; flavor-changing neutral Higgs inter-
actions are avoided by requiring that the two Yukawa
matrices that couple right-handed fermions of a given
electric charge to the two Higgs doublets are proportional
to each other,5 so that they are both diagonal in the fermion
mass basis.6 The key free parameters in the model are the
three complex proportionality constants between the three
pairs of Yukawa matrices. These parameters, comprising
three magnitudes and two physically-meaningful phases,
generalize the role of the usual tan� parameter in 2HDMs
with natural flavor conservation. As a laboratory for their
effects, we focus on the couplings of the charged Higgs
bosonHþ of the Yukawa-aligned 2HDM. These couplings,
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1We ignore neutrino masses. Two-doublet models for Dirac

neutrino masses have been constructed in Refs. [2,3] and [4,5]
with natural flavor conservation enforced by a U(1) or Z2
symmetry, respectively. The Z2 model contains a very light
scalar and has recently been shown to be strongly disfavored
by astrophysical constraints [6]. A supersymmetric version of
the U(1) model was constructed in Ref. [7].

2The 2HDM without natural flavor conservation is called the
Type III model [18]. For a review of its phenomenology, see
Refs. [17,19].

3Some definitions of minimal flavor violation also require that
the only CP violation in the model come from the phase in the
SM CKM matrix; we do not impose that restriction.

4We consider only color-singlet scalar doublets; minimal-
flavor-violating Yukawa couplings are also allowed for color
octet scalars [22].

5Minimal flavor violation also admits a nonlinear realization
[24], in which couplings involve higher powers or products of
Yukawa matrices. This leads to nontrivial effects in the third
generation due to the large top quark Yukawa coupling. Here we
consider only the linear Yukawa-aligned implementation.

6Steps toward an explicit implementation using family sym-
metries were taken recently in Ref. [25].
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and their experimental constraints, have been studied in
detail in Ref. [26].

In this paper we show that the charged-Higgs coupling
structure of the Yukawa-aligned 2HDM can be mimicked
in a three-Higgs-doublet model (3HDM) with natural
flavor conservation.7 The study of the structure of
charged Higgs couplings in a model with more than two
Higgs doublets was pioneered by Albright, Smith and
Tye in Ref. [28] and by Grossman in Ref. [29]. We will
adopt the notation of Ref. [29]. In order to obtain three
independently-varying charged Higgs coupling magni-
tudes as in the Yukawa-aligned 2HDM, we couple the first
of our three Higgs doublets to down-type quarks, the
second to up-type quarks, and the third to charged lep-
tons—the so-called democratic 3HDM. Charged Higgs
couplings in this model, and the resulting constraints and
experimental signatures, were first studied in Refs. [29,30].
Neutral Higgs couplings in the CP-conserving version of
this model were studied in Ref. [12]. A supersymmetric
version of this model, containing also a fourth Higgs
doublet with no couplings to fermions, was introduced in
Ref. [31]. We show that the couplings of either of the two
charged Higgs bosons in the (nonsupersymmetric) 3HDM
can be made to reproduce the charged Higgs couplings in
the Yukawa-aligned 2HDM, with two subtle constraints
that arise from the unitarity of the charged-Higgs mixing
matrix: first, that the three coupling parameter magnitudes
cannot all be enhanced or all be suppressed simulta-
neously; and second, that the second complex phase of
the Yukawa-aligned 2HDM is not a free parameter in the
democratic 3HDM but instead is fixed in terms of the other
three magnitudes and one phase. We also show that adding
a fourth Higgs doublet, with no couplings to fermions,
eliminates these constraints by enlarging the charged-
Higgs mixing matrix.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the Yukawa-aligned 2HDM. In Sec. III,
we lay out the democratic 3HDM and define our notation,
following Grossman [29]. In Sec. IV, we derive our main
results, which are the constraints on the charged Higgs
coupling parameters in the democratic 3HDM. In Sec. V,
we summarize the experimental constraints on the charged
Higgs coupling parameters from previous literature. In
Sec. VI, we derive the couplings of the other charged
Higgs in the democratic 3HDM and show that they are
predicted entirely in terms of measurable couplings of the
first charged Higgs. In Sec. VII, we discuss the consequen-
ces of adding a fourth doublet with no couplings to fermi-
ons, and show that it removes the constraints on the charged

Higgs coupling parameters. In Sec. VIII, we summarize our
conclusions and briefly discuss other approaches to detect-
ing the presence of a third Higgs doublet using the cou-
plings of the neutral Higgs bosons. The scalar potential and
resulting charged scalar mass matrix for the democratic
3HDM are given in the Appendix.

II. YUKAWA-ALIGNED TWO-HIGGS-DOUBLET
MODEL

The Yukawa-aligned 2HDM [23] contains two scalar
SUð2ÞL doublets �i, with generically complex vacuum
expectation values (vevs) vi. Each doublet couples to all
types of fermions via the Yukawa Lagrangian,

L ¼ �f �QLð�1�1 þ �2�2ÞdR þ �QLð�1
~�1 þ�2

~�2ÞuR
þ �LLð�1�1 þ�2�2Þ‘R þ H:c:g; (1)

where �i, �i, and �i are 3� 3 complex Yukawa matrices

and ~�i � i�2�
�
i is the conjugate doublet of �i. Tree-level

flavor-changing neutral Higgs interactions are eliminated
by imposing the linear version of minimal flavor violation
called Yukawa alignment; i.e., by requiring that �1 / �2,
�1 / �2, and �1 / �2.
Rotating to the Higgs basis, in which one doublet H1

carries a nonzero real vev vSM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijv1j2þjv2j2
p ’ 246 GeV

and the other doublet H2 has no vev, the Yukawa
Lagrangian becomes

L ¼ �
ffiffiffi
2

p
vSM

f �QLðMdH1 þYdH2ÞdR
þ �QLðMu

~H1 þYu
~H2ÞuR

þ �LLðM‘H1 þY‘H2Þ‘R þ H:c:g: (2)

Here, Mf are the undiagonalized mass matrices for fer-

mions of type f and Yf=vSM are Yukawa matrices cou-

plingH2 to fermions. Yukawa alignment forcesYf / Mf,

so that the Yf matrices are automatically diagonalized in

the fermion mass basis. In particular, following Ref. [23]
we define

Y f ¼ �fMf: (3)

The three complex parameters �f characterize the model

and control the charged Higgs couplings. There are five
real free parameters, the magnitudes of the three �f and

two phases—one overall phase can be absorbed by a
rephasing of H2, and is thus not physically meaningful.
Using this freedom, we will choose �‘ to be real.
In the Higgs basis, the charged Higgs boson lives en-

tirely in H2. Its couplings to fermions are thus controlled
by Yf. In the fermion mass basis, the charged Higgs

Yukawa Lagrangian is given in terms of the diagonalized

7In Ref. [27] it was recently shown that a constrained version
of the Yukawa-aligned structure, with two of the three coupling
parameters equal to each other and no complex phases, could be
achieved in a multi-Higgs-doublet model with natural flavor
conservation in which only two of the doublets couple to
fermions.
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fermion mass matrices Mf, the CKM matrix V, and the

parameters �f by8

L¼�
ffiffiffi
2

p
vSM

½�d �uLVMddR � �u �uRMuVdL þ �‘ ��LM‘‘R�Hþ

þH:c: (4)

III. DEMOCRATIC THREE-HIGGS-DOUBLET
MODEL

The democratic 3HDM employs natural flavor conser-
vation to eliminate tree-level flavor-changing neutral
Higgs couplings. The model contains three scalar SUð2ÞL
doublets, denoted �d, �u, and �‘, with

�f ¼ �þ
f

ðvf þ�0;r
f þ i�0;i

f Þ= ffiffiffi
2

p
 !

: (5)

The vevs vf of the three Higgs doublets can be chosen

real through an independent rephasing of each doublet.
They are constrained by the W boson mass to satisfy

vSM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ v2

u þ v2
‘

q
’ 246 GeV.

In order to enforce natural flavor conservation, we in-
troduce three Z2 symmetries, under which the charges of
the Higgs doublets and SM fermions are given in Table I.
This choice forces �d to couple only to dR, �u to uR, and
�‘ to ‘R. The Yukawa Lagrangian takes the form

L ¼ �f �QL�dGddR þ �QL
~�uGuuR þ �LL�‘G‘‘R þ H:c:g:

(6)

Here, Gf are 3� 3 complex Yukawa matrices related to

the fermion mass matrices by Mf ¼ Gfvf=
ffiffiffi
2

p
. In the

fermion mass basis, then, the Yukawa couplings are
determined in terms of the corresponding fermion mass
and the relevant vev vf. As in the usual 2HDMs with

natural flavor conservation, we will assume that the Z2

symmetries are softly broken (by dimension-two terms)
in the Higgs potential; details of the potential are given in
the Appendix.

The final ingredient needed to determine the charged-
Higgs couplings is to specify the charged Higgs mass
eigenstates. The three charged fields �þ

d , �
þ
u , and �þ

‘

mix to form one charged Goldstone boson Gþ and two
physical charged Higgs states, which we denote Hþ

2 and
Hþ

3 following Grossman [29], via a unitary mixing

matrix U:9

Gþ
Hþ

2

Hþ
3

0
B@

1
CA ¼ U

�þ
d

�þ
u

�þ
‘

0
B@

1
CA: (7)

All the information needed to determine the charged Higgs
couplings is encoded in U. First, the first row of U is fixed
by the composition of the Goldstone boson:10

Gþ ¼ ðvd�
þ
d þ vu�

þ
u þ v‘�

þ
‘ Þ=vSM; (8)

so that U1f ¼ vf=vSM, f ¼ d, u, ‘. We have already used

the phase freedom of �f to choose vf, and hence all three

U1f, to be real.

The couplings of the charged Higgs state Hþ
i are con-

trolled by the relevant Yukawa couplingGf and the overlap

of the charged Higgs state with the relevant �f. They can

thus be written using Eqs. (6) and (7) in terms of the
fermion mass and elements of U. Again following
Grossman [29], we define parameters Xi, Yi, and Zi as
follows:11

Xi ¼ Uy
di

Uy
d1

; Yi ¼ � Uy
ui

Uy
u1

; Zi ¼
Uy

‘i

Uy
‘1

; (9)

with i ¼ 2, 3 corresponding to charged Higgs states Hþ
2;3.

With this notation, the charged Higgs couplings become

L ¼ �
ffiffiffi
2

p
vSM

f½X2 �uLVMddR þ Y2 �uRMuVdL

þ Z2 ��LM‘‘R�Hþ
2 þ ½X3 �uLVMddR þ Y3 �uRMuVdL

þ Z3 ��LM‘‘R�Hþ
3 þ H:c:g: (10)

Let us first assume thatHþ
2 is relatively light whileHþ

3 is

much heavier. Then we can consider the couplings of Hþ
2

TABLE I. Charges of the three Higgs doublets and SM fermi-
ons under the three Z2 symmetries imposed to enforce natural
flavor conservation in the democratic 3HDM.

Field Zd
2 Zu

2 Z‘
2

�d � þ þ
dR � þ þ
�u þ � þ
uR þ � þ
�‘ þ þ �
‘R þ þ �
QL, LL þ þ þ

8Here, the minus sign in front of �u comes from the extra
minus sign on the charged scalar in the conjugate doublet ~H2.
We define the neutrinos in the flavor eigenbasis.

9Complex phases in U arise from CP-violating phases in the
Higgs potential.

10The charged Goldstone boson is uniquely determined as the
linear combination of the fields �þ

f that participates in the
(unphysical) W�

�@
�Gþ interaction coming from the scalar

gauge-kinetic terms. In any extended Higgs sector, the compo-
sition of Gþ therefore depends only on the vevs of the Higgs
fields and the appropriate gauge generators.
11The minus sign in the definition of Yi is included to simplify
the Lagrangian in Eq. (10) by taking into account the extra minus
sign on the charged scalar in the conjugate doublet ~�u.
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in isolation. Comparing the couplings of Hþ
2 in Eq. (10) to

Eq. (4) for the charged Higgs couplings in the Yukawa-
aligned 2HDM, we see that we can identify

X2 ¼ �d; Y2 ¼ ��u; Z2 ¼ �‘: (11)

Once again, X2, Y2, and Z2 are three different complex
parameters, one of which can be chosen real by rephasing
Hþ

2 (we choose Z2 to be real). It would appear that the
phenomenology of Hþ

2 in the democratic 3HDM is exactly
the same as that of the charged Higgs in the Yukawa-
aligned 2HDM. But do the parameters X2, Y2, and Z2

have the same freedom as the �f in the Yukawa-aligned

2HDM? The answer is no, as can be seen immediately by
recalling that, after absorbing five phases into the defini-
tions of �þ

f and Hþ
i , the 3� 3 unitary matrix U depends

on only four real parameters (three angles and a phase).
Starting from the basis in which the vevs vf are all real, we

can define

tan� ¼ vu=vd; tan� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ v2

u

q
=v‘: (12)

Then the matrix U can be written explicitly as12

U¼
1 0 0

0 e�i� 0

0 0 1

0
BB@

1
CCA

1 0 0

0 c	 s	e
i�

0 �s	e
�i� c	

0
BB@

1
CCA

s� 0 c�

0 1 0

�c� 0 s�

0
BB@

1
CCA

�
c� s� 0

�s� c� 0

0 0 1

0
BB@

1
CCA

¼
s�c� s�s� c�

�c	s�e
�i��s	c�c� c	c�e

�i��s	c�s� s	s�

s	s�e
�i��c	c�c� �s	c�e

�i��c	c�s� c	s�

0
BB@

1
CCA:

(13)

Here, s, c denote the sine or cosine of the respective angle,
	 is an angle describing mixing between Hþ

2 and Hþ
3 , and

� is the CP-violating phase. From right to left in the first
equality, the first two matrices fix the Goldstone bosonGþ,
while the third accomplishes the diagonalization of the
(generally complex) mass matrix for the two physical
charged Higgs bosons. The matrix on the far left contains
the phase rotation of Hþ

2 that makes Z2 real. We have also
chosen the phase of Hþ

3 to make Z3 real.

Thus, the second free phase of the Yukawa-aligned
2HDM will be fixed in terms of the other four real parame-
ters in the democratic 3HDM. The explicit form of this
constraint, together with another less-obvious constraint on
the magnitudes of X2, Y2, and Z2, are most easily seen by
taking advantage of the unitarity of the matrix U.

IV. UNITARITY CONSTRAINTS ON THE
CHARGED HIGGS COUPLINGS

Unitarity of the charged Higgs mixing matrix requires
that X

f

UifU
y
fj ¼ �ij: (14)

Setting i ¼ j ¼ 1, we recover the sum rule for the vevs of
the three doublets:

jU1dj2 þ jU1uj2 þ jU1‘j2 ¼ v2
d

v2
SM

þ v2
u

v2
SM

þ v2
‘

v2
SM

¼ 1: (15)

Setting i ¼ j ¼ 2 and using the definitions of X2, Y2, and
Z2 from Eq. (9), we obtain a nontrivial constraint on the
magnitudes of X2, Y2, and Z2:

jX2j2jU1dj2 þ jY2j2jU1uj2 þ jZ2j2jU1‘j2 ¼ 1: (16)

For a given choice of vevs, Eq. (16) defines a plane in the
three-dimensional positive-definite parameter space of
jX2j2, jY2j2, jZ2j2, passing through the point (1, 1, 1) and
intersecting the jX2j2 axis at jU1dj�2, the jY2j2 axis at
jU1uj�2, and the jZ2j2 axis at jU1‘j�2 (all three of these
intersection point values are greater than 1). This yields an
interesting constraint on the parameters X2, Y2, and Z2:
The magnitudes of the coupling strengths X2, Y2, and Z2

may not all be simultaneously less than one or simulta-
neously greater than one.
We now derive the relationship that fixes the phase of Y2

in terms of the other four parameters. Setting i ¼ 1 and
j ¼ 2 in Eq. (14) and using the definitions ofX2, Y2, and Z2

from Eq. (9), we obtain

X2jU1dj2 � Y2jU1uj2 þ Z2jU1‘j2 ¼ 0: (17)

Because X2 and Y2 are complex, this represents two
constraints: the real part and the imaginary part of the
left-hand side must be separately equal to zero. Together,
Eqs. (15)–(17) constitute four constraints on eight real
parameters (U1d, U1u, U1‘, jX2j, jY2j, Z2, and the phases
of X2 and Y2), leaving four independent real free param-
eters (the usual three angles and a phase).
We begin by solving for the normalized vevs jU1fj2 ¼

v2
f=v

2
SM. Trivially, from Eq. (15) we have

v2
‘=v

2
SM ¼ jU1‘j2 ¼ 1� jU1dj2 � jU1uj2: (18)

Using this, we can solve both Eqs. (16) and (17) for jU1uj2:

v2
u=v

2
SM ¼ jU1uj2 ¼ 1� jZ2j2 � jU1dj2ðjX2j2 � jZ2j2Þ

jY2j2 � jZ2j2
;

(19)

v2
u=v

2
SM ¼ jU1uj2 ¼ Z2 þ jU1dj2ðX2 � Z2Þ

Y2 þ Z2

: (20)
12A similar parameterization was given in Ref. [28].
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Equating the right-hand sides of Eqs. (19) and (20) presents a solution for jU1dj2. However, it does more than that. The
right-hand side of Eq. (20) is complex, which means we have two real equations to solve and hence two independent
solutions for jU1dj2 which must be simultaneously true. These solutions are

v2
d=v

2
SM ¼ jU1dj2 ¼ ReY2ð1� jZ2j2Þ þ Z2ð1� jY2j2Þ

ReX2ðjY2j2 � jZ2j2Þ þ ReY2ðjX2j2 � jZ2j2Þ þ Z2ðjX2j2 � jY2j2Þ
; (21)

v2
d=v

2
SM ¼ jU1dj2 ¼ ImY2ð1� jZ2j2Þ

ImX2ðjY2j2 � jZ2j2Þ þ ImY2ðjX2j2 � jZ2j2Þ
; (22)

where we have used the fact that Z2 is chosen real to
simplify the expressions. Setting the right-hand sides of
Eqs. (21) and (22) equal, one can solve, e.g., for ImY2 in
terms of the other four real parameters.

V. EXPERIMENTAL CONSTRAINTS

We now briefly summarize the experimental constraints
on the couplings of Hþ

2 from existing studies. Aside from
the charged Higgs direct-search constraints, these arise
from virtual exchange of the charged Higgs at tree or
one-loop level. Obtaining constraints on X2, Y2, and Z2

requires the assumption that Hþ
3 exchange does not con-

tribute significantly to these processes; we thus continue to
assume that Hþ

3 is much heavier than Hþ
2 . Determination

of the combined constraints when the Hþ
2 and Hþ

3 masses

are comparable would require a dedicated analysis, which
is beyond the scope of this paper.

The experimental constraints on the charged Higgs
couplings in the Yukawa-aligned 2HDM were comprehen-
sively studied in Ref. [26]. Because of the correspondence
between the Yukawa-aligned model and the democratic
3HDM, these constraints apply equally well to the latter
(in the limit that effects due to Hþ

3 can be neglected). All

constraints quoted are 95% confidence level exclusions.
The strongest constraint is on jY2j and comes from the

LEP measurement of Rb (the b �b fraction in hadronic Z
boson decays); assuming that jX2j< 50 so that contri-
butions involving the bottom Yukawa coupling are not
important, Ref. [26] finds

jY2j � 0:72þ 0:24

� MHþ
2

100 GeV

�
: (23)

We note that if MHþ
2
’ 100 GeV, jY2j must be less than 1.

The unitarity constraint on the magnitudes of the couplings
in the democratic 3HDM then dictates that at least one of
X2, Z2 must be greater than 1.

Lepton flavor universality in 
 decays to � versus e
provides the strongest constraint on Z2; Ref. [26] finds

Z2 � 40

� MHþ
2

100 GeV

�
: (24)

Constraints on products of couplings come from lep-
tonic decays of heavy mesons. B ! 
� yields an allowed
annulus in the complex plane of X2Z2, with an absolute
upper bound of [26]

jX2Z2j � 1080

� MHþ
2

100 GeV

�
2
: (25)

Combining the constraints on jY2j and Z2 in Eqs. (23) and
(24), together with the LEP lower bound of about 79.3 GeV
[32] on the charged Higgs mass,13 yields a constraint on the
product jY2Z2j which is much stronger than the semilep-
tonic meson decay constraints [26].
The radiative decay �B ! Xs� receives charged-Higgs

contributions with terms in the amplitude proportional to
jY2j2 and to X2Y

�
2 . Detailed combined constraints on jY2j2

and the real and imaginary parts of X2Y
�
2 are presented in

Ref. [26]. If jY2j is not too big, as favored by the constraint
fromRb, the 1� constraint on the real part of X2Y

�
2 was also

given in a convenient form in Ref. [34] neglecting contri-
butions from ImðX2Y

�
2Þ. The constraint from Ref. [34]

translates into the following approximate 2� bounds:

�1:1 � ReðX2Y
�
2Þ � 0:7 for MHþ

2
¼ 100 GeV;

�4:0 � ReðX2Y
�
2Þ � 2:6 for MHþ

2
¼ 500 GeV:

(26)

Finally, Trott and Wise [34]14 have considered the con-
straint on the CP-violating part of the charged Higgs
couplings arising from the neutron electric dipole moment,
using Naive Dimensional Analysis. They obtain an upper
bound of

jImðX2Y
�
2Þj & 0:1ð0:4Þ for MHþ

2
¼ 100ð500Þ GeV: (27)

While this is only an order-of-magnitude upper bound
due to the use of the Naive Dimensional Analysis

13This charged Higgs mass bound assumes that the charged
Higgs decays only to a combination of c�s, c �b, and 
�. The
strongest overall bound comes from ALEPH [32]. In the case
that the branching fraction to 
� is close to 1, a stronger bound of
92.0 GeV comes from OPAL [33].
14The charged Higgs coupling parameters in Ref. [34] are
related to ours according to �U ¼ �Y2, �D ¼ �X�

2 .
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approximation, at face value it is somewhat stronger than
the constraint on ReðX2Y

�
2Þ.

VI. COUPLINGS OF THE OTHER CHARGED
HIGGS BOSON

We now turn to the couplings of Hþ
3 . Starting from

the three relations obtained from
P

iU
y
fiUif0 ¼ �ff0 with

f � f0, we can solve for the Hþ
3 coupling factors X3, Y3,

and Z3 in terms of X2, Y2, and Z2. We use the phase
freedom of Hþ

3 to choose Z3 to be real.

The magnitude and phase of X3 are obtained from

X2
3 ¼ ð�1� X2Z2Þ ð1� X2Y

�
2Þ

ð1� Y�
2Z2Þ ;

jX3j2 ¼ ð�1� X�
2Z2Þ ð1� X2Y

�
2Þ

ð1� Y�
2Z2Þ :

(28)

The magnitude and phase of Y3 are obtained from

Y2
3 ¼ ð1� Y2Z2Þ ð1� X�

2Y2Þ
ð�1� X�

2Z2Þ ;

jY3j2 ¼ ð1� Y�
2Z2Þ ð1� X�

2Y2Þ
ð�1� X�

2Z2Þ :
(29)

The real parameter Z3 is obtained from

Z2
3 ¼ ð1� Y�

2Z2Þ ð�1� X2Z2Þ
ð1� X2Y

�
2Þ

: (30)

Note that the expressions for jX3j2, jY3j2, and Z2
3 are

written in terms of the complex couplings X2 and Y2, yet
in each case they yield the value of a real parameter. The
imaginary parts of the right-hand sides of these expressions
must thus be zero, providing an alternate form of the
constraint among the five real parameters in X2, Y2, and Z2.

Convenient expressions for the vevs can also be obtained

from the unitarity relation
P

iU
y
fiUif ¼ 1:

v2
d ¼

v2
SM

1þ jX2j2 þ jX3j2

¼ v2
SM

1þ jX2j2 þ ½ð�1� X�
2Z2Þð1� X2Y

�
2Þ=ð1� Y�

2Z2Þ�
;

v2
u ¼ v2

SM

1þ jY2j2 þ jY3j2

¼ v2
SM

1þ jY2j2 þ ½ð1� Y�
2Z2Þð1� X�

2Y2Þ=ð�1� X�
2Z2Þ�

;

v2
‘ ¼

v2
SM

1þ jZ2j2 þ jZ3j2

¼ v2
SM

1þ jZ2j2 þ ½ð1� Y�
2Z2Þð�1� X2Z2Þ=ð1� X2Y

�
2Þ�

;

(31)

where in the second expression for each vev we made use
of Eqs. (28)–(30).

VII. ADDING A FOURTH HIGGS DOUBLET

We have seen that the democratic 3HDM reproduces the
charged Higgs coupling freedom of the Yukawa-aligned
2HDM but with two significant constraints: first, that the
magnitudes of the coupling parameters cannot all be
greater than one or all be less than one; and second, that
the phase of the second complex coupling parameter is
fixed in terms of the magnitudes of the three parameters
and the phase of the first. These constraints arise from the
unitarity of the 3� 3 charged-Higgs mixing matrix;
the second one, in particular, comes from the fact that the
3� 3 mixing matrix is parameterized in terms of three
angles and only one phase.
We now show that both these constraints are removed if

we extend the Higgs sector by adding a fourth Higgs
doublet �0, carrying a vev v0, and with no couplings to
fermions in accordance with natural flavor conservation.
In the presence of a fourth doublet, the 3� 3 charged-

Higgs mixing matrix U of the democratic 3HDM becomes
a 4� 4 matrix, which we denote ~U:

Gþ

Hþ
2

Hþ
3

Hþ
4

0
BBBBB@

1
CCCCCA ¼ ~U

�þ
d

�þ
u

�þ
‘

�þ
0

0
BBBBB@

1
CCCCCA: (32)

The unitarity constraint on the first row of ~U yields the
usual sum rule for the vevs:

j ~U1dj2 þ j ~U1uj2 þ j ~U1‘j2 þ j ~U10j2

¼ v2
d

v2
SM

þ v2
u

v2
SM

þ v2
‘

v2
SM

þ v2
0

v2
SM

¼ 1: (33)

The unitarity constraint on the second row of ~U yields

jX2j2j ~U1dj2 þ jY2j2j ~U1uj2 þ jZ2j2j ~U1‘j2 þ j ~U20j2 ¼ 1;

(34)

where X2, Y2, and Z2 are defined as in Eq. (9) with U
replaced by ~U. For a given choice of vevs, this expression
constrains jX2j2, jY2j2, and jZ2j2 to lie in a volume in
the three-dimensional positive-definite parameter space,
extending from the origin (for j ~U20j2 ¼ 1) up to the
plane obtained by setting j ~U20j2 ¼ 0; this plane passes
through the point ða; a; aÞ with a ¼ ð1� v2

0=v
2
SMÞ�1 � 1.

Increasing v0 from zero to vSM moves this intersection
point from (1, 1, 1) out to infinity. Therefore there is no
theoretical constraint on the magnitudes of X2, Y2, and Z2

in the democratic model with four doublets.
We now consider the complex phases. After using

the rephasing freedom of �þ
f and Hþ

i , the 4� 4 unitary

matrix is parameterized by six angles and three phases; in
particular, there are enough free phase parameters for the
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phases of X2 and Y2 to be independent free parameters.
We can check this through an explicit parameterization
of ~U. Choosing the basis for �þ

f in which the vevs are

real and defining tan� ¼ vu=vd, tan� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ v2

u

q
=v‘,

and tan! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ v2

u þ v2
‘

q
=v0, we have

15

~U ¼

1 0 0 0

0 1 0 0

0 0 c3 s3e
i�3

0 0 �s3e
�i�3 c3

0
BBBBB@

1
CCCCCA

�

1 0 0 0

0 c2 0 s2e
i�2

0 0 1 0

0 �s2e
�i�2 0 c2

0
BBBBB@

1
CCCCCA

�

1 0 0 0

0 c1 s1e
i�1 0

0 �s1e
�i�1 c1 0

0 0 0 1

0
BBBBB@

1
CCCCCA

s! 0 0 c!

0 1 0 0

0 0 1 0

�c! 0 0 s!

0
BBBBB@

1
CCCCCA

�

s� 0 c� 0

0 1 0 0

�c� 0 s� 0

0 0 0 1

0
BBBBB@

1
CCCCCA

c� s� 0 0

�s� c� 0 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA; (35)

where si, ci with i ¼ 1; 2; 3 denote the sine and cosine of
angles 	1;2;3, and �1;2;3 are three complex phases. Here, the

last three matrices determine the charged Goldstone boson
while the first three accomplish the diagonalization of the
remaining three physical charged Higgs mass eigenstates.
Evaluating Eq. (35), we obtain the elements of ~U that enter
X2, Y2, and Z2 (we have not yet applied the phase rotation
to Hþ

2 needed to make ~U2‘ real):

~U2d ¼ �c1c2s� � ðs1c2ei�1c� þ s2e
i�2c!s�Þc�;

~U2u ¼ c1c2c� � ðs1c2ei�1c� þ s2e
i�2c!s�Þs�;

~U2‘ ¼ s1c2e
i�1s� � s2e

i�2c!c�:

(36)

In particular, the parameter freedom is such that it is not
possible to solve for one of the five real coupling degrees of
freedom in terms of the other four.

Thus, we see that the four-Higgs-doublet extension of
the democratic 3HDM fully reproduces the charged Higgs
coupling parameters of the Yukawa-aligned 2HDM with-
out any theoretical constraints.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we studied the charged Higgs sector of the
democratic 3HDM, in which one doublet couples to down-
type quarks, one to up-type quarks, and one to charged
leptons. This model, in which flavor-changing neutral
Higgs couplings are avoided by the imposition of natural
flavor conservation, very nearly reproduces the Yukawa
coupling structure of the charged Higgs in the Yukawa-
aligned 2HDM, in which flavor-changing neutral Higgs
couplings are avoided through a linear realization of mini-
mal flavor violation (called Yukawa alignment). We im-
plemented a general parameterization of the couplings of
the two physical charged Higgs bosons to fermions, and
showed that the couplings of the lighter charged Higgs Hþ

2

can be written in terms of two complex and one real
parameters X2, Y2, and Z2. Unitarity constraints on the
mixing matrix for the charged Higgs bosons require that
one of these five real parameters (three magnitudes and two
phases) is fixed in terms of the other four. Unitarity also
requires that the magnitudes of X2, Y2, and Z2 are not all
greater than one or all less than one. These two subtle
constraints distinguish the couplings of Hþ

2 in the demo-
cratic 3HDM from those in the Yukawa-aligned 2HDM, in
which the three magnitudes and two phases of X2, Y2, and
Z2 are all theoretically unconstrained. Adding a fourth
Higgs doublet with no couplings to fermions removes these
two constraints, reproducing the full coupling parameter
freedom of the Yukawa-aligned 2HDM.
How else can we experimentally distinguish between the

models? Clearly, discovery of a second physical charged
Higgs boson Hþ

3 , or of neutral Higgs bosons beyond the

three predicted in a 2HDM, rules out the minimal Yukawa-
aligned 2HDM. A more subtle test involves the couplings
of the neutral Higgs bosons. The Yukawa-aligned 2HDM
contains three neutral Higgs states, S01;2;3, which are ad-

mixtures of the two CP-even and one physical CP-odd
states of the two Higgs doublets [23]. The couplings of
these three neutral Higgs bosons to fermions are fixed in
terms of the SM Yukawa matrices, the same three coupling
parameters X2, Y2, and Z2 that appear in the charged Higgs
sector, and the unitary matrix that diagonalizes the mass-
squared matrix for S01;2;3.

A model with three or more Higgs doublets contains not
only additional charged Higgs states, but two additional
neutral Higgs degrees of freedom per doublet. Consider a
rotation of the doublets to the ‘‘charged-Higgs basis’’:

H1 ¼
Gþ

ðvSM þ�0;r
1 þ iG0Þ= ffiffiffi

2
p

 !
;

H2 ¼
Hþ

2

ð�0;r
2 þ i�0;i

2 Þ= ffiffiffi
2

p
 !

;

H3 ¼
Hþ

3

ð�0;r
3 þ i�0;i

3 Þ= ffiffiffi
2

p
 !

; � � �

(37)

15We have not yet applied the phase rotation to Hþ
2 needed to

make Z2 real.
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If the first three discovered neutral Higgs states S01;2;3 are

mixtures of only�0;r
1 ,�0;r

2 , and�0;i
2 , then their couplings to

fermions will depend on the same set of parameters as the
charged Higgs couplings, just as in the Yukawa-aligned
2HDM. However, if S01;2;3 contain admixtures of the neutral

Higgs states from H3 (and/or other additional doublets),
their couplings to fermions will depend on new additional
parameters—in particular, the coupling factors X3, Y3, and
Z3 of the charged Higgs state Hþ

3 . (In the special case of

three doublets, X3, Y3, and Z3 are constrained directly by
the couplings X2, Y2, and Z2 as shown in Sec. VI.)

Furthermore, the SUð2ÞL gauge couplings of S01;2;3
to WþW� and to WþH�

2 obey sum rules. Writing the
Feynman rules with all particles incoming as igS0i W�Wþg��

and igS0i H�
2
WþðpS � pHÞ�, where pS and pH are the incom-

ing momenta of S0i and H�
2 , respectively, we have for the

states in the charged-Higgs basis:

g�0;r
1
W�Wþ ¼ gMW; g�0;r

2
W�Wþ ¼ 0;

g�0;i
2
W�Wþ ¼ 0; g�0;r

1
H�

2
Wþ ¼ 0;

g�0;r
2
H�

2
Wþ ¼ �g=2; g�0;i

2
H�

2
Wþ ¼ �ig=2:

(38)

If S01;2;3 are mixtures of only �0;r
1 , �0;r

2 , and �0;i
2 , we obtain

two sum rules for the squared magnitudes of these
couplings:X
i

jgS0i WþW�j2 ¼ g2M2
W;

X
i

jgS0i H�
2
Wþj2 ¼ g2=2: (39)

However, if S01;2;3 contain admixtures of the neutral Higgs

states from H3 (and/or other additional doublets), one or
both of the sum rules in Eq. (39) will not be saturated,
indicating that S01;2;3 do not together capture all of the states

�0;r
1 , �0;r

2 , and �0;i
2 .

We have thus seen that distinguishing fundamental
Yukawa alignment from Higgs-sector-based natural flavor
conservation can be very challenging. It will require a
detailed study of charged Higgs couplings as well as a
thorough exploration of the weak scale for additional
Higgs doublets.
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APPENDIX: SCALAR POTENTIAL OF THE
DEMOCRATIC THREE-HIGGS-DOUBLET

MODEL

The most general SUð2ÞL � Uð1ÞY-invariant potential
for three Higgs doublets, subject to the Z2 symmetries in
Table I, can be written as

V ¼ m2
uu�

y
u�u þm2

dd�
y
d�d þm2

‘‘�
y
‘�‘ � ½m2

ud�
y
u�d þm2

u‘�
y
u�‘ þm2

d‘�
y
d�‘ þ H:c:� þ 1

2
�uð�y

u�uÞ2

þ 1

2
�dð�y

d�dÞ2 þ 1

2
�‘ð�y

‘�‘Þ2 þ �udð�y
u�uÞð�y

d�dÞ þ �u‘ð�y
u�uÞð�y

‘�‘Þ þ �d‘ð�y
d�dÞð�y

‘�‘Þ

þ �0
udð�y

u�dÞð�y
d�uÞ þ �0

u‘ð�y
u�‘Þð�y

‘�uÞ þ �0
d‘ð�y

d�‘Þð�y
‘�dÞ þ 1

2
½�00

udð�y
u�dÞ2 þ �00

u‘ð�y
u�‘Þ2

þ �00
d‘ð�y

d�‘Þ2 þ H:c:�; (A1)

where we have retained the terms proportional tom2
ud,m

2
u‘,

and m2
d‘ that break the Z2 symmetries softly.16 This poten-

tial contains six complex parameters: the soft-Z2-breaking
mass-squared terms m2

ud, m
2
u‘, and m2

d‘, and the quartic
couplings �00

ud, �
00
u‘, and �00

d‘.
This potential is invariant under a common global

phase rotation of �u, �d, and �‘ (as required by
Uð1ÞY-invariance); we can use this to choose v‘ real and
positive without any loss of generality. Performing a phase

rotation on�u and�d to make vu and vd real and positive
imposes two relations among the imaginary parts of the
complex parameters of the potential:

Im ðm2
u‘Þ ¼ �vd

v‘

Imðm2
udÞ þ

vuv
2
d

2v‘

Imð�00
udÞ

þ vuv‘

2
Imð�00

u‘Þ;

Imðm2
d‘Þ ¼

vu

v‘

Imðm2
udÞ �

v2
uvd

2v‘

Imð�00
udÞ

þ vdv‘

2
Imð�00

d‘Þ:

(A2)

Minimizing the potential allows three more parameters to
be eliminated in favor of the vevs:

16We note that omitting these soft-Z2-breaking terms does not
change our conclusions about the complex structure of the
charged Higgs mixing matrix; we will keep them here for
generality and because they allow the model to have a decou-
pling limit in which the extra Higgs states are taken heavy
without requiring large quartic couplings.
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m2
uu ¼ vd

vu

Reðm2
udÞ þ

v‘

vu

Reðm2
u‘Þ �

v2
u

2
�u

� v2
d

2
½�ud þ �0

ud þ Reð�00
udÞ�

� v2
‘

2
½�u‘ þ �0

u‘ þ Reð�00
u‘Þ�;

m2
dd ¼ vu

vd

Reðm2
udÞ þ

v‘

vd

Reðm2
d‘Þ �

v2
d

2
�d

� v2
u

2
½�ud þ �0

ud þ Reð�00
udÞ�

� v2
‘

2
½�d‘ þ �0

d‘ þ Reð�00
d‘Þ�;

m2
‘‘ ¼

vu

v‘

Reðm2
u‘Þ þ

vd

v‘

Reðm2
d‘Þ �

v2
‘

2
�‘

� v2
u

2
½�u‘ þ �0

u‘ þ Reð�00
u‘Þ�

� v2
d

2
½�d‘ þ �0

d‘ þ Reð�00
d‘Þ�: (A3)

Applying these conditions, we find the terms in the
potential that are bilinear in the charged scalar fields:

V 	��
u �

þ
u

�
vd

vu

Aud þ v‘

vu

Au‘

�
þ��

d �
þ
d

�
vu

vd

Aud þ v‘

vd

Ad‘

�

þ��
‘ �

þ
‘

�
vu

v‘

Au‘þvd

v‘

Ad‘

�

þ
�
��

u �
þ
d ½�Aud � iB�þ��

u �
þ
‘

�
�Au‘ þ i

vd

v‘

B

�

þ��
d �

þ
‘

�
�Ad‘ � i

vu

v‘

B

�
þH:c:

�
; (A4)

where

Aud ¼ Reðm2
udÞ �

vuvd

2
½�0

ud þ Reð�00
udÞ�;

Au‘ ¼ Reðm2
u‘Þ �

vuv‘

2
½�0

u‘ þ Reð�00
u‘Þ�;

Ad‘ ¼ Reðm2
d‘Þ �

vdv‘

2
½�0

d‘ þ Reð�00
d‘Þ�;

B ¼ Imðm2
udÞ �

vuvd

2
Imð�00

udÞ:

(A5)

We diagonalize the resulting charged Higgs mass-
squared matrix M2 in two stages by dividing the charged
Higgs mixing matrix in Eq. (7) according to U ¼ U2U1,
with [see also Eq. (13)]

U1 ¼
s� 0 c�

0 1 0

�c� 0 s�

0
BB@

1
CCA

c� s� 0

�s� c� 0

0 0 1

0
BB@

1
CCA;

U2 ¼
1 0 0

0 e�i� 0

0 0 1

0
BB@

1
CCA

1 0 0

0 c	 s	e
i�

0 �s	e
�i� c	

0
BB@

1
CCA:

(A6)

The rotation U1 isolates the charged Goldstone boson,
yielding

M20 � U1M2Uy
1 ¼

0 0 0

0 M2
22 M2

23

0 M2�
23 M2

33

0
BB@

1
CCA; (A7)

where

M2
22 ¼

v2
ud

vuvd

Aud þ v2
uv‘

vdvud

Ad‘ þ v2
dv‘

vuvud

Au‘;

M2
33 ¼

vdv
2
SM

v‘v
2
ud

Ad‘ þ vuv
2
SM

v‘v
2
ud

Au‘;

M2
23 ¼

vuvSM

v2
ud

Ad‘ � vdvSM

v2
ud

Au‘ þ i
vSM

v‘

B;

(A8)

and vud �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
. Note that the (23) and (32) elements

of this matrix are complex.
Finally, we determine the mixing angle 	 and the phase

� by requiring that the rotation U2 diagonalize the matrix
in Eq. (A7). The phase is given by

� ¼ phaseðM2
23Þ; (A9)

with 0 � � < 2
. Choosing Hþ
2 to be lighter than Hþ

3

yields the mass eigenstates,

M2
Hþ

2
;Hþ

3

¼1

2

�
M2

22þM2
33


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

22�M2
33Þ2þ4jM2

23j2
q �

;

(A10)

and the mixing angle 	,

sin2	 ¼ �2jM2
23jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
22 �M2

33Þ2 þ 4jM2
23j2

q ;

cos2	 ¼ �M2
22 þM2

33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

22 �M2
33Þ2 þ 4jM2

23j2
q ;

(A11)

with �
=2 � 	 � 0.
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