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In the framework of a 3-3-1 model with a minimal scalar sector we make a detailed study concerning

the implementation of the Peccei-Quinn symmetry in order to solve the strong CP problem. For the

original version of the model, with only two scalar triplets, we show that the entire Lagrangian is invariant

under a Peccei-Quinn-like symmetry but no axion is produced since a Uð1Þ subgroup remains unbroken.

Although in this case the strong CP problem can still be solved, the solution is largely disfavored since

three quark states are left massless to all orders in perturbation theory. The addition of a third scalar triplet

removes the massless quark states but the resulting axion is visible. In order to become realistic the model

must be extended to account for massive quarks and an invisible axion. We show that the addition of a

scalar singlet together with a ZN discrete gauge symmetry can successfully accomplish these tasks and

protect the axion field against quantum gravitational effects. To make sure that the protecting discrete

gauge symmetry is anomaly-free we use a discrete version of the Green-Schwarz mechanism.
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I. INTRODUCTION

The standard model (SM) of the elementary particles
physics successfully describes almost all of the phenome-
nology of the strong, electromagnetic, and weak interac-
tions. However, from the experimental point of view, the
need to go to physics beyond the standard model comes
from the neutrino masses and mixing, which are required
to explain the solar and atmospheric neutrino data. On the
other hand, from the theoretical point of view, the SM
cannot be taken as the fundamental theory since some
important contemporary questions, like the number of
generations of quarks and leptons, do not have an answer
in its context. Unfortunately we do not know what the
physics beyond the SM should be. A likely scenario is
that at the TeV scale physics will be described by models
which, at least, give some insight into the unanswered
questions of the SM.

A way of introducing new physics is to enlarge the
symmetry gauge group. For example, the gauge symmetry
may be SUð3ÞC � SUð3ÞL �Uð1ÞX, instead of that of the
SM. Models based on this gauge group have become
known as 3-3-1 models [1–3]. Although the 3-3-1 models
coincide with the SM at low energies, they explain some
fundamental questions. This is the case of the number of
generations cited above. In the 3-3-1 model framework, the
number of generations must be three, or a multiple of three,
in order to cancel anomalies. This is because the model is
anomaly-free only if there is an equal number of triplets
and antitriplets, including the color degrees of freedom. In
this case, each generation is anomalous. The anomaly
cancellation only occurs for the three, or multiple of three,

generations together, and not generation by generation like
in the SM. This provides, at least, a first step towards the
understanding of the flavor question. Other interesting
features of the 3-3-1 models concern the electric charge
quantization and the vectorial character of the electromag-
netic interaction [4,5]. These questions can be accommo-
dated in the SM. However, in the 3-3-1 models these
questions are related one to another and are independent
of the nature of the neutrinos.
In recent literature we find studies about the most differ-

ent aspects of the 3-3-1 model phenomenology. Among
others, a fundamental puzzling aspect is, Why is the CP
nonconservation in the strong interactions so small [6,7]?
The last question, quantified by the �� parameter of the
effective QCD Lagrangian, is known as the strong CP
problem. Several solutions based on different ideas have
been proposed. According to the framework, they are
based on unconventional dynamics [8], spontaneously bro-
ken CP [9–11], and an additional chiral symmetry. In the
framework of introducing an additional chiral symmetry,
two suggestions have been made. If this symmetry is not
broken, the symmetry is realized in the Wigner-Weyl
manner and the only possible way of relating this unbroken
chiral symmetry with flavor conserving gluons is to have at
least one massless quark [12]. This suggestion is disfa-
vored by standard current algebra analysis [13,14]. The
second possibility is that the global Uð1Þ chiral symmetry,
known as Uð1ÞPQ [15,16], is spontaneously broken down,

which implies a Nambu-Goldstone boson (NG boson),
currently known as the axion [17–19].
In this paper we consider the strong CP problem in the

framework of a version of the 3-3-1 model in which the
scalar sector is minimal [20]. This model has become
known as the ‘‘economical 3-3-1 model.’’ The appealing
feature of this 3-3-1 model is the natural existence of a
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Peccei-Quinn-like (PQ-like) Uð1Þ symmetry. To study the
consequences of this symmetry in this model, we organize
this paper as follows: in Sec. II we briefly describe the
model, and in Sec. III we analyze the consequences
of the natural PQ-like symmetry in the model and find
that the symmetry is realized in the Wigner-Weyl manner
implying three massless quarks, which disagrees with the
standard current algebra analysis. Thus, we propose the
introduction of two new scalar fields, � and �, in order to
both give a solution to the massless quarks and implement
the PQ mechanism. Since this mechanism needs the
Uð1ÞPQ to be anomalous in order to solve the strong CP
problem, it does not seem natural to impose this symmetry
on the Lagrangian. However, it could be understood as
being natural if it is a residual symmetry of a larger one
which is not anomalous and spontaneously broken. Then,
we consider a ZN discrete gauge symmetry to be a sym-
metry of the Lagrangian. The discrete gauge anomalies are
canceled by a discrete version of the Green-Schwarz
mechanism. After this, two ZN symmetries, Z10 and Z11,
which protect the axion against quantum gravity effects,
are explicitly shown. Finally, our conclusions are given in
Sec. IV.

II. A BRIEF REVIEW OF THE
ECONOMICAL 3-3-1 MODEL

The different models based on a 3-3-1 gauge symmetry
can be classified according to the electric charge operator

Q ¼ T3 � bT8 þ X; (1)

where T3 and T8 are the diagonal Gell-Mann matrices, X
refers to the quantum number of the Uð1ÞX group, and

b ¼ 1=
ffiffiffi
3

p
,

ffiffiffi
3

p
. The embedding b parameter defines the

model. Here, we will consider the model with both

b ¼ 1=
ffiffiffi
3

p
and the simplest scalar sector, which was pro-

posed for the first time in Ref. [21]. It has become known in
the literature as ‘‘economical 3-3-1 model.’’ This model
had origin in a systematic study of all possible 3-3-1
models without exotic electric charges [22].

To give a brief review of the main features of this model,
let us say that it has a fermionic matter content given by

�aL ¼ ð�a;ea; ð�aRÞCÞTL�ð1;3;�1=3Þ;
eaR�ð1;1;�1Þ; Q�L ¼ ðd�;u�;d0�ÞTL�ð3;3�;0Þ;
Q3L ¼ ðu3;d3;u03ÞTL�ð3;3;1=3Þ; uaR�ð3;1;2=3Þ;
u03R�ð3;1;2=3Þ; daR�ð3;1;�1=3Þ;
d0�R�ð3;1;�1=3Þ;

(2)

where a ¼ 1, 2, 3, � ¼ 1, 2 (from now on Latin and Greek
letters always take the values 1, 2, 3 and 1, 2, respectively),
and the values in the parentheses denote quantum numbers
based on the ðSUð3ÞC; SUð3ÞL; Uð1ÞXÞ factor, respectively.
In this model the electric charges of the exotic quarks are

the same as the usual ones, i.e., Qðd0�Þ ¼ �1=3 and
Qðu03Þ ¼ 2=3.
In the bosonic matter content there are only two scalar

triplets, � and �:

� ¼ ð�0; ��; �0
1ÞT � ð1; 3;�1=3Þ;

� ¼ ð�þ; �0; �þ
1 Þ � ð1; 3; 2=3Þ: (3)

These two scalars spontaneously break down the
SUð3ÞL �Uð1ÞX gauge group. The vacuum expection val-
ues (vevs) in this model satisfy the constraint

V�0 � hRe�0i; V�0 � hRe�0i � V�0
1
� hRe�0

1i:

With the quark, lepton, and scalar multiplets above we
have the Yukawa interactions

Ll
Y ¼ Yab

��aLebR�þ Y0
ab�

ijkð ��aLÞið�bLÞCj ð��Þk þ H:c:;

(4)

for leptons. Yab and Y
0
ab are arbitrary complex matrices and

Y0
ab is also antisymmetric. Throughout the paper we use the

convention that an addition over repeated indices is im-
plied. The lepton masses are generated by the interactions
in Eq. (4). The first term gives a general tree level mass
matrix for the charged leptons [20]. However, for the
neutrino mass generation, the interactions in the second
term are not able to provide a realistic mass spectrum at the
tree level. At least 1-loop corrections must be considered in
order to obtain neutrino masses compatible with the solar
and atmospheric neutrino data [23].
For quarks we have

Lq
Y ¼ G1 �Q3Lu

0
3R�þG2

�	
�Q�Ld

0
	R�

� þG3
a
�Q3LdaR�

þG4
�a

�Q�LuaR�
� þG5

a
�Q3LuaR�þG6

�a
�Q�LdaR�

�

þG7
�
�Q3Ld

0
�R�þG8

�
�Q�Lu

0
3R�

� þ H:c:; (5)

where Gi are arbitrary complex matrices. Notice that the
Yukawa interactions given in Eqs. (4) and (5) are the most
general allowed by the gauge symmetries. Here, we follow
exactly Refs. [20,24]; i.e., no additional symmetries are
imposed, contrary to what is done in Ref. [25] where a Z2

symmetry is imposed.
The most general scalar potential invariant under the

gauge symmetry is

VH ¼ 
2
��

y�þ
2
��

y�þ �1ð�y�Þ2 þ �2ð�y�Þ2
þ �3ð�y�Þð�y�Þ þ �4ð�y�Þð�y�Þ: (6)

One of the main features of this model is that its scalar
sector is the simplest possible. In principle, this should
make the scalar potential analysis easier. A study of the
stability of this scalar potential is presented in Ref. [26].

J. C. MONTERO AND B. L. SÁNCHEZ-VEGA PHYSICAL REVIEW D 84, 055019 (2011)

055019-2



III. Uð1ÞPQ SYMMETRY IN THE ECONOMICAL
3-3-1 MODEL

A Uð1ÞPQ symmetry is global and chiral [15,16]; i.e., it

treats the left- and right-handed parts of a Dirac field
differently. Moreover, it must be both a symmetry of the
entire Lagrangian and valid only at the classical level. In
renormalizable theories, the key ingredient of theUð1ÞPQ is

that it must be afflicted by a color anomaly; i.e., its asso-

ciated current, jPQ
 , must obey

@
jPQ
 � Ng2

16�2
G ~G; (7)

being G ~G ¼ 1
2 �


�
�Gb

�G

b

�, and Gb


� is the color field

strength tensor (b ¼ 1; . . . ; 8). N must not be zero.
Now, we are going to prove that the economical 3-3-1

model entire Lagrangian is naturally invariant under a
Uð1ÞPQ symmetry transformation. To do so, we search for

how many Uð1Þ symmetries the model has. First of all, we
write the relations that these symmetries must obey in
order to keep the entire Lagrangian invariant. From
Eqs. (4)–(6) we obtain the following relations:

�XQ3
þXu0

3R
þX�¼0; �XQþXd0R �X�¼0; (8)

�XQ3
þXuR þX�¼0; �XQþXdR �X�¼0; (9)

�XQ3
þXdR þX�¼0; �XQþXuR �X�¼0; (10)

�XQ3
þXd0R þX�¼0; �XQþXu03R �X�¼0; (11)

� X� þ XeR þ X� ¼ 0; �2X� � X� ¼ 0; (12)

where the notation Xc above is to be understood as the

Uð1Þ charge of the c field. Solving the equations above,
we find three independentUð1Þ symmetries. One of these is
the Uð1ÞX gauge symmetry. The other two are the usual
baryon number symmetry, Uð1ÞB, and a chiral symmetry
acting on the quarks, Uð1ÞPQ. Thus, the model actually has

a larger symmetry: SUð3ÞC � SUð3ÞL �Uð1ÞX �Uð1ÞB �
Uð1ÞPQ. The two last symmetries are global. This is sum-

marized in Table I. We can see that the Uð1ÞPQ chiral

symmetry is afflicted by a color anomaly in the following
way:

APQ / �X� � 2X� ¼ �3; (13)

where APQ is the coefficient of the ½SUð3ÞC�2Uð1ÞPQ anom-

aly. Therefore, this chiral symmetry is a PQ-like symmetry.
Also, notice that in this case the Uð1ÞPQ is an accidental

symmetry; i.e., it follows from the gauge local symmetry
plus renormalizability. In other words, the economical
model naturally has a PQ symmetry. The naturalness of
theUð1ÞPQ in the economical 3-3-1 model is a key point. In

our understanding, since Uð1ÞPQ symmetry is anomalous

its imposition is not sensible in the sense that in the absence
of further constraints on very high energy physics we
should expect all relevant and marginally relevant opera-
tors that are forbidden only by this symmetry to appear in
the effective Lagrangian with coefficient of order one, but
if this symmetry follows from some other free anomaly
symmetry, in our case from the gauge symmetry, all terms
which violate it are then irrelevant in the renormalization
group sense.
Unfortunately, when � and � acquire vevs different from

zero, a subgroup of Uð1ÞX �Uð1ÞPQ remains unbroken;

i.e., the symmetry-breaking pattern is

SUð3ÞL �Uð1ÞX �Uð1ÞPQ!h�iSUð2ÞL �Uð1ÞY �Uð1Þ0PQ
!h�iUð1ÞQ �Uð1Þ00PQ; (14)

whereUð1ÞQ is the electromagnetic symmetry. The SUð3ÞC
and Uð1ÞB groups have been omitted in the expression
above because these are both unbroken and irrelevant to
the current analysis. An explicit expression of the Uð1Þ0PQ
symmetry can be easily written as

Uð1Þ0PQ � Uð1ÞPQ þ 3Uð1ÞX: (15)

Also, note that Uð1Þ0PQ and Uð1Þ00PQ are PQ-like symmetries

because these are chiral and afflicted by a color anomaly.
As a consequence of the unbroken Uð1Þ00PQ chiral sym-

metry [i.e.,Uð1Þ00PQ is realized in theWigner-Weyl manner],

no axion appears in the scalar mass spectrum. Instead of
that, some quarks remain massless after the spontaneous
symmetry breaking, and these will remain massless to all
orders of perturbation theory.
To illustrate the preceding, we explicitly calculate the

mass spectra of scalars and quarks. First, we calculate the
scalar mass spectrum

m2
H1;H2

¼�1V
2
�0þðV2

�0þV2
�0
1

Þ�2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

�0�1�ðV2
�0þV2

�0
1

Þ�2Þ2þðV2
�0þV2

�0
1

ÞV2
�0�

2
3

r
;

(16)

TABLE I. Assignment of quantum charges in the economical 3-3-1 model.

Q�L Q3L (uaR, u
0
3R) (daR, d

0
�R) �aL eaR � �

Uð1ÞX 0 1=3 2=3 �1=3 �1=3 �1 2=3 �1=3
Uð1ÞB 1=3 1=3 1=3 1=3 0 0 0 0

Uð1ÞPQ �1 1 0 0 �1=2 �3=2 1 1
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m2
H	

3

¼ 1

2
ðV2

�0 þ V2
�0 þ V2

�0
1

Þ�4; (17)

where V�0 , V�0 , V�0
1
are the vevs of �0, �0, �0

1, respectively.

For simplicity, all the vevs have been assumed to be real.
Additionally, there are exactly 8 NG bosons that will be-
come the longitudinal components of the 8 gauge bosons
[21]. The absence of one physical massless state (or axion)
in the scalar spectrum shows that the Uð1Þ00PQ symmetry

remains unbroken after the spontaneous symmetry
breaking.

On the other hand, in the quark spectra, there are three
massless states, one in the up-quark sector and two in
the down-quark sector. First, consider the up-quark mass
matrix at the tree level which is written as

�uLM
ð0Þ
u uR� 1ffiffiffi

2
p �uL

G4
11V�0 G4

12V�0 G4
13V�0 G8

1V�0

G4
21V�0 G4

22V�0 G4
23V�0 G8

2V�0

G5
1V�0 G5

2V�0 G5
3V�0 G1V�0

G5
1V�0

1
G5

2V�0
1

G5
3V�0

1
G1V�0

1

2
66666664

3
77777775
uR;

(18)

where �uL � ð �u1L; �u2L; �u3L; �u03LÞ and uR � ðu1R; u2R;
u3R; u

0
3RÞT . The third and fourth rows of the Mð0Þ

u matrix

are proportional; thus there is a massless up quark (we refer
to this massless up quark simply as u) at the tree level. An
analytical expression for this massless state can be given
but it is useless for our analysis. Later we give arguments
that the u quark remain massless to all orders of perturba-
tion theory [27]. Similarly, the down-quark mass matrix at

the tree level, Mð0Þ
d , defined as 1ffiffi

2
p �dLM

ð0Þ
d dR, reads

G6
11V�0 G6

12V�0 G6
13V�0 G2

11V�0 G2
12V�0

G6
21V�0 G6

22V�0 G6
23V�0 G2

21V�0 G2
22V�0

G3
1V�0 G3

2V�0 G3
3V�0 G7

1V�0 G7
2V�0

G6
11V�0

1
G6

12V�0
1

G6
13V�0

1
G2

11V�0
1

G2
12V�0

1

G6
21V�0

1
G6

22V�0
1

G6
23V�0

1
G2

21V�0
1

G2
22V�0

1

2
66666666664

3
77777777775
; (19)

where �dL � ð �d1L; �d2L; �d3L; �d01L; �d02LÞ and dR �
ðd1R; d2R; d3R; d01R; d02RÞT . Since the first and fourth rows,
and the second and fifth rows, are proportional to each

other, the Mð0Þ
d matrix has two eigenvalues equal to zero

(we refer to these massless down quarks as d and s). Thus,
the economical model has three massless quark states: one
in the up-quark sector and two in the down-quark sector. In
other words, the economical 3-3-1 model has a remaining
unbroken chiral symmetry, Uð1Þ00PQ, which allows us to

transform uL ! ei�uL, dL ! ei�dL, sL ! ei�sL, leaving
the Lagrangian invariant. This symmetry will protect these
massless quarks to acquire mass at any level of perturba-
tion theory [27]. At this point it is important to say that,
since theUð1Þ00PQ symmetry is anomalous, these quarks will

acquire mass only through QCD nonperturbative effects
(for example, by instanton effects [28]). Although the
quarks could acquire some mass through these nonpertur-
bative processes, this is in conflict with both chiral
QCD and lattice calculation where the ratio mu=md is
0:410	 0:036 [13,14,29].
Before considering a possible solution to the problem

mentioned above, for the sake of completeness, we find it
important to say that in Ref. [20] one-loop contributions to
the up-quark mass matrix were calculated, even though a
subtle flaw makes these contributions not right. To dem-
onstrate that, we exactly follow the same lines as in
Ref. [20]. There, in Sec. 4, the authors consider, for sim-
plicity, one-loop contributions to the submatrix

Mð0Þ
u3u

0
3
� 1ffiffiffi

2
p

G5
3V�0 G1V�0

G5
3V�0

1
G1V�0

1

2
4

3
5; (20)

where Mð0Þ
u3u

0
3
is written in the base ðu3; u03Þ. The other two

massive quark states, u1 and u2, which acquire mass at tree

level [m1 ¼ G4
11V�0=

ffiffiffi
2

p
,m2 ¼ G4

22V�0=
ffiffiffi
2

p
, see Eq. (27) in

Ref. [20] ] are not important in the analysis. The matrix
Eq. (20) mixes together the states u3 and u03. A combina-

tion of them will be a massless quark and the orthogonal
combination acquires a mass �V�0

1
.

Now, the idea is to calculate the one-loop contributions
coming from the Feynman diagrams in Fig. 1 to the up-
quark mass submatrix defined in Eq. (20). Following
Ref. [20], we get

�u3L;u
0
3R
¼ �2iV�0V�0

1
�1Mu0

3
ðG1Þ2



Z d4p

ð2�Þ4
p2

ðp2 �M2
u0
3
Þ2ðp2 �M2

�0Þðp2 �M2
�0
1

Þ
� 2V�0V�0

1
�1Mu03ðG1Þ2IðM2

u03
;M2

�0 ;M
2
�0
1

Þ; (21)

where IðM2
u0
3
;M2

�0 ;M
2
�0
1

Þ is defined as

IðM2
u0
3
;M2

�0 ;M
2
�0
1

Þ

��i
Z d4p

ð2�Þ4
p2

ðp2�M2
u03
Þ2ðp2�M2

�0Þðp2�M2
�0
1

Þ ; (22)

and �u3L;u
0
3R

is the one-loop contribution to the element

ðMð0Þ
u3u

0
3
Þ12 given by the Feynman diagram in Fig. 1(a). The

value of the integral in Eq. (22) is not relevant in our
analysis and thus it is not calculated. Now, �u3L;u3R is found

in a similar way from the diagram in Fig. 1(b),

�u3L;u3R ¼ �2iV�0V�0
1
�1Mu0

3
G5

3G
1



Z d4p

ð2�Þ4
p2

ðp2 �M2
u0
3
Þ2ðp2 �M2

�0Þðp2 �M2
�0
1

Þ

¼ G5
3

G1
�u3L;u

0
3R
: (23)
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One-loop contributions to ðMð0Þ
u3u

0
3
Þ21 and ðMð0Þ

u3u
0
3
Þ22, found

from the Feynman diagrams in 1(c) and 1(d), respectively,
are also proportional to each other, i.e.,

�u0
3L
;u3R ¼ G5

3

G1
�u0

3L
;u0

3R
: (24)

Therefore, when considering simultaneously all the one-

loop contributions above, the Mð0Þ
u3u

0
3
becomes

1ffiffiffi
2

p
G5

3

�
V�0 þ �u3L;u

0
3R

G1

�
G1

�
V�0 þ �u3L;u

0
3R

G1

�

G5
3

�
V�0

1
þ �u0

3L
;u0
3R

G1

�
G1

�
V�0

1
þ �u0

3L
;u0
3R

G1

�
2
6664

3
7775: (25)

This matrix still has a determinant equal to zero. In other
words, we have shown that one combination of the up
quarks still remains massless, as it should be. In the
down-quark sector a similar analysis can be easily made.
Thus, what makes the contributions to the up-quark and
down-quark masses made in Ref. [20] not right is that those
contributions were not considered simultaneously.

To conclude, the 3-3-1 economical model has three
massless quarks (one up quark and two down quarks) to

all order of perturbation theory, which is in conflict with
both chiral QCD and lattice calculation where the ratio
mu=md is 0:410	 0:036 [14]. Therefore, the economical
model is not realistic and it must be modified to overcome
that difficulty. One manner of doing that is introducing a
new scalar triplet, �:

� ¼ ð�0; ��; �0
1ÞT � ð1; 3;�1=3Þ: (26)

When the scalar triplet, �, is introduced into the model, the
Yukawa Lagrangian given in Eq. (5) has the following
extra terms:

Lq
Y;extra ¼ G9

a
�Q3LuaR�þG10

�a
�Q�LdaR�

� þG11 �Q3Lu
0
3R�

þG12
�	

�Q�Ld
0
	R�

� þ H:c: (27)

As can be seen from Eq. (5) and Eq. (27), the quark fields
interact with different neutral scalar fields simultaneously.
Hence, flavor-changing neutral currents (FCNCs) are, in
general, induced. This characteristic is shared by most of
multi-Higgs models [30]. In order to suppress the FCNC
effects we must use some model dependent strategies, for
instance, choosing an appropriate direction in the vev
space, resorting to heavy scalars and/or small mixing

FIG. 1. One-loop contributions to the up-quark mass matrix.
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angles in the quark and the scalar sectors, and considering
adequate Yukawa coupling matrix textures [3,30–32]. In
particular, in this model the exotic quarks have the same
electric charge as the ordinary ones. This means that they
can mix with the later ones and hence also induce FCNC.
However, this kind of FCNC is suppressed when the vev
which controls the exotic quark masses is taken much
larger than the electroweak mass scale [3,32]. FCNC also
occurs in models which have an extra neutral vector boson.
They can be handled in a similar way. See, for example,
[33]. Finally, from Eq. (4) we see that the lepton sector of
the model is not afflicted by FCNC.

The most general scalar potential invariant under the
gauge symmetry, V ¼ VH þ VNH, has now the following
extra terms:

VH;extra¼
2
��

y�þ�5ð�y�Þ2þ�y�½�6ð�y�Þþ�7ð�y�Þ�
þ�8ð�y�Þð�y�Þþ�9ð�y�Þð�y�Þ; (28)

and

VNH¼
2
4�

y�þf�ijk�i�j�kþ�10ð�y�Þ2
þ�11ð�y�Þð�y�Þþ�12ð�y�Þð�y�Þ
þ�13ð�y�Þð�y�Þþ�14ð�y�Þð�y�ÞþH:c: (29)

Now, when the scalar triplets acquire vevs, it is straightfor-
ward to see that the quark mass matrices do not have
determinant equal to zero; thus all the quarks are massive.
Additionally, as we will show below, there will be no
accidental anomalous PQ-like symmetry.

Returning to the question of the PQ symmetry, we note
that due to these new terms in the Lagrangian the charges
of the Uð1Þ symmetries must obey the following relations,

�XQ3
þXuR þX�¼0; �XQ3

þXu0R þX�¼0; (30)

�XQþXd0R �X�¼0; �XQþXdR �X�¼0; (31)

X� þ X� þ X� ¼ 0; �X� þ X� ¼ 0; (32)

besides the ones given in Eqs. (8)–(12). Solving
Eqs. (8)–(12) and Eqs. (30)–(32) simultaneously, we find
that there are only twoUð1Þ symmetries,Uð1ÞX andUð1ÞB.
The assignment of quantum charges for these two Uð1Þ
symmetries when � is included is shown in Table II. Thus,
in this case, in contrast to the previous one, the Uð1ÞPQ is

not allowed by the gauge symmetry. But, if the Lagrangian
is slightly modified by imposing a Z2 symmetry such that

� ! ��, u03R ! �u03R, d
0
	R ! �d0	R and all the other

fields being even under Z2, the trilinear term of the scalar
potential, f�ijk�i�j�k, is eliminated. Consequently, the

Uð1ÞPQ symmetry is automatically introduced. This can

be seen by solving Eqs. (8)–(12) and Eqs. (30)–(32) with-
out the equation

X� þ X� þ X� ¼ 0: (33)

Note that, in addition to the assignment of quantum
charges given in Table I, the charge Uð1ÞPQ of the � triplet

scalar is 1. Unfortunately, the axion that appears when the
neutral components of the scalar triplets acquire vev is
visible. This is easy to see as follows. In this model the �
field is responsible for breaking the symmetry from
SUð3ÞC � SUð3ÞL �Uð1ÞX to SUð3ÞC � SUð2ÞL �Uð1ÞY .
Thus, to obtain an invisible axion, V�0

1
that breaks the PQ

symmetry must be greater than 109 GeV. But, when �
acquires a vev the combination Uð1Þ0PQ ¼ Uð1ÞPQ þ
3Uð1ÞX is not broken. Therefore, the new PQ symmetry
is truly broken when the � field acquires a vev. As V�0 &

246 GeV, the axion induced is visible. A visible axion was
long ago ruled out by experiments [34].
One usual way to resolve that problem is to introduce an

electroweak scalar singlet, � [17,18]. Its role is to break
the PQ symmetry at a scale much larger than the electro-
weak scale. This field does not couple directly to quarks
and leptons; however, it acquires a PQ charge by coupling
to the scalar triplets. With the PQ charges given in Table I,
the � scalar acquires a PQ charge by coupling to the �, �,
� scalar triplets through the interaction term

�PQ�
ijk�i�j�k�: (34)

From this coupling, the � field obtains a PQ charge of�3.
Also, notice that this term is permitted provided the� field
is odd under the Z2 symmetry, i.e., Z2ð�Þ ¼ ��.
However, the Z2 and gauge symmetries do not prohibit
some terms in the scalar potential violating the PQ sym-
metry, such as �2, �4, �y��2, �y��2, �y��2, from
appearing. Thus, the PQ symmetry should be imposed.
Since the PQ symmetry is anomalous, it is somewhat
awkward to do so. However, there is a way to overcome
this difficulty. Consider that the entire Lagrangian is in-
variant under a ZN discrete gauge symmetry [35], with
N � 5, instead of a Z2 symmetry. The ZN charge assign-
ment that allows the scalar potential to be naturally free of
awkward terms violating the PQ symmetry must satisfy the
following minimal conditions:

TABLE II. Assignment of quantum charges when � is included.

Q�L Q3L (uaR, u
0
3R) (daR, d

0
�R) �aL eaR � (�, �)

Uð1ÞX 0 1=3 2=3 �1=3 �1=3 �1 2=3 �1=3
Uð1ÞB 1=3 1=3 1=3 1=3 0 0 0 0
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ZNð�Þ � ð0; N=2; N=3; N=4Þ; (35)

ZNð�Þ þ ZNð�Þ þ ZNð�Þ � pN; (36)

� ZNð�Þ þ ZNð�Þ ¼ rN; p; r 2 Z; (37)

and, obviously, the other ones that leave the rest of the
Lagrangian invariant under ZN. The �ZNð�Þ þ ZNð�Þ ¼
rN condition, with r 2 Z, is necessary to allow the terms
in the scalar potential given in Eq. (29), except the trilinear
f�ijk�i�j�k term and, thus, avoid the appearance of an

additional dangerous massless scalar in the physical
spectrum. In other words, with the conditions imposed by
Eqs. (35)–(37) for this ZN discrete symmetry, none of
Lagrangian terms, except the violating PQ terms, such as
f�ijk�i�j�k, �2, �3, �4, etc., are prohibited from

appearing.
Furthermore, to stabilize the axion solution from quan-

tum gravitational effects [36,37] we will make use of the
ZN discrete symmetry with anomaly cancellation by a
discrete version of the Green-Schwarz mechanism
[38–41]. Quantum gravity effective operators, allowed by
the gauge symmetry, of the form �N=MN�4

Pl can induce a

nonzero �� given by

�� ’ fNa
�4

QCDM
N�4
Pl

: (38)

From the neutron electric dipole moment (EDM) experi-
mental data �� & 10�11 [29], and using fa � 1010 GeV, we
find that N � 10, in order to keep the PQ solution stable. It
means that effective operators with N < 10 must be for-
bidden by the ZN symmetry.

The neutron EDMwill also receive contributions that do

not come from the �� ~GG term. Those which are similar to
the SM contributions will pose no problems since they
will have approximately the same values and will give
dSM-CKMn � 10�32 e cm [42], i.e., 6 to 7 orders of magni-
tude smaller than the experimental limit [43]. The other
contributions, which are specific to the present 3-3-1
model, like the 1-loop contribution due to the exchange
of a charged scalar (��), can be used to constrain the still
free parameters of the model, in order to be consistent with
the experimental neutron EDM data [43,44]. Wewill return
to this point later.

Before introducing the ZN symmetry to stabilize the PQ
mechanism, we calculate the axion state. With the intro-
duction of the scalar singlet �, the scalar potential gains
the following extra terms:

V�;extra ¼ �
2
��

y�þ ��ð�y�Þ2 þ �15ð�y�Þð�y�Þ
þ �16ð�y�Þð�y�Þ þ �17ð�y�Þð�y�Þ: (39)

Now, to calculate the eigenstate of the axion field, we write
the fields as

� ¼
�þ

1ffiffi
2

p ðV�0 þ Re�0 þ iIm�0Þ
�þþ

0
BB@

1
CCA;

� ¼
1ffiffi
2

p ðV�0 þ Re�0 þ iIm�0Þ
��

1ffiffi
2

p ðV�0
1
þ Re�0

1 þ iIm�0
1Þ

0
BB@

1
CCA;

� ¼
1ffiffi
2

p ðV�0 þ Re�0 þ iIm�0Þ
��

1ffiffi
2

p ðV�0
1
þ Re�0

1 þ iIm�0
1Þ

0
BB@

1
CCA;

� ¼ 1ffiffiffi
2

p ðV� þ Re�þ iIm�Þ:

(40)

The axion field must be isolated from the eight NG bosons
that are absorbed by the gauge bosons in the unitary gauge.
This is fundamental to do a correct phenomenological
study of the axion properties. By following standard pro-
cedures, the axion field, aðxÞ, is determined to be

aðxÞ ¼ 1

fa

�
V2�
V�0

Im�0 � V�0
1
Im�0 þ V�0 Im�0

1 þ V�0
1
Im�0

� V�0 Im�0
1 �

�
V2�
V2
�0

þ V2þ
V2�

�
V�Im�

�
; (41)

where

V2� � V�0V�0
1
� V�0

1
V�0 ; (42)

V2þ � V2
�0 þ V2

�0
1

þ V2
�0 þ V2

�0
1

; (43)

and fa is the normalization constant given by

fa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
V2�
V�0

�
2 þ V2þ þ

�
V2�
V2
�0

þ V2þ
V2�

�
2
V2
�

vuut : (44)

Note that in the limit V� � V�0 , V�0
1
, V�0 , V�0

1

aðxÞ ’�Im�þ
�
V2�
V2
�0

þV2þ
V2�

��1
V�1
�

�
V2�
V�0

Im�0�V�0
1
Im�0

þV�0 Im�0
1þV�0

1
Im�0�V�0 Im�0

1

�
; (45)

i.e., the axion is primarily composed of the Im� field. As is
well-known, to make the invisible axion compatible with
astrophysical and cosmological considerations, the axion
decay constant, fa, must be in the range 109 GeV 
 fa 

1012 GeV.
Now, returning to the stabilization of the axion by the ZN

symmetry, let us put that in a short way. If the ZN symmetry
that survives at low energies was part of an ‘‘anomalous’’
Uð1ÞA gauge symmetry, the ZN charges of the fermions in
the low energy theory must satisfy nontrivial conditions:
The anomaly coefficients for the full theory are given by
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the coefficients for the low energy sector, in our case
A3C � ½SUð3ÞC�2Uð1ÞA and A3L � ½SUð3ÞL�2Uð1ÞA, plus
an integer multiple of N=2 [45,46], i.e.,

A3C þ pN=2

k3C
¼ A3L þ rN=2

k3L
¼ �GS; (46)

with p and r being integers. The k3C and k3L are the levels
of the Kac-Moody algebra for the SUð3ÞC and SUð3ÞL,
respectively. In the present case these are positive integers.
Finally, the �GS is a constant that is not specified by the low
energy theory alone. Other anomalies such as ½Uð1ÞA�3,
½Uð1ÞA�2Uð1ÞX do not give useful low energy constraints
because these depend on some arbitrary choices concern-
ingUð1ÞA [47]. This is why these do not appear in Eq. (46).
Now, to identify that anomalous Uð1ÞA symmetry, it is
helpful to write it as a linear combination of the Uð1ÞPQ
and the Uð1ÞB symmetries, i.e.,

Uð1ÞA ¼ �½Uð1ÞPQ þ 	Uð1ÞB�; (47)

where � is a normalization constant used to make the
Uð1ÞA charges integer numbers. With the charges given
in Table I, it is straightforward to calculate the anomaly
coefficients A3C and A3L,

A3C ¼ � 3

2
�; A3L ¼

�
� 9

4
þ 3

2
	

�
�: (48)

Thus, the 	 parameter that satisfies the condition given in
Eq. (46) is

	 ¼ 1

3

�
�3

k3L
k3C

þ 9

2
þ N

�

�
k3L
k3C

p� r

��
: (49)

Taking the simplest possibility for the parameters k3C and
k3L, i.e., k3C ¼ k3L, the parameter 	 becomes

	 ¼ 1

3

�
3

2
þ N

�
ðp� rÞ

�
: (50)

Recalling that to stabilize the axion from the quantum
gravity corrections we needN > 10, we show two possible
solutions with N ¼ 10 and 11. The corresponding charge
assignment of these two discrete subgroups of the Uð1ÞA
symmetry is given in Table III. Also, it is important to
remember that those charges are defined mod N.

It can be explicitly verified that the charges in Table III
satisfy Eq. (46), as it should be, since Z10 and Z11 are
discrete subgroups of Uð1ÞA, which is anomaly-free by the
Green-Schwarz mechanism.

At this point, an important remark is in order. In its most
general form, this model possesses other CP-violating

sources apart from the strong CP-violating �� term, which
can give additional contributions to the electric dipole
moment of the neutron. The reason is that not all phases
can be absorbed into the quark and lepton field definitions.
Therefore, it is necessary to estimate if these additional
contributions do not require tuning the model parameters at
the same order of the �� parameter. Then, let us compute a
representative case: the up-quark electric dipole moment,
deu. One dominant diagram contributing to deu is derived
from the one given in Fig. 1(b), when an external photon
line is attached. To compute the resultant diagram, we need
to know the mixing of the scalar fields, Cij, coming from

the diagonalization of the scalar mass matrix. However, we
will consider Cij �Oð1Þ, which is the worst case. Standard
calculations lead to

deujm�mu0 ;m�
� eG5

3jG1j sin�
48�2

mu0

m2
�

KðrÞ; (51)

where

K ðrÞ ¼ 1

2r
� 1

r2
þ 1

r3
lnð1þ rÞ; (52)

with r ¼ m2

u0
m2

�
� 1; mu0 and m� are the exotic quark and

scalar masses, respectively; G5
3 and G1 are the Yukawa

couplings given in Eq. (5); and sin� is the sine of the
CP-violating phase � related to the complex parameter
G1. Also, we have taken the limit m � m� and m � mu0 ,

with m the up-quark mass. Furthermore, to give numerical
results, it is interesting to consider mu0 � m� in Eq. (51),

since these two exotic particles obtain mass from the same
vev, V�0

1
. In this case, we have

G5
3jG1j sin�


�
1 TeV

m�

�
& 2:1
 10�6; (53)

since Kð0Þ ¼ 1=3. To obtain the bound in Eq. (53),
we have used den � 4

3d
e
d � 1

3 d
e
u � OðdeuÞ< 0:29


10�25 e � cm [48]. Now, for instance, let us assume that
the CP-violating phase is such that sin�� 10�2 and
m� � 1 TeV. In this case the parameters G5

3 � 10�2 and

jG1j � 10�2 satisfy the upper bound given in Eq. (53). In
the general case, i.e.,m� � mu0 , it can be shown that when

m� >mu0 the limit on the couplings is softer than the one

given in Eq. (53).
Hence, since the order of the model parameters differs

from �� & 10�11 by several order of magnitude, a solution
to the strong CP problem, as the one presented above, is
required.

TABLE III. The charge assignments for Z10 and Z11 that stabilize the axion, for � ¼ 6.

Q�L Q3L (uaR, u
0
3R) (daR, d

0
�R) �aL eaR � (�, �) �

Z10 þ5 þ7 þ1 þ1 þ7 þ1 þ6 þ6 þ2
Z11 þ6 þ7 þ1 þ1 þ8 þ2 þ6 þ6 þ4
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IV. CONCLUSIONS

In this paper we have shown a detailed and compre-
hensive study concerning the implementation of the PQ
symmetry into a 3-3-1 model in order to solve the strong
CP problem. We have considered a version of the 3-3-1
model in which the scalar sector is minimal. In its
original form this version has only two scalar triplets
(�, �) and it is found that the model presents an auto-
matic PQ-like symmetry. However, for this scalar con-
tent, there is a Uð1Þ subgroup of Uð1ÞX �Uð1ÞPQ that

remains unbroken and hence no axion field, aðxÞ, arises.
Therefore, the strong CP problem cannot be solved by
the dynamical properties of the axion field. However, as
we have shown in the text, the problem can be solved due
to the appearance of three massless quark states. We
show explicitly that those massless quark states remain
massless to all orders in perturbation theory. This solu-
tion is disfavored since results from lattice and current
algebra do not point in that direction. When the model is
slightly extended by the addition of a third scalar triplet
�, with the same quantum numbers as �, we do not have
massless quarks anymore but we cannot implement a PQ

symmetry in a natural way. The trilinear term in the
scalar potential forbids this symmetry. We can resort to
a Z2 symmetry to remove the trilinear term. In this case,
we can define a PQ symmetry and an axion field appears
in the physical scalar spectrum. Unfortunately this axion
is visible since it is related to the V�0 energy scale, which

is of the order of the electroweak scale. Therefore, the
model must be extended. We have succeeded in imple-
menting a stable PQ mechanism by introducing a �
scalar singlet and a ZN discrete gauge symmetry. The
introduction of the � scalar makes the axion invisible
provided V� * 109 GeV, i.e., aðxÞ ’ Im�. On the an-

other hand, the ZN protects the axion against quantum
gravity effects because both it is anomaly-free, as it was
shown by using a discrete version of the Green-Schwarz
mechanism, and it forbids all effective operators of the
form ��N=MN�4

Pl , with N < 10, which could destabilize

the PQ mechanism.
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