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We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the

quenched approximation at the lattice spacing of a ¼ 0:128 fm with a heavy quark mass corresponding to

m� ¼ 0:8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume

dependence of the energy difference between the ground state and the free two-nucleon state by changing

the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial

volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also

singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating

the properties of the energy for the first excited state obtained by a 2� 2 diagonalization method. The

scattering lengths for both channels are evaluated by applying the finite volume formula derived by

Lüscher to the energy of the first excited states.
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I. INTRODUCTION

The strong interaction dynamically generates a hierarch-
ical structure: three quarks are bound to form a nucleon
with an energy of 1 GeV, and nucleons are in turn bound to
form nuclei with a binding energy of 10 MeV or so per
nucleon. This is a multiscale physics that computational
physics should explore, and lattice QCD is responsible for
explaining the nature of nuclei based on first principles.

Recently, the present authors have made a first attempt to
directly construct the helium-3 and helium-4 nuclei from
quarks and gluons in lattice QCD. In order to control
statistical errors in the Monte Carlo evaluation of the
helium Green’s function, as well as quark contractions
whose number factorially increases with the nuclear mass
number, calculations were carried out at a rather heavy
degenerate up- and down-quark mass corresponding to
m� ¼ 0:8 GeV in quenched QCD [1]. We successfully
confirmed the formation of helium nuclei as a bound state.
The key was a systematic change of the spatial size of
the lattice over a sufficiently wide range that allowed a
reliable extrapolation to the infinite volume limit. After our
finding of the helium nuclei, the NPLQCD Collaboration
reported evidence of the H dibaryon bound state in Nf ¼
2þ 1 QCD at m� ¼ 0:39 GeV investigating the volume
dependence of the energy shift from twice of the � baryon
mass [2,3]. This was followed by the HALQCD
Collaboration which also presented evidence of the
H dibaryon, but in degenerate Nf ¼ 3 QCD at m� ¼
0:67–1:02 GeV based on analysis with the effective poten-
tial measured by the two-baryon wave function [4].

The situation is markedly different for deuteron. This is
the simplest nucleus composed of two nucleons in the spin
triplet channel, and yet evidence based on lattice QCD
for a bound state has never been reported. It is already
quite some time ago that a first analysis of the two-nucleon
system was made in quenched QCD [5,6]. Much more
recently, studies were made with a partially quenched
mixed action [7] and Nf ¼ 2þ 1 anisotropic Wilson ac-

tion [2]. Extraction of the potential between two nucleons
has been investigated in quenched QCD [8–10]. All these
studies, however, tried to calculate the two-nucleon scat-
tering lengths assuming, based primarily on model consid-
erations with nuclear potentials, that the deuteron becomes
unbound for the heavy quark mass, corresponding to
m� * 0:3 GeV, employed in their simulations.
It is time to check the validity of this assumption. We

need to investigate whether the bound state exists or not in
the heavy quark mass region, where studies so far have
been carried out, using the arsenal of methods solely within
lattice QCD. If there is a bound state, the ground-state
energy never yields the scattering length if substituted
into Lüscher’s finite volume formula [11,12]. In such a
case, the scattering length should be obtained from the
energy of the first excited state.
We carry out two types of calculations at a heavy quark

mass corresponding to m� ¼ 0:8 GeV in quenched QCD.
The first one is a conventional analysis in which we inves-
tigate the volume dependence of the energy shift for the
ground state. Different volume dependence is expected for
scattering and bound states. In the second one we inves-
tigate the energy level of the first excited state employing
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the diagonalization method [13] to separate the first excited
state from the ground state near the threshold of 2mN .
If we find the ground state slightly below the threshold
and the first excited state slightly above it, then such a
configuration of the two lowest levels is consistent with
the ground state being a bound state and the first excited
state a scattering state with almost zero relative momen-
tum. This method was previously used in a scalar QED
simulation to distinguish a system with or without a bound
state [14].

Hereafter we call the analyses employed in the first and
second calculations the single-state and two-state analyses,
respectively. We also refer to the configuration sets used in
the two calculations as the first and second ensembles.
We should note that the 3S1-

3D1 mixing is neglected in
this paper, since we restrict ourselves to measure states in
the small relative momentum region.

This paper is organized as follows. Section II presents
the results of the single-state analysis in the first calculation
together with the simulation details. In Sec. III we explain
the operators employed in the diagonalization method and
examine the results obtained by the two-state analysis.
Conclusions and discussions are summarized in Sec. IV.

II. SINGLE-STATE ANALYSIS

Let us first present the results of the single-state analysis
for the 3S1 and

1S0 channels.

A. Simulation details

The first ensemble is exactly the same as in the previous
work of Ref. [1]. We explain the parameters once again for
clarity.

We generate quenched configurations with the Iwasaki
gauge action [15] at � ¼ 2:416 whose lattice spacing is
a ¼ 0:128 fm, corresponding to a�1 ¼ 1:541 GeV, deter-
mined with r0 ¼ 0:49 fm as an input [16]. We employ the
hybrid Monte Carlo (HMC) algorithm with the Omelyan-
Mryglod-Folk integrator [17,18]. The step size is chosen to
yield a reasonable acceptance rate presented in Table I. We
take three lattice sizes, L3 � T ¼ 243 � 64, 483 � 48, and
963 � 48, to investigate the spatial volume dependence of
the energy difference between the two-nucleon ground
state and twice the nucleon mass. The physical spatial
extents are 3.1, 6.1, and 12.3 fm, respectively.

We use the tadpole improved Wilson action with
cSW ¼ 1:378 [16]. Since it becomes harder to obtain a
reasonable signal-to-noise ratio at lighter quark masses
for the multinucleon system, we employ a heavy quark
mass at � ¼ 0:134 82 which gives m� ¼ 0:8 GeV for the
pion mass and mN ¼ 1:6 GeV for the nucleon mass.
Statistics is increased by repeating the measurement of
the correlation functions with the source points in different
time slices on each configuration. The number of configu-
rations and measurements on each configuration are listed
in Table I. We separate successive measurements by 100
trajectories with � ¼ 1 for the trajectory length. The errors
are estimated by jackknife analysis choosing 200 trajecto-
ries for the bin size.
The quark propagators are solved with the periodic

boundary condition in all the spatial and temporal direc-
tions using the exponentially smeared source

q0ð ~x; tÞ ¼ X
~y

Ae�Bj ~x� ~yjqð ~y; tÞ (1)

after the Coulomb gauge fixing. On each volume we em-
ploy two sets of smearing parameters: ðA;BÞ ¼ ð0:5; 0:5Þ,
(0.5, 0.1) for L ¼ 24 and (0.5, 0.5), (1.0, 0.4) for L ¼ 48
and 96. The onset of the ground state can be confirmed by
consistency of effective masses with different sources as
shown later. Hereafter the nucleon operators using the first
and the second smearing parameter sets are referred to as
O1 and O2, respectively.
The interpolating operator for the proton is defined as

p� ¼ "abcð½ua�tC�5dbÞu�c ; (2)

where C ¼ �4�2 and � and a, b, c are the Dirac index and
the color indices, respectively. The neutron operator n� is
obtained by replacing u�c by d�c in the proton operator. To
save the computational cost we use the nonrelativistic
quark operator, in which the Dirac index is restricted to
the upper two components.
The two-nucleon operators for the 3S1 and

1S0 channels
are given by

NN3S
1
ðtÞ ¼ 1ffiffiffi

2
p ½pþðtÞnþðtÞ � nþðtÞpþðtÞ�; (3)

NN1S
0
ðtÞ ¼ 1ffiffiffi

2
p ½pþðtÞp�ðtÞ � p�ðtÞpþðtÞ�: (4)

For the source operator we insert the smeared quark fields
of Eq. (1) for each nucleon operator located at the same
spatial point ~x. Each nucleon in the sink operator, on the
other hand, is composed of the point quark fields, and
projected to have zero spatial momentum. We call this
type of sink operator the point sink operator. In the spin
triplet channel the operators for other two spin components
are constructed in a similar way. We increase the statistics
by averaging over the three spin components.

TABLE I. Number of configurations (Nconf), number of mea-
surements on each configuration (Nmeas), acceptance rate in the
HMC algorithm, pion mass (m�), and nucleon mass (mN) for the
first ensembles.

L Nconf Nmeas Accept ance(%) m� (GeV) mN (GeV)

24 2500 2 93 0.8000(3) 1.619(2)

48 400 12 93 0.7999(4) 1.617(2)

96 200 12 68 0.8002(3) 1.617(2)
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B. Numerical results

Let us first present the effective mass of the nucleon on
the ð6:1 fmÞ3 box in Fig. 1. We observe that the signals with
the O1;2 source operators are clean and the plateaus show

reasonable consistency with each other. The exponential fit
results with 1 standard deviation errors are denoted by the
solid lines. They also show the consistency between the
results from the two-nucleon correlation functions.

Figure 2 shows the effective energy plots for the two-
nucleon correlation functions with theO1;2 operators in the
3S1 channel on the same volume as in the above. We find
clear signals up to t � 12, beyond which statistical fluc-
tuation dominates. The effective masses with the different
sources show a reasonable agreement in the plateau region.

The result of exponential fit over the plateau region is
presented by the solid lines for each operator in the figure.
Similar behavior of the effective energy is observed in the
1S0 channel as shown in Fig. 3.

In order to determine the energy shift�EL¼ENN�2EN

precisely in each volume, we define the ratio of the two-
nucleon correlation function divided by the nucleon corre-
lation function squared,

RðtÞ ¼ GNNðtÞ
ðGNðtÞÞ2

; (5)

where the same source operator is chosen for GNNðtÞ and
GNðtÞ. The effective energy shift is extracted as

�Eeff
L ¼ ln

�
RðtÞ

Rðtþ 1Þ
�
: (6)

In Fig. 4 we present typical results of time dependence
of �Eeff

L for the O1;2 sources in the 3S1 channel, both of
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FIG. 1 (color online). Effective mass of nucleon with the O1

(circle) and O2 (square) sources on the ð6:1 fmÞ3 box in lattice
units. Fit results with 1 standard deviation error band are ex-
pressed by solid lines.
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FIG. 2 (color online). Effective energy for the 3S1 channel
with the O1 (circle) and O2 (square) sources on the ð6:1 fmÞ3
box in lattice units. Fit results with 1 standard deviation error
band are expressed by solid lines.
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FIG. 3 (color online). Same as Fig. 2 for the 1S0 channel.
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FIG. 4 (color online). Effective energy shift �Eeff
L for the 3S1

channel with the O1 (circle) and O2 (square) sources on the
ð6:1 fmÞ3 box in lattice units. Fit results with 1 standard devia-
tion error band are expressed by solid lines.
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which show negative values beyond the error bars in the
plateau region of t ¼ 8–11. Note that this plateau region is
reasonably consistent with that for the effective mass of the
two-nucleon correlation functions in Fig. 2. The signals of
�Eeff

L are lost beyond t � 12 because of the large fluctua-
tions in the two-nucleon correlation functions. We deter-
mine �EL by an exponential fit of the ratio in the plateau
region, t ¼ 8–12 forO1 and t ¼ 7–12 forO2, respectively.
The systematic error of the fit is estimated from the differ-
ence of the central values of the fit results with the mini-
mum or maximum time slice changed by �1. We obtain a
similar quality for the signal for different boxes of
ð3:1 fmÞ3 and ð12:3 fmÞ3 as shown in Figs. 5 and 6,
respectively.

The result for the 1S0 channel on the ð6:1 fmÞ3 box is

shown in Fig. 7. We find that the effective energy shift
�Eeff

L is negative beyond the error bars, though its absolute
value is smaller than the 3S1 case. The energy shift �EL is
determined in the same way as for the 3S1 channel.

The volume dependence of the energy shift �EL for the
3S1 channel is plotted as a function of 1=L3 in Fig. 8.
Table II summarizes the numerical values of �EL on three
spatial volumes, where the statistical and systematic errors
are presented in the first and second parentheses, respec-
tively. The results for theO1;2 sources are consistent within

the error bars. Little volume dependence for �EL indicates
a bound state, rather than the 1=L3 dependence expected
for a scattering state, for the ground state in the 3S1
channel.
The binding energy in the infinite spatial volume limit

in Table II is extracted by a simultaneous fit of the data
for the O1;2 sources employing the fit function includ-

ing a finite volume effect for the two-particle bound
state [14,19],
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FIG. 5 (color online). Same as Fig. 4 on the ð3:1 fmÞ3 box.
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FIG. 7 (color online). Same as Fig. 4 for the 1S0 channel.
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FIG. 6 (color online). Same as Fig. 4 on the ð12:3 fmÞ3 box.
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FIG. 8 (color online). Spatial volume dependence of �EL ¼
ENN � 2mN in GeVunits for the 3S1 channel with theO1 (circle)

and O2 (square) sources. Statistical and systematic errors are
added in quadrature. Extrapolated results to the infinite spatial
volume limit (filled circle) and experimental values (star) are
also presented.
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�EL ¼ � �2

mN

�
1þ C�

�L

X0

~n

expð��L
ffiffiffiffiffi
~n2

p
Þffiffiffiffiffi

~n2
p

�
; (7)

where � and C� are free parameters, ~n is a three-

dimensional integer vector, and
P0

~n denotes the sum-
mation without j ~nj ¼ 0. The binding energy, ��E1, is
determined from �,

� �E1 ¼ � �2

mN

; (8)

where we assume

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N � �2
q

� 2mN � � �2

mN

: (9)

The systematic error is estimated from the difference of
the central values of the fit results choosing different fit
ranges in the determination of �EL, and also using a
constant fit as an alternative fit form. Adding the statis-
tical and systematic errors by quadrature, we obtain
��E1 ¼ 9:1ð1:3Þ MeV for the binding energy.

We conclude that the ground state in the 3S1 channel is a
bound state. The provisos, of course, are that pion mass is
quite heavy and that quark vacuum polarizations are left
out. Whether these are the reasons why the binding energy
is about 4 times larger than the experimental value,
2.22 MeV, is an interesting issue for future study with
lighter pion mass in full QCD.

Figure 9 plots the volume dependence of the energy shift
�EL for the 1S0 channel, whose numerical values are

summarized in Table II. Employing the same analysis as
in the 3S1 channel, we find that��E1 ¼ 5:5ð1:5Þ MeV in
the infinite volume limit, which is 3:7� away from zero.
This tells us that the ground state in the 1S0 channel is also
bound at m� ¼ 0:8 MeV. Since the existence of the bound
state in this channel is not expected at the physical quark
mass, it might be a consequence of much heavier quark
mass used in our calculation. Although there are several
model calculations varying the up- and down-quark
masses, they are restricted around the physical values
[20–23]. It is an intriguing subject to check if the bound
state in the 1S0 channel disappears at lighter quark masses.

This is beyond the scope of this paper, however.

In the nuclear potential approach [24], the phase shift for
the 1S0 channel was reported in Nf ¼ 2þ 1 QCD at a

similar quark mass ofm� � 0:7 GeV, which does not show
a signal for a bound state. Examination on systematic
errors such as the spatial volume dependence and excited
state contaminations is needed to see if the two methods
lead to contradictory conclusions.

III. TWO-STATE ANALYSIS

In this section we present the results of analysis with the
diagonalization method [13]. The focus of the analysis is
the characteristic feature, well known from quantum me-
chanics, that the existence of a bound state implies a
scattering state just above the two-particle threshold, and
hence a negative scattering length. Our investigation is
carried out with the diagonalization of 2� 2 correlation
function matrix.

A. Simulation details

Wework with two spatial extents, 4.1 fm and 6.1 fm. The
corresponding lattice sizes are L3 � T ¼ 323 � 48 and
483 � 48, respectively. The latter is the same size as in
the first ensemble, but we regenerate independent configu-
rations employing the same algorithm. Most of the simu-
lation parameters, including the gauge and fermion actions,
lattice spacing, and quark mass, are identical to those
explained in Sec. II. However, the number of configura-
tions and the separation of trajectories between each mea-
surement, and the number of measurements on each
configuration are different. These numbers are tabulated
in Table III. The errors are estimated by the jackknife
analysis choosing 400 and 200 trajectories for the bin
size on the ð4:1 fmÞ3 and ð6:1 fmÞ3 boxes, respectively.
These bin sizes are sufficiently large to remove the auto-
correlation.We use the same operators for the nucleons and
two-nucleons as in Eqs. (2)–(4), choosing the nonrelativ-
istic components.

TABLE II. Energy shift ��EL in MeV units for 3S1 and 1S0
channels on each spatial volume with the first ensembles.
Extrapolated results to the infinite spatial volume limit are also
presented. The first and second errors are statistical and system-
atic, respectively.

3S1
1S0

L O1 O2 O1 O2

24 10.2(2.2)(1.6) 10.0(1.5)(0.5) 6.1(2.3)(2.2) 8.4(1.5)(0.5)

48 9.6(2.6)(0.9) 10.2(2.0)(0.8) 5.2(2.6)(0.8) 6.4(2.0)(0.8)

96 7.8(2.1)(0.4) 9.0(2.0)(0.5) 4.6(2.0)(1.1) 6.0(1.9)(0.5)

1 9.1(1.1)(0.5) 5.5(1.1)(1.0)
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FIG. 9 (color online). Same as Fig. 8 for the 1S0 channel.
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The diagonalization method for the 2� 2 matrix re-
quires two operators each at source and sink time slice,
which are explained in the following subsections.

1. Source operators

We use the two-nucleon operator composed of the O1

nucleon operator explained in Sec. II as one of the source
operators for diagonalization; from the single-state analy-
sis, we expect that it has good overlap with the ground state
of the two-nucleon system. To reduce the statistical error as
much as possible we carry out more than 100 measure-
ments on each configuration by changing the center of the
smearing source in the spatial and temporal directions.

The diagonalization procedure requires another operator
which reasonably overlaps to the first excited state. If we
envisage this to be a scattering state of the two nucleons
with almost zero relative momentum, then a possible can-
didate is an operator consisting of two nucleons each
projected to zero spatial momentum. Constructing such
an operator at the source time slice can be done using
Zð3Þ noises for the quark fields. It is empirically known,
however, that statistical noise overwhelms signal in the
(multi)nucleon correlation function if the noise is spread
over the entire spatial volume.

The large fluctuation can be reduced by restricting noise
to a subset of lattice sites at a fixed separation of Nmod in
each spatial dimension at the source time slice. This source
operator, which we shall call the Or source, is defined by

O rðtÞ ¼ 1

Nrand

XNrand

j¼1

�X
~x2V0

�jð ~xÞq0ð ~x; tÞ
�
3
; (10)

where Nrand is the number of the noise, and the color and
Dirac indices of the quark field are omitted for simplicity.
We use the smeared quark fields q0ð ~x; tÞ of Eq. (1) after
Coulomb gauge fixing, whose parameters are the same as
in theO1 source ðA; BÞ ¼ ð0:5; 0:5Þ to obtain faster plateau
of the nucleon state. The smeared quark field is located at

V0 ¼ f ~x ¼ ~x0 þ ~nNmod; ð ~xÞi < Lg; (11)

with ~x0 being a reference position, ð ~x0Þi < Nmod, and ~n
being three-dimensional integer vector. The complex Zð3Þ
random number �jð ~xÞ satisfies ð�jð ~xÞÞ3 ¼ 1 and has the

property

lim
Nrand!1

1

Nrand

XNrand

j¼1

�jð ~xÞ�jð ~yÞ�jð~zÞ ¼ 	~x; ~y	~x;~z: (12)

The parameters Nmod and Nrand for each calculation are
summarized in Table III.

2. Sink operators

We also need two operators on the sink side to carry out
diagonalization. Our idea is to employ the solution of the
Helmholtz equation in three dimensions for the smearing
function of the two-nucleon sink operator,

Wq2ð~rÞ ¼ Cq2

X
~n

eið2�=LÞ ~n� ~r

~n2 � q2
; (13)

where q2 is a parameter, ~r is the relative coordinate be-
tween two nucleons, and ~n is a three-dimensional integer
vector. The overall factor Cq2 is determined from the

normalization condition jWq2ð~rmaxÞj ¼ 1. A similar calcu-

lation using the solution of the Helmholtz equation was
previously reported in Ref. [25].
In the region of j~rj closer to the origin, the smearing

function should be modified from the free form to take into
account the two-particle interaction. One way is to calcu-
late the two-particle wave function, as has been done for
the two-pion system [26,27] and the two-nucleon systems
[8–10], and use it as input. We take a simpler alternative of
modifying the smearing function by hand such that it
behaves as a smooth constant function around the origin
rather than a sharp increase or decrease which occurs for
the free form.
The value of q2 is related to the relative momentum of

the two-nucleon state as p2 ¼ ð2�=LÞ2 � q2, where q2 is
not an integer in general due to the finite volume effect of
the two-particle interaction [11,12]. Since we need two
smearing functions, we take a pair of values of q2, one
around zero momentum q2 � 0 and the other around unit
of momentum q2�1 being the simplest choices, and make
trial runs to find the optimum values of q2. We choose the
value of q2 such that the measured energy of the ground
state is statistically consistent with the one obtained in the
single-state analysis, and the onset of the plateau of the
ground state becomes faster than the one in the single-state
analysis. Because of our criteria of the choice of q2, this
analysis does not provide an independent check for the

TABLE III. Number of configurations (Nconf), separation of trajectories between each mea-
surement (Nsep), number of measurements withO1 source on each configuration (Nmeas), number

of Zð3Þ random number for Or source on each configuration (Nrand), spatial interval between
smeared quark fields for Or source (Nmod), acceptance rate in the HMC algorithm, pion mass
(m�), and nucleon mass (mN) for the second ensembles.

L Nconf Nsep Nmeas Nrand Nmod Acceptance (%) m� (GeV) mN (GeV)

32 300 400 192 40 16 87 0.7998(2) 1.6162(9)

48 300 200 144 32 12 93 0.8001(1) 1.6176(4)
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ground-state energy against the single-state analysis.
After several trial calculations, we choose q2 ¼ 0:184
and 1.3 for the ð4:1 fmÞ3 box, and q2¼0:1 and 1.1 for
the ð6:1 fmÞ3 box. Our smearing functions for both vol-
umes are plotted in Figs. 10 and 11.

We note that we do not use a negative q2 determined
from the bound state which corresponds to an exponen-
tially damped smearing function. In the two-nucleon cor-
relation function for the O1 source and such a sink
operator, we find that higher excited state contributions
are not suppressed. Hence such an operator is not suitable
for the 2� 2 diagonalization of the ground and first excited
states we attempt to carry out.

Let us finally note that we also employ the point sink
operator to carry out the single-state analysis on the second
ensemble for a consistency check with the results from the
first ensemble.

B. Results for ð6:1 fmÞ3 box
We first show the results for the 3S1 channel on the

ð6:1 fmÞ3 box. Let us begin with data for the O1 source.
Figure 12 shows the effective energies in the 3S1 channel
for the two smearing function sinks,W0:1 andW1:1, and the
point sink P. The effective energy for the W0:1 smearing
function diverges around t ¼ 8, and rises up from below
after t ¼ 12 due to the sign flip of the correlation function.
Thus at least two states contribute to the correlation func-
tion overlapping to the operator with different signs. On the
other hand, the result for W1:1 is close to that for the point
sink P. Figure 13 is an expanded view on this point.
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FIG. 10 (color online). Smearing functions of the sink operator
on the ð4:1 fmÞ3 box for two-state analysis.
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FIG. 11 (color online). Same as Fig. 10 on the ð6:1 fmÞ3 box.
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FIG. 12 (color online). Effective energy for the 3S1 channel
with the O1 source on the ð6:1 fmÞ3 box. Results are given in
lattice units with smearing functions W0:1 (circle) and W1:1

(square), and point sink operator (diamond).
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FIG. 13 (color online). Same as Fig. 12, but scale in vertical
axis is enlarged. Solid lines denote fit result for ground-state
energy with 1 standard deviation error band in single-state
analysis choosing the O1 source.
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Let us now look at effective energies for theOr source in
Fig. 14. In this case theW0:1 result is close to the point sink
result, whereas the W1:1 result is lower.

We diagonalize the following matrix at each t:

Mðt; t0Þ ¼ Cðt0Þ�1CðtÞ; (14)

where t0 is a reference time and the 2� 2 components of
the correlation function matrix CðtÞ are given by

CijðtÞ ¼ Gi;j
NNðtÞ; (15)

with Gi;j
NNðtÞ being the two-nucleon correlation function

using the i (i ¼ O1, Or) source operator and the j (j ¼
W0:1,W1:1) smearing function for the sink operator. With a
choice of t0 ¼ 6 we determine the two eigenvalues 
�ðtÞ
(� ¼ 0; 1) of Mðt; t0Þ at each t and extract the energy of
each eigenstate � through 
�ðtÞ ¼ expð� �EL;�ðt� t0ÞÞ.

The effective energies of the eigenstates obtained from
the diagonalization are plotted in Fig. 15. The energies for
the two states are clearly separated in the plateau region.
The ground state result is reasonably consistent with the
result of the single-state analysis with the O1 source ob-
tained on the first ensemble, which is expressed by the
three solid lines in the figure. The first excited state is
clearly higher than the ground state, but it is much lower
than the free case with the lowest relative momentum,

whose energy is given by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ð2�=LÞ2
q

denoted by

the single solid line in the figure. We note that our present
analysis ignores possible systematic errors arising from
contaminations from second and higher excited states.
Examining this issue with a larger size correlation function
is left for future studies.

In order to determine the energy shift as in Sec. II, we
define the ratio of the eigenvalue obtained from the diag-
onalization to the nucleon correlation function squared,

�R�ðtÞ ¼ 
�ðtÞ
ðGNðtÞÞ2

: (16)

We also define the effective energy shift of the ratio �R� as

� �Eeff
L;� ¼ ln

� �R�ðtÞ
�R�ðtþ 1Þ

�
: (17)

1. Ground state in the 3S1 channel

Figure 16 shows a compilation of all data for the ground
state both from the diagonalization analysis as well as from

0 4 8 12 16 20
t

2.06

2.08

2.10

2.12

2.14
P (1st ensemble)
W

0.1
W

1.1
P

O
r

3
S

1

FIG. 14 (color online). Same as Fig. 13 with the Or source.
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FIG. 15 (color online). Effective energy of two-nucleon
ground (circle) and first excited (square) states obtained by the
diagonalization method for the 3S1 channel in lattice units. Fit

result of single-state analysis with the O1 source on the first
ensemble with 1 standard deviation error band is expressed by
three solid lines. Expected energy level of free two-nucleon state
with lowest relative momentum is denoted by single solid line.
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FIG. 16 (color online). Effective energy shifts � �Eeff
L;0 for the

3S1 channel on the ð6:1 fmÞ3 box in lattice units. Nucleon

correlators with the O1 (circle) and Or (square) sources are
employed in the denominator of Eq. (16). Result of single-state
analysis with the O1 source �Eeff

L is also plotted by open
diamonds. Fit result of single-state analysis with the O1 source
on the first ensemble with 1 standard deviation error band is
given by solid lines.
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the single-state analysis. The solid circles represent the
effective energy shift of the ground state � �Eeff

L;0 using the

O1 source in the nucleon propagator in the denominator of
Eq. (16). The solid squares are the ones using theOr source
in the nucleon propagator. The diamonds show the energy
shift from single-state analysis using point sink, but based
on the second ensemble. Finally the three lines show the
estimated ground-state energy shift from the single-state
analysis of the O1 source with the point sink from the first
ensemble.

We find it gratifying that the diagonalization results for
the ground state exhibit clear plateaus over a significant
time range extending from t ¼ 7. A somewhat higher value
of the plateau if one takes the Or source in the nucleon
propagator can be traced back to a systematic shift in the
nucleon effective mass itself [see Fig. 17], so that the
difference should be regarded as a measure of systematic
error. The plateaus are also consistent with the result of the
single-state analysis from the same ensemble (diamonds),
which in turn are also consistent with that from the first
ensemble (solid lines).

We determine the central value of the energy shift
from the exponential fit of the �R0ðtÞ using the nucleon
correlation function of the O1 source with the fit range of
t ¼ 7–13. The systematic error due to an estimate of the
threshold 2mN is made from the difference between the
two results with the O1 and Or sources for the nucleon
correlators in the denominator of the �R0. The systematic
error associated with the fit range is estimated by changing
the maximum or minimum time slice of the fit range
by �1. Table IV summarizes the numerical values for the
energy shift from the diagonalization analysis � �EL;0, and

the single-state analysis �EL. The statistical and system-
atic errors are presented in the first and second parentheses,

respectively. We employ an asymmetric systematic error
for � �EL;0 to properly reflect an upward shift for the Or

source relative to the O1 source.

2. First excited state in the 3S1 channel

Figure 18 shows the effective energy shift of the first
excited state � �Eeff

L;1. Once again, we find a long plateau for

bothO1 andOr whose values are mutually consistent. The
very important feature is that the plateaus are definitively
above the threshold and significantly lower than the value
expected from the free two-nucleon state with unit relative
momentum as presented by the single solid line in the
figure. This is consistent with the ground state being a
bound state.
The energy shift � �EL;1 is determined from an exponen-

tial fit of the �R1ðtÞ using the O1 source nucleon correlator
with the fit range of t ¼ 7–13. We use the fit result for the
Or source nucleon correlator to estimate a systematic error
of the energy shift. The numerical value is given in Table V.

3. Analysis of the 1S0 channel

In the 1S0 channel, the behaviors of the two-nucleon

correlation functions are similar to those in the 3S1 chan-
nel, so that we will present only the results after the
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FIG. 17 (color online). Nucleon effective mass on the
ð6:1 fmÞ3 box for the second ensemble with the O1 (circle)
and Or (square) sources in lattice units. Fit result of the O1

source on the first ensemble with 1 standard deviation error band
is expressed by solid lines.

TABLE IV. Energy shifts ��EL and �� �EL;0 in MeV units
for 3S1 and

1S0 channels at L ¼ 32 and 48 on the second ensem-

bles. The first and second errors are statistical and systematic,
respectively.

3S1
1S0

L ��EL �� �EL;0 ��EL �� �EL;0

32 7.9(0.6)(0.8) 6:4ð1:3Þðþ0:7
�0:1Þ 4.7(0.7)(0.6) 3:0ð1:7Þðþ0:7

�0:3Þ
48 8.5(1.1)(0.3) 7:1ð0:7Þðþ0:1

�2:2Þ 4.8(1.0)(0.7) 4:5ð0:9Þðþ0:1
�2:1Þ
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FIG. 18 (color online). Same as Fig. 16 for the first excited
state. Expected energy level of free two-nucleon state with
lowest relative momentum is denoted by single solid line.
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diagonalization. The effective energies of the eigenstates
are shown in Fig. 19. The signals are clean and both results
show clear plateaus. We observe that the ground-state
energy is consistent with the result on the first ensemble
of ð6:1 fmÞ3 box denoted by the three solid lines.

In Figs. 20 and 21 the effective energy shift for the
ground and first excited states � �Eeff

L;� are, respectively,

shown as well as the result of �Eeff
L for the ground state

calculated on the second ensemble. We find features simi-
lar to those in the 3S1 channel, including long plateaus and

systematic biases due to the choice of the source operators.
The results for energy shift for the ground and first excited
states are summarized in Tables IV and V, respectively,
where the errors are estimated as in the 3S1 channel.
We observe that the absolute value of the energy shift of

the ground state is almost half of that in the 3S1 channel.
This is consistent with the observation in the first calcu-
lation. On the other hand, the energy shift of the first
excited state shown in Fig. 21 is almost twice larger than
that in the 3S1 channel in Fig. 18. This finding is consistent
with the property of a system which contains a shallow
bound state: The scattering length negatively increases as
the binding energy decreases, diverging when the binding
energy vanishes.
We confirm then that the two-nucleon system in the 1S0

channel at the heavy quark mass of m� ¼ 0:8 GeV has a
bound state as in the 3S1 channel.

C. Results for ð4:1 fmÞ3 box
Scattering states have sensitive dependence on the spa-

tial volume whereas bound states do not change much once
the spatial size is sufficiently large to contain them. We
repeated the diagonalization analysis on a ð4:1 fmÞ3 box to
examine if such a difference of the two types of states can
be confirmed for the ground and first excited states in our
case.
The effective energies of the two-nucleon correlation

functions with the O1 and Or source operators for the

TABLE V. Energy shift of the first excited state � �EL;1 and scattering length a0 for
3S1 and

1S0
channels at L ¼ 32 and 48 after diagonalization in two-state analysis. The first and second errors
are statistical and systematic, respectively.

3S1
1S0

L � �EL;1 (MeV) a0 (fm) � �EL;1 (MeV) a0 (fm)

32 13:3ð1:3Þðþ6:6
�1:7Þ �1:5ð0:2Þðþ0:2

�1:4Þ 15:8ð1:6Þðþ9:6
�0:3Þ �1:8ð0:3Þð þ0:4

�12:9Þ
48 2:3ð0:8Þðþ2:2

�0:1Þ �1:05ð24Þðþ0:05
�0:65Þ 4:2ð0:8Þðþ2:1

�0:0Þ �1:62ð24Þðþ0:01
�0:75Þ

0 4 8 12 16 20
t

2.06

2.08

2.10

2.12

2.14

O
1
(1st ensemble)

free two-nucleon
ground
1st

1
S

0

FIG. 19 (color online). Same as Fig. 15 for the 1S0 channel.
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FIG. 20 (color online). Same as Fig. 16 for the 1S0 channel.
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FIG. 21 (color online). Same as Fig. 18 for the 1S0 channel.
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3S1 channel are plotted in Figs. 22 and 23, respectively.
The behavior we observe is similar to the case of the
ð6:1 fmÞ3 box except that the effective energy with the
smearing function W1:3 has a visible slope in the region
where the point sink result shows a plateau.

Figure 24 presents the diagonalization results for the
two-nucleon effective energy employing t0 ¼ 8 for the
reference time in Eq. (14). For the ground state, it is once
again gratifying to find a plateau over a sizable range of
time, with the value consistent with that from the single-
state analysis. However, the effective energy for the first
excited state exhibits a visible slope, which was not seen in
the ð6:1 fmÞ3 box case. The positive slope in the first

excited state indicates the presence of contaminations
from higher excited state in the correlation functions.
While the present results are not as satisfactory as for the

ð6:1 fmÞ3 box case, we find it encouraging that the energy
shift relative to the two-nucleon threshold, which is nega-
tive for the ground state, is clearly positive for the first
excited state and is much lower than the value expected for
relative momentum of 2�=L; see Fig. 25. Because of the
presence of a positive slope, the estimate of the energy shift
suffers from a sizable systematic error from the choice of
the fit range. We estimate it by making three fits over the
ranges t ¼ 9–13, 11–13, or 12–14, and taking the differ-
ence from the first one which we use as the central value.
For the ground state we use t ¼ 9–13 as the central fit
range, and shift the minimum and maximum time by �1.
The systematic error due to the choice of the O1 or Or

source is also taken into account. The results are summa-
rized in Tables IV and V for the ground and first excited
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FIG. 22 (color online). Effective energy of the O1 source on
the ð4:1 fmÞ3 box for the 3S1 channel in lattice units with

smearing function W1:3 (square) and point sink operator (dia-
mond). Fit result of single-state analysis with the O1 source on
the first ensemble of ð6:1 fmÞ3 with 1 standard deviation error
band is denoted by solid lines.
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FIG. 23 (color online). Same as Fig. 22 with the Or source.
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FIG. 25 (color online). Same as Fig. 18 on the ð4:1 fmÞ3 box.
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FIG. 24 (color online). Same as Fig. 15 on the ð4:1 fmÞ3 box.
Result of single-state analysis is denoted by diamonds.
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states, respectively, on the ð4:1 fmÞ3 box for both the 3S1
and 1S0 channels.

In Fig. 26 we plot the energy shift for the first excited
state from the two lattice volumes as a function of 1=L3. A
roughly linear behavior, with a larger shift on the ð4:1 fmÞ3
box compared to a smaller shift on the ð6:1 fmÞ3 box, is
consistent with this state being a scattering state. We
evaluate the scattering lengths using Lüscher’s finite vol-
ume formula [11,12], and list them in Table V, where we
find reasonable consistency between the two volumes. If
our finding of a bound state in quenched QCD at heavy
quark mass smoothly continues to the physical point, then
this is the first calculation which explained a negative
scattering length for the deuteron channel.

D. Binding energy from the two calculations

We evaluate the binding energy of the bound state in
the 3S1 and 1S0 channels using the combined results ob-

tained from both the first and second calculations.
Figures 27 and 28 are the same as Figs. 8 and 9, respec-
tively, but including the results of the second calculations.
The new data are reasonably consistent with the previous
ones. We apply the same extrapolation procedure to the
infinite volume limit as in Sec. II. From the fits we obtain
the following binding energy for the two channels:

��E1 ¼
8<
:
7:5ð0:5Þð0:9Þ MeV for 3S1

4:4ð0:6Þð1:0Þ MeV for 1S0
; (18)

where the first and second errors are statistical and system-
atic. These results are reasonably consistent with the ones
in Sec. II.

IV. CONCLUSION AND DISCUSSION

We have carried out two calculations in quenched QCD
to investigate whether the two-nucleon systems are
bound or not at the heavier quark mass, corresponding to
m� ¼ 0:8 GeV. In the first calculation, we have focused on
the ground state of the two-nucleon system, and have
investigated the volume dependence of the energy shifts
obtained with two different source operators. We have
found that the ground state in the 3S1 channel has little
volume dependence, and a finite energy shift remains in

0 2e-05 4e-05 6e-05 8e-05

1/L
3

0.000

0.005

0.010

0.015

0.020

0.025
3
S

1
1
S

0

∆E
L,1

FIG. 26 (color online). Spatial volume dependence of � �EL;1 in
GeV units for the first excited states in the 3S1 (circle) and 1S0
(square) channel. The squares are slightly shifted to positive
direction in the horizontal axis for clarity. Statistical and system-
atic errors are added in quadrature.
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FIG. 27 (color online). Spatial volume dependence of�EL and
� �EL;0 in GeV units for the 3S1 channel with a O1 (circle), O2

(square) sources on the first ensembles, and a O1 source on the
second ensemble (diamond). Result of � �EL;0 obtained by the

diagonalization method is denoted by triangles. The diamond
and triangle at 1=L3 � 10�5 are slightly shifted to positive
direction in horizontal axis for clarity. Statistical and systematic
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FIG. 28 (color online). Same as Fig. 27 for the 1S0 channel.
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the infinite volume limit. Based on these results we have
concluded that the ground state is a bound state at the
heavy quark mass. A similar result is obtained in the 1S0
channel, though the binding energy is almost half of the
one in the 3S1 channel.

In the second calculation we have carried out a two-state
analysis using the diagonalization method. The ground and
first excited states are well separated on the ð6:1 fmÞ3 box,
and the ground-state energies for the two channels agree
with the ones obtained from the single-state analysis.
The energy of the first excited state is positive and far
below the free two-nucleon energy with the lowest relative
momentum in both channels. This leads to the conclusion
that each channel has one bound state. We obtain similar
results on the ð4:1 fmÞ3 box, though the contaminations
from higher excited states may be larger than the ð6:1 fmÞ3
case. The energy of the first excited state increases as the
volume diminishes. The scattering length is obtained from
the energy of the first excited state using the finite volume
formula. The results in the two volumes reasonably agree
with each other. In the 3S1 channel the scattering length is

roughly one fifth of the experimental value. The difference
might be attributed to the heavier quark mass employed in
this calculation.

Although the results in the two-state analysis look rea-
sonable, we ignore possible systematic error stemming
from contaminations of higher excited states than the first
excited state. Thus, it is an important future work to
estimate the size of the systematic error using the diago-
nalization method with a larger correlation function
matrix.

The existence of the bound state and the negative
scattering length in the 1S0 channel looks odd from the

experimental point of view. In addition we cannot di-
rectly compare our result with those of the model calcu-
lations, which are restricted around physical quark
masses. We expect that the bound state vanishes at
some lighter quark mass, where the scattering length
diverges, changing the sign from negative to positive.
Further reduction of the quark mass would decrease the
scattering length. Confirmation of this scenario requires
one to investigate the quark mass dependences of the
binding energy and the scattering length. We leave this
study to future work.
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[12] M. Lüscher, Nucl. Phys. B354, 531 (1991).
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