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We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set

of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered

fermions reproduce the ’t Hooft vertex in the continuum limit. We also show that, assuming these

conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1=m, where m is

the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth

root of the staggered-fermion determinant. We then test numerically, using the highly improved staggered-

quark action, whether these conditions hold on realistic lattice gauge fields. We find that the needed

structure does indeed emerge.
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I. INTRODUCTION

Lattice QCD has made several notable strides over the
past decade. A wide variety of calculations with 2þ 1
flavors of sea quarks (corresponding to up, down, and
strange) have been found to agree with experimental mea-
surements within �2% [1]. Charmed-meson decay con-
stants [2], semileptonic form factors [3], and the masses of
the Bc [4] and �b [5] mesons have been computed before
being confirmed by measurements from experiments.
Calculations at nonzero temperature have shown that
QCD possesses not a first-order phase transition but a
smooth crossover [6], with implications for heavy-ion
collisions and a cooling universe. Some of the most precise
determinations of the strong coupling �s [7], quark masses
[8], and flavor-changing couplings [9,10] come from lattice
QCD. It is impractical to cite every development here, but
recent reviews [11,12] cover the breadth of progress well.

The results listed above [1–10] have been obtained using
staggered fermions [13,14] for the sea quarks, because this
approach is numerically the fastest [15]. In the continuum
limit, one staggered-fermion field yields four species with
a quantum number nowadays called ‘‘taste.’’ In numerical
lattice gauge theory, sea quarks are represented by a deter-
minant, for staggered fermions,

Det 4ðDstag þmÞ; (1)

where Dstag denotes the lattice Dirac operator (see below),

m is the quark mass, and the subscript 4 is a reminder that

the natural outcome is 4 tastes. To simulate a single species
of given mass with staggered fermions, the (4-taste) deter-
minant representing the sea is replaced with [16]

½Det4ðDstag þmÞ�1=4: (2)

Below we shall refer to the systems using (1) and (2) as
‘‘unrooted’’ and ‘‘rooted’’ staggered fermions, respec-
tively. As far as we know, there is no controversy that
lattice gauge theory with unrooted staggered fermions (1)
defines a four-species continuum gauge theory.
The fourth root is controversial, however, because it is

not standard quantum field theory. The arguments support-
ing its validity hinge on structural properties of unrooted
staggered fermions, which suggest that the continuum limit
of Det4ðDstag þmÞ in Eq. (2) factors into four equivalent

determinants [17–22]. This factorization is verified in
weak-coupling perturbation theory, where the 1=4 from
the exponent multiplies each fermion loop. Weak coupling
also suggests how the symmetries of four species emerge in
the continuum limit. In simplified but similar systems
where one can retain analytical control, the rooted deter-
minant is valid [21–23]. Extensive numerical studies
elaborate how the procedure works in the Schwinger model
[24,25]. Straightforward analysis of the hadron mass spec-
trum as a function of lattice spacing and quark mass, using
chiral perturbation theory, substantiates this picture in de-
tail [11,26]. Further nonperturbative evidence comes from
studying the eigenvalues of the staggered-fermion operator
Dstag, demonstrating that they appear in nearly degenerate

quartets [27–30]. On lattice gauge fields with nonzero
topological charge, sets of quartets with eigenvalues near
zero emerge. The number of quartets and their chirality
satisfy the index theorem [29,30].
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One issue that has not been fully addressed is the be-
havior of flavor-singlet mesons. Direct calculations of the
flavor-singlet meson masses are difficult [31–34], because
they entail a contribution in which the quark-antiquark
of the meson annihilates into gluons, and the gluons recre-
ate the quark-antiquark pair. With staggered fermions, it is
crucial to bear in mind that only the flavor-taste singlet can
undergo this process. Low-energy gluons are taste singlets,
so a meson with nontrivial taste cannot annihilate into
them. The spectrum with two flavors is sketched in
Fig. 1, illustrating the roles of the flavor and taste quantum
numbers.

Building on the eigenvalue studies, this paper addresses
a specific concern, namely that flavor-taste-singlet corre-
lators could diverge as a power of m as m ! 0. Such
behavior would be a clear failure of rooted staggered
fermions. We find fault with key steps in an attempted
derivation of this claim [35,36], which uses the ’t Hooft
vertex [37,38] to try to understand the role of near-zero
modes. A complementary examination of the same corre-
lators reduces the problem to certain properties of the near-
zero modes’ eigenvectors [19]. Then contributions from
connected and disconnected correlators cancel the diver-
gent behavior; with the correct combinatoric factors
[18,19,39–41], the cancellation holds even with the rooted
determinant of Eq. (2).

In this paper, we derive the staggered-fermion ’t Hooft
vertex directly from the functional integral, both for un-
rooted and rooted staggered fermions. If unrooted stag-
gered fermions are to obtain a four-species ’t Hooft vertex
in the continuum limit, we find that the eigenvectors must
satisfy the same properties derived in Ref. [19], namely
Eqs. (31) and (32) below. References [40,41] tacitly as-
sumed these properties, but we examine the eigenvectors
numerically, plotting the quantities that enter the ’t Hooft
vertex and the flavor-taste-singlet correlators. We find that
they behave in precisely the way needed for unrooted and
rooted staggered fermions to yield four or, respectively,
one species in the continuum limit.

The rest of this paper is organized as follows. Section II
discusses staggered fermions and some of the complaints
and concerns about Eq. (2). Section III reviews the con-
tinuum ’t Hooft vertex and its symmetries, constructs
the staggered-fermion ’t Hooft vertex, and sets up the
problem of flavor-taste singlets. This discussion also pin-
points where the analysis of Refs. [35,36] goes astray.
Section IV explains details of our numerical setup, gives
our lattice results, and discusses their implications. The
data speak for themselves: they clearly show that the
needed structure emerges dynamically, ever more so for
smaller lattice spacing. Section V gives our conclusions. It
seems to us that the rooted staggered sea has passed
another test in its usual way of relying on properties of
the unrooted theory. Appendix A contains some cumber-
some notation that lends technical completeness to Secs. II,

III, and IV. Appendix B writes out improved actions ex-
plicitly. Appendix C remarks on issues of secondary im-
portance, raised in Refs. [35,36].

II. STAGGERED FERMIONS

In this section, we review unrooted staggered fermions,
because the way that four species emerge is central to any
argument that Eq. (2) is a valid regulator for one species.
We are careful to distinguish between flavor and taste; the
former is a label decoupled from the gauge interaction; the
latter is a property of staggered fermions, described below.
Below we use improved actions to check numerically

whether the dynamics of staggered fermions are as ex-
pected. For the discussion here, it is enough to start with
the original, unimproved lattice action [14]:

Sstag¼1

2
a3
X
x;�

��ðxÞ ��ðxÞ½U�ðxÞ�ðxþ�̂aÞ

�Uy
�ðx��̂aÞ�ðx��̂aÞ�þma4

X
x

��ðxÞ�ðxÞ; (3)

where a is the lattice spacing, �ðxÞ and ��ðxÞ are gauge-
group multiplets of Grassmann numbers for lattice site x,
U�ðxÞ is a lattice gauge field connecting sites x and xþ �̂a

(such that Sstag is gauge invariant), m is the bare mass, �̂ is

a unit vector in the � direction, and � 2 f1; 2; 3; 4g. The
staggered-fermion fields carry no Dirac index, and sign
factors appear instead of Dirac matrices:

��ðxÞ ¼ ð�1Þ
P

�<�
x�=a: (4)

The staggered Dirac operator Dstag is defined by writing

Sstag ¼ a4
X
x;y

��ðxÞðDstag þm�xyÞ�ðyÞ: (5)

The determinant (1) follows from integrating the func-
tional integral over ð�; ��Þ.
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FIG. 1. Pattern of flavor and taste quantum numbers in the
(pseudoscalar) meson spectrum with two flavors and four tastes.
The flavor-nonsinglet (isospin 1) mesons are split by small
lattice artifacts. The flavor-singlet (isospin 0) taste-nonsinglet
mesons are no different. The flavor-taste singlet, however, re-
ceives a contribution from mixing with purely gluonic states, an
effect studied in Refs. [31,32].
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Sstag is invariant under shifts:

S�:

8>><
>>:
�ðxÞ � ��ðxÞ�ðxþ �̂aÞ
��ðxÞ � ��ðxÞ ��ðxþ �̂aÞ
U�ðxÞ � U�ðxþ �̂aÞ 8 �;

(6)

where

��ðxÞ ¼ ð�1Þ
P

	>�
x	=a: (7)

Acting on fermion fields, S�S� ¼ �S�S�. This built-in

Clifford group �4 is the origin of the four species in the
continuum limit and their quantum number taste. Acting on
gauge fields, S�S� ¼ þS�S�, from which it follows that

low-momentum gauge fields are taste singlets. With nf
flavors of (�, ��)—so 4nf species in all—there is still

only one gauge field and, thus, only one �4.
The kinetic term (for nf flavors) is also invariant under a

UðnfÞ symmetry group,

U":

8<
:
�ðxÞ � e’

aTa"ðxÞ�ðxÞ
��ðxÞ � ��ðxÞe’aTa"ðxÞ;

(8)

where the Ta are (anti-Hermitian) flavor generators, in-

cluding flavor-singlet T0 ¼ i1nf=
ffiffiffiffiffiffiffiffi
2nf

p
, and

"ðxÞ ¼ ð�1Þ
P

4
�¼1

x�=a: (9)

Three crucial properties of these symmetries (8) are that
(1) they are exact even at nonzero lattice spacing a;
(2) they are nonsinglets with respect to taste;
(3) they imply that the eigenvalue spectrum of Dstag is

pure imaginary and symmetric about 0.

The first property means that these symmetries cannot be
anomalous, so they cannot be germane to the index theo-
rem. The second property means that the lack of anomaly is
good: in QCD, species-nonsinglet symmetries do not have
anomalies. A corollary of the third property ensures that if
i
 is an eigenvalue of Dstag with eigenvector fðxÞ, then
�i
 is also an eigenvalue, now with eigenvector "ðxÞfðxÞ.
This corollary plays an important role in Sec. IV.
Unfortunately, the connection between property 3 and the
spectrum sometimes leads, it seems, to the flavor-singlet
U" being misidentified as the analog of continuum QCD’s
anomalous UAð1Þ. The first two properties mean, however,
that even the flavor-singlet U" cannot be related to UAð1Þ.

The analog of the UAð1Þ is a flavor and taste singlet. It is
explicitly broken for a � 0 but restored—apart from the
anomaly and mass terms—as a ! 0 [14]. This mechanism
is familiar in lattice gauge theory [42]; the same happens
with Wilson fermions [43]. As a ! 0, an anomalous Ward
identity emerges with axial-vector current, A�

I ðxÞ, and
pseudoscalar density, PIðxÞ, that are taste-flavor singlets
[14,44]. The subscript I denotes the trivial representation

of the shift symmetries (6), also called the taste-singlet
representation.
The way flavor-taste symmetries emerge is crucial to the

validity of staggered fermions. In particular,

�4 � SUVðnfÞ � SUVð4nfÞ; (10)

U "ðnfÞ ! UðnfÞ � �5 � SUAð4nfÞ; (11)

where the symmetries on the left are exact (or softly
broken) for Sstag, and those on the right are desired for

continuum QCD. The SUVðnfÞ on the left-hand side of

Eq. (10) is the obvious flavor-number symmetry of
Eq. (3) for nf flavors of equal mass. The �5 on the left-

hand side of Eq. (11) denotes the taste-nonsinglet nature
of U".
The pattern of symmetry appears most vividly, both for

nonzero a and as a ! 0, in the meson-mass spectrum.
Meson operators can be written �����, where �� denotes

various choices of sign factors � and parallel transport
within a hypercube, such that the bilinear transforms under
the �th bosonic representation of the shift symmetry group
�4. As is customary, we label these � 2 fI; V; T; A; Pg,
with V and A each grouping together four of these one-
dimensional irreps, and T six. When focusing on a bilinear
that transforms under rotations as a scalar, vector, tensor,
axial vector, or pseudoscalar, we shall write for �� either

1�, �
�
� , i	

��
� , ��5

� , or �5
�, as the case may be. For example,

in this compact notation the taste-singlet pseudoscalar
density is PI ¼ ���5

I�. Appendix A contains explicit
formulas for bilinears in the taste-singlet representation I,
for all �.
These operators create states such that [45–47]

����T
a� ¼: �q��Taqþ Oða2Þ; (12)

where q and �q are continuum 4nf-species fermion fields,

on the right-hand side � is now a (usual) Dirac matrix, and
� is now a four-by-four matrix generator of U(4). Together
the tensor products � � T generate Uð4nfÞ. For nonsinglet
� � T the pseudoscalar meson masses depend sensitively
onm and a, consistent with chiral perturbation theory [11].
The flavor-taste singlet, with � � T / 14nf , should have a

mass larger than the rest, cf. Fig. 1, but that has not yet been
demonstrated numerically [31]. In this paper, we address
this problem by studying the eigenvectors of Dstag.

These lines of theoretical and numerical results lead to
the picture that [48]1

Dstag þm ¼: ð 6DþmÞ � 14 þ a2�; (13)

1Reference [48] shows that the U" symmetry requires the
dimensions-5 terms of the off-shell Lee-Sharpe [47] effective
Lagrangian to possess coefficients proportional to ma.
The apparent OðaÞ effects in Refs. [49,50] are an artifact of
the choice of field variables.
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where 6D is the continuum Dirac operator, 14 is the 4� 4
unit matrix, a2� is a taste-symmetry breaking term, and
taste-singlet Oða2Þ corrections are not written out. Then

DetðDstag þmÞ ¼: ½Det1ð 6DþmÞ�4eTr4 lna2�ð 6DþmÞ�1
; (14)

suggesting that

½DetðDstag þmÞ�1=4 ¼: Det1ð 6DþmÞ � e ½Tr4 lna2�ð 6DþmÞ�1�=4:

(15)

It is difficult to prove rigorously that the second
factor becomes benign as a ! 0, although a detailed
renormalization-group argument makes it plausible
[51,52]. At nonzero a this factor leads to nonlocality [53]
(though not the nonlocality discussed in Refs. [54,55]) and
violations of unitarity. In this paper, we have nothing to add
to the arguments marshalled elsewhere [11,17–20] that
these problems go away as a ! 0.

A separate line of criticism [35,36] focuses not on the

ultraviolet taste breaking of e ½Tr4 lna2�ð 6DþmÞ�1�=4 but on the
interplay of the rooted determinant with correlators built
from valence propagators. These papers assert, without
derivation, certain symmetries and properties of the
’t Hooft vertex that, if true, would imply an unphysical m
dependence of multipoint meson correlators. In the next
section, we derive, rather than assert, the form of the
staggered-fermion ’t Hooft vertex. Our derivations pin-
point where Refs. [35,36] go astray. Our derivation further
reveals what is needed for staggered fermions to generate
the continuum-QCD ’t Hooft vertex. Whether staggered
fermions behave in the needed way depends on dynamics,
for which a numerical test is needed. The (favorable)
results of this test are presented in Sec. IV.

III. NEAR-ZERO MODES AND
THE ’T HOOFT VERTEX

In this section, we discuss the properties of the near-zero
modes in more detail. We review properties of the ’t Hooft
vertex in continuum gauge theory, with one and with four
species. Then we derive the ’t Hooft vertex for staggered
fermions. We show that the eigenvectors must exhibit a
certain structure if unrooted staggered fermions are to tend
to the continuum gauge theory. This structure is precisely
the criterion presented in Ref. [19] for the rooted theory to
have a sensible �0 correlator.

A. Continuum QCD

In continuum gauge theories, the Dirac operator can
have genuine zero modes. For a single species, the eigen-
functions and eigenvalues are denoted 6D
	 ¼ i
	
	,
where 
 is real, and integer 	 labels the modes. For the
modes with nonzero eigenvalue, it is convenient to take
	> 0 (	< 0) for modes with 
 > 0 (
 < 0). These
modes come in conjugate pairs: 
�	 ¼ �
	, 
�	 ¼
�5
	. In the subspace of zero modes, 
 ¼ 0, the

eigenfunctions can be chosen such that �5
ð�Þ
� ¼ �
ð�Þ

� ,
with the integer label � ranging from 1 to k�. For n species,

the Dirac operator is 6D1n, with eigenfunctions 
	e
ð�Þ,

where the eð�Þ form an orthonormal basis in species space.
The number and chirality of zero modes is related to the
topological charge Q via the index theorem [56,57]

nþ � n� ¼ nQ; (16)

where n is the number of species, and n� ¼ nk� accounts
for the species multiplicity.
The determinant acquires a factor of mass m from each

zero mode. As m ! 0 it would seem that such gauge fields
would drop out of the ensemble average. But if one looks at
the eigenvalue-eigenfunction representation of the propa-
gator, one finds powers of 1=m that cancel the powers ofm
from the determinant. Focusing on jQj ¼ 1 and n ¼ 1, so
that there is one zero mode, the propagator is (h�ijQj¼1

denotes average over jQj ¼ 1 gauge fields)

hc ðxÞ �c ðyÞi ¼
�
m
Y
	>0

ð
2
	 þm2ÞX

	


	ðxÞ
y
	ðyÞ

i
	 þm

�
A

¼
�Y
	>0

ð
2
	 þm2Þ
0ðxÞ
y

0 ðyÞ
�
jQj¼1

þ OðmÞ;

(17)

where 
0 is now used for the zero-mode eigenfunction.
One sees that the mode with 
 ¼ 0 has a canceling factor

of 1=m. The factor 
0ðxÞ
y
0 ðyÞ is the ’t Hooft vertex

[37,38]. (If 
0 is localized, as it is around instantons,
then the ‘‘vertex’’ has support only for x, y near the center
of localization.) For the four-point function, there are
superficially two powers of 1=m, but two contributions
identical apart from their opposite sign cancel each other.
This is simply the Pauli exclusion principle arising from
the Grassmann nature of the fields.
With n ¼ 4 fermion species, each mode is replicated

four times, so gauge fields with jQj ¼ 1 yield four zero
modes, one per species. The determinant yields a factor
m4, which is not compensated until the eight-point
function:

�Y4
f¼1

c fðxfÞ �c fðyfÞ
�

¼
�Y
	>0

ð
2
	þm2Þ4Y

4

f¼1


0ðxfÞ
y
0 ðyfÞ

�
jQj¼1

þOðmÞ; (18)

with four factors like that in Eq. (17). In higher-point
functions, Pauli exclusion again ensures that contributions
singular in m cancel. Below we are interested in flavor-
singlet meson correlators, such as (flavor index contracted;
nf ¼ 4)
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�Y4
f¼1

�c �fc ðxfÞ
�

¼24

�Y
	>0

ð
2
	þm2Þ4Y

4

f¼1


y
0�f
0ðxfÞ

�
jQj¼1

þOðmÞ; (19)

where the combinatoric factor 24 obtains after cancella-
tions between many (dis)connected terms.

Let us now examine a property of the ’t Hooft vertex that
is central to Creutz’s arguments [35,36]. Under the anoma-
lous UAð1Þ transformation

c � ei�
5�=2c ; �c � �c ei�

5�=2; (20)

the n-species ’t Hooft vertex transforms as

Yn
f¼1


0ðxfÞ
y
0 ðyfÞ � e�in�

Yn
f¼1


0ðxfÞ
y
0 ðyfÞ; (21)

where the sign is the chirality of the zero mode,
�5
0 ¼ �
0. If � is a multiple of 2�=n, the prefactor is
unity; thus, the ’t Hooft vertex remains invariant under aZn

subgroup of UAð1Þ [58].
This invariance holds for the full determinant [59,60].

Under the transformation (20) with � ¼ 2�=n, one has

mnðnþþn�Þeiðnþ�n�Þ2�=nDet0n½ 6Dþmei�
52�=n�

¼ mnðnþþn�ÞDet0n½ 6Dþmei�
52�=n�; (22)

where Det0n denotes the n-species determinant with
zero modes projected out. The right-hand side follows
because, by Eq. (16), the phase on the left-hand side is

trivial. Because ei2�=n ¼ e�i2�ðn�1Þ=n, the twisted mass

mei�
52�=n can be removed with nonsinglet SUAðnÞ trans-

formations, namely,

c � e�i�5��=nc ; �c � �c e�i�5��=n; (23)

where � ¼ diagð1; . . . 1;�ðn� 1ÞÞ, or any permutation
thereof. The composition of transformations (23) and
(20) with � ¼ 2�=n returns the original determinant,

mnðnþþn�ÞDet0nð 6DþmÞ. We have shown here that the Zn

in question is not only a subset of the anomalousUAð1Þ, but
also the center of the exact SUAðnÞ. In fact, Zn is the
intersection of the SUAðnÞ and UAð1Þ.

B. Unrooted staggered fermions

Now we would like to see how staggered fermions
reproduce the four-species ’t Hooft vertex. Let us now
denote the eigenvectors and eigenvalues DstagfsðxÞ ¼
i
sfsðxÞ. We use f for the eigenvectors of Dstag, instead

of 
 for the eigenfunctions of 6D, because our aim is to

study whether and how a structure like 
	e
ð�Þ arises from

the fs. As before, it is convenient to choose s > 0 (s < 0)
for 
s > 0 (
s < 0). As mentioned above, the function
f�sðxÞ ¼ "ðxÞfsðxÞ has eigenvalue 
�s ¼ �
s, which

follows from the U" symmetry. One must bear in mind
that the relation between eigenvectors f�s originates from
a different flavor of symmetry than the relation between
eigenfunctions 
�	. In the notation introduced above
Eq. (12), multiplication by "ðxÞ corresponds to �5

P, a taste
nonsinglet that, in a continuum four-species theory, looks
like �5�5, not �514.
The first step is to single out the modes analogous to the

zero modes in the continuum theory. With staggered (and
most other lattice) fermions, no exact zero modes arise, but
one expects Dstag to have some exceptionally small eigen-

values [44]. A crisp way to identify them is via the spectral
flow of the operator [61]

Hstag ¼ �iDstag þ��5
I ; (24)

with Hstagfsðx;�Þ ¼ 
sð�Þfsðx;�Þ; the eigenvalues of

Dstag are i
sð0Þ. From the U" symmetry, f�sðx;�Þ ¼
"ðxÞfsðx;��Þ, 
�sð�Þ ¼ �
sð��Þ. Near-zero modes
are those with a nearby zero crossing, 
ð�0Þ ¼ 0 for
�0 	 �. The (taste-singlet) chirality is then

X̂ s ¼ sign
0
sð�0Þ; (25)

where the prime denotes differentiation with respect to �.
Taking the U" symmetry into account, we can label the

positive-chirality modes fðþÞ
i with i > 0 ranging from

1; . . . ; ‘þ (
i slightly positive) and i < 0 ranging from
�1; . . . ;�‘þ (
i slightly negative). A similar labeling
scheme can be adopted for the 2‘� negative-chirality

modes fð�Þ
i . Note that [61]


0
sð�0Þ 
 
0

sð0Þ ¼
X
x

fys ðxÞ�5
I fsðxÞ � Xs; (26)

whereXs is a more common way to identify chirality [62].
Modes s and �s have the same value of taste-singlet

chirality (whether defined by Xs or X̂s), because �5
I

implies transport over an even number of links and, con-
sequently, the " sign factors at the two ends of �5

I are the
same.
The spectral flow is elegant but computationally de-

manding. It is also possible to identify the near-zero modes
by looking for modes with 
 sufficiently small and X
sufficiently close to �1. Although the spectral flow is
(presumably) more decisive in borderline cases, in prac-
tice, especially for the scope of this paper, the computa-
tional demand seems prohibitive. In Sec. IV, we shall
therefore rely on our experience in Refs. [27,30] of using
ð
;XÞ to identify the near-zero modes.
If staggered fermions generate four species in the

continuum limit, then the eigenvalues should arrange
themselves into closely spaced quartets. For nonzero
modes, four modes should cluster around some distinctly
nonzero value. For near-zero modes, on the other hand,
such quartets lie slightly above and below the real axis.
U" symmetry dictates that a mode and its " partner have
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the same chirality and, thus, may be assigned to the same
quartet. If the gauge-field dynamics yield even ‘� ¼ 2k�,
then one has quartets. The resulting index theorem is then
(n� ¼ 4k�)

nþ � n� ¼ 4Q; (27)

where Q is a pure-gauge definition of topological charge.
For smooth enough fields and for extensions of Eq. (3) that
smooth out the interaction, both kinds of quartets emerge
[27,28], as does the connection between gauge-field topol-
ogy and the index [27–30].

With one fermion field but sets of four near-zero modes,
the combinatorics underlying the ’t Hooft mechanism are
less straightforward than in four-species continuum theo-
ries. Let us focus on jQj ¼ 1. Two pairs of near-zero
modes appear with eigenvalues �i
i, i ¼ 1; 2. ‘‘Small’’
means j
ij � ða�Þp
�; a power law with p
 ¼ 1 or 2
suffices, and one expects p
 ¼ 2 [48]. Moreover, X1 and
X2 have the same sign (with several actions [27,30]), and
we shall see in Sec. IV that these features also hold for the
highly improved staggered-quark (HISQ) action [63].

To derive the ’t Hooft vertex explicitly, let us examine
the (fermion) eight-point function, which for staggered
fermions is

�Y4
f¼1

�ðxfÞ ��ðyfÞ
�

¼
�Y2
i¼1

ð
2
i þm2ÞY

s>0

ð
2
sþm2Þdet

ðf;gÞ
Gðxf;ygÞ

�
jQj¼1

; (28)

where the propagator

Gðx; yÞ ¼ h�ðxÞ ��ðyÞi�; �� ¼ X
all s

fsðxÞfys ðyÞ
i
s þm

(29)

with the sum running over near-zero and nonzero modes.
Neglecting in Eq. (28) the near-zero 
i relative to m, the
near-zero-mode terms contribute to Eq. (28) as

m4 det
ðf;gÞ

Gðxf; ygÞ ¼ det
ði;fÞ

fiðxfÞdetðj;gÞ
fyj ðygÞ þ OðmÞ; (30)

where i; j 2 f�2;�1; 1; 2g. In higher-point functions, the
Pauli exclusion again ensures that contributions singular in
m cancel.

The product of determinants on the right-hand side of
Eq. (30) is the ’t Hooft vertex for (unrooted) staggered
fermions. To reproduce the product of four factors of


0

y
0 in Eq. (18), the four staggered eigenfunctions fi,

i 2 f�2;�1; 1; 2g, must have structure similar to
0ðxÞeðiÞ.
One could seek such structure in a basis where a taste index
looks obvious, but because taste is, fundamentally, a quan-
tum number of the shifts, i.e., single-link translations,
gauge-dependent roughness of the gauge field would
obscure it.

The way forward is to contract the � and �� fields
into color singlets. The contractions must also be taste

singlets, because a nonsinglet corresponds to eðiÞy�eðjÞ,
� � 14, which need not vanish when j � i. In Eq. (28)

we thus replace �ðxfÞ ��ðyfÞ with a taste singlet ���f
I �ðxfÞ.

Contracting Eq. (30) in this way, one is led to consider

��ijðxÞ ¼ fyi �IfjðxÞ (31)

with, recall, some parallel transport implied by �I. The
’t Hooft vertex simplifies in the desired way if

��ijðxÞ / �ij½1þ Oðap�� Þ�; (32)

for �I ¼ 1I; �
5
I ; i	

��
I . If, further, the proportionality ful-

filled by an (approximately) i-independent diagonal ��ii ðxÞ,
��ij would then mimic 
y

0�
0e
ðiÞyeðjÞ / �ij. Approaching

this limit as a power law with p�� ¼ 1 or 2 suffices, and

one expects p�� ¼ 2 [48]. Section IV presents numerical

results for these local overlaps, including a dependence.

For �I ¼ ��
I ; �

�5
I , the local overlaps ��ij behave some-

what differently. In continuum gauge theory, the zero

modes satisfy 
ð�Þy
� ��
ð�Þ

� ¼ 
ð�Þy
� ��5
ð�Þ

� ¼ 0, be-

cause �5 anticommutes with �� and �5
ð�Þ
� ¼ �
ð�Þ

� .
The spin and taste degrees of freedom emerge from stag-
gered fermions via the same dynamical mechanism, so the

diagonal ��
�

ii and ��
�5

ii should vanish commensurately with
the off-diagonal ��ij, �I ¼ 1I; �

5
I ; i	

��
I .

The local overlaps of continuum nonzero modes of
different species also vanish (trivially, because

eð�1Þyeð�2Þ ¼ ��1�2). Therefore, within a quartet of

staggered-fermion nonzero modes, continuum QCD is re-
produced if ��rs, r � s, also vanish as a ! 0.
Assuming Eq. (32) holds, it is easy to see that

�Y4
f¼1

���If�ðxfÞ
�

¼
�Y
	>0

ð
2
	þm2Þ4 X

ðijklÞ
��1

ii ðx1Þ��2

jj ðx2Þ��3

kk ðx3Þ��4

ll ðx4Þ
�
jQj¼1

þOðmÞ; (33)

where the sum runs over the 4! ¼ 24 ways of choosing
distinct ðijklÞ from f�2;�1; 1; 2g.
Let us now discuss the Zn (now Z4nf ) symmetry men-

tioned at the end of Sec. III A. The anomalous UAð1Þ and
most of the softly broken, nonanomalous SUAð4nfÞ emerge

only in the continuum limit. Some passages in
Refs. [35,36] seem to assign a pertinent role to the
U"ðnfÞ symmetries, which are exact even at nonzero a.

These symmetries are a distraction at best: the group
U"ðnfÞ intersects with the relevantZ4nf , which is the center

of SUð4nfÞ, only at �14nf .
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C. Rooted staggered sea

With rooted staggered fermions, two changes are carried
out. In addition to using the rooted determinant (2), the
simple combinatorics of detðf;gÞGðxf; ygÞ must also change

[39]. For example, the taste-singlet pseudoscalar meson
propagator is replaced with

h ���5
I�ðxÞ ���5

I�ðyÞiU ! � 1

4
Cðx; yÞ þ 1

16
Dðx; yÞ; (34)

where the connected and disconnected contributions are

Cðx; yÞ ¼ hD tr½�5
IGðx; yÞ�5

IGðy; xÞ�iU; (35)

Dðx; yÞ ¼ hD tr½�5
IGðx; xÞ�tr½�5

IGðy; yÞ�iU; (36)

where D is the rooted determinant (2), the trace is over
color, and the translations implied by �5

I act to the right
(left) on the first (second) argument of G. The correlator in
Eq. (34) couples to the analog of the flavor-singlet �0
meson in QCD, and similar constructions hold for other
taste-singlet bilinears.

The combinatoric factors in Eq. (34) follow immediately
from considering [18,19,40,41]

fDetnf ½ð 6DþmÞ � 14�gn=4; (37)

where—inside the braces—one has four copies of nf non-

controversial fermions. Equation (37) together with a
source for a single species provide an engine to generate
the combinatorics of rooting (in general): to obtain n
species from 4, a term with t traces over color receives a
factor [39]

�
� n

4

�
t
: (38)

For Eq. (37) to be relevant to staggered fermions, the
dynamics must ensure Eq. (13) and, in particular, Eq. (32),
as we now show. The single-flavor determinant becomes
(for jQj ¼ 1)

Y2
i¼1

ð
2
i þm2Þ1=4Y

s>0

ð
2
s þm2Þ1=4: (39)

Neglecting 
i compared to m again, the first product
collapses to jmj. The near-zero-mode contributions are
then

Cðx; yÞ ¼ X
i;j

�jmjD0

m2
��

5

ij ðxÞ��
5

ji ðyÞ
�
jQj¼1

; (40)

Dðx; yÞ ¼ X
i;j

�jmjD0

m2
��

5

ii ðxÞ��
5

jj ðyÞ
�
jQj¼1

; (41)

where D0 is the s > 0 product in Eq. (39), and
i; j 2 f�2;�1; 1; 2g. If Eq. (32) holds, then the sum in
Eq. (40) collapses to terms with i ¼ j, apart from lattice
artifacts. Thus, C has four contributions singular in 1=jmj,
whereas D has 16. With the correct combinatoric factors,
they cancel.
It is, perhaps, instructive to exhibit the three-point cor-

relator. Assuming Eq. (32) and homing in on the zero-
mode contributions,

���I1�ðx1Þ ���I2�ðx2Þ ���I3�ðx3Þ ! � 1

4
ftr½�I1Gðx1; x2Þ�I2Gðx2; x3Þ�I3Gðx3; x1Þ� þ 1 permg

þ 1

42
ftr½�I1Gðx1; x1Þ�tr½�I2Gðx2; x3Þ�I3Gðx3; x2Þ� þ 2 permsg

� 1

43
tr½�I1Gðx1; x1Þ�tr½�I2Gðx2; x2Þtr½�I3Gðx3; x3Þ� (42)

! jmj
m3

ð�2þ 3� 1Þ��1ðx1Þ��2ðx2Þ��3ðx3Þ��4ðx4Þ; (43)

where jmj comes from the rooted determinant. Here sums
over the four staggered-fermion near-zero modes cancel
the explicit factors of 1

4 . The jmj=m2 contributions cancel
in a similar way. Earlier work [18,40,41], tacitly assumed
Eq. (32); in particular, Ref. [41] shows how the combina-
torics work for higher-point ’t Hooft-vertex effects.

In Refs. [35,36,64], Creutz disregards the cancellations
stemming from the correct weighting of different contri-
butions to flavor-taste-singlet correlators. He considers
more primitive combinations, like any individual line in

Eq. (42), which clearly are singular as m ! 0. He then
draws two incorrect inferences. First, he claims that the
normal cancellations connected with Pauli statistics cannot
arise. Combining the correct weights with the assumption
(tested below) Eq. (32), one sees that this is not the case.
The outcome is not too mysterious: as taste emerges into a
species-like quantum number, the correct set of correlators
averages over them.
The other misstep is to assert that the Z4nf symmetry of

the unrooted ’t Hooft vertex cannot be reduced to Znf . This
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is incorrect, because, while the rooted determinant clearly
retains the symmetries of the unrooted determinant, the
’t Hooft vertex stems from the combined behavior of
determinant and valence propagators. The replacement of
the combinatoric factors of traces with (38) effectively
projects the symmetry emerging in the chiral limit from
SUð4nfÞ [taking n ¼ 1 in (38)] to SUðnfÞ. Since the rele-

vant symmetry is the center of the emergent flavor sym-
metry, one has Znf .

Many of these points have been made before
[18,40,41,65], but until now it has always been assumed
that the tastes decouple as posited in Eq. (32).
(Reference [19] noted the necessity of this assumption.)
Our approach can easily be extended to taste-nonsinglet
flavor-singlet correlators, and the properties of the local
overlaps with nonsinglet �swill not enjoy the cancellation.
We shall now compute the ��ij nonperturbatively, to find out

whether the tastes couple to each other at the strong scale
�QCD or at the cutoff scale a�1.

IV. NUMERICAL RESULTS

In this section we present our numerical methods and
results. First we explain the motivation for studying
improved discretizations and why it suffices to compute
their eigenvalue spectrum on quenched gauge fields. We
present results for eigenvalues and chirality with the HISQ
action. These results are qualitatively similar to those
obtained with the Asqtad and Fat7� Asqtad actions in
Refs. [27,30], so we focus here on jQj ¼ 1. Then we
show results for the overlaps, ��ij, defined in Eq. (31), and

test their behavior as a function of lattice spacing against
Eq. (32). Finally we discuss correlators for mesons of
different JP in turn, starting with pseudoscalars where
the issues are particularly important. Taken together, our
results demonstrate how the behavior of the different con-
tributions from near-zero and nonzero modes matches that
expected in the continuum.

A. Methods

In this paper, we use the same ensembles of SU(3) gauge
fields as in earlier studies of eigenvalues and chirality
[27,30]. They are quenched configurations, omitting the
effects of sea quarks. They are generated with a Symanzik-
improved gauge action, so that the tree-level a2 errors are
removed [66], and tadpole-improved couplings in this
action, so that loop corrections are reduced [67]. Three
different values of the gauge coupling are used, giving
three widely separated values of the lattice spacing, cover-
ing the range of typical unquenched lattice-QCD calcula-
tions [11], so our results should pertain directly to them.
At the middle value of the three lattice spacings, we have
three different-sized lattices in order to check the volume
dependence. The parameters for the configurations are
given in Table I.

It is sufficient to study these issues in the quenched
approximation, because we aim to test a structural property
of staggered fermions in fixed-Q sectors. In particular,
omitting the determinant decouples Creutz’s infrared con-
cerns from others’ ultraviolet concern that taste breaking
remains in the continuum limit. If the eigenvectors satisfy
Eq. (32) strongly enough, then the ’t Hooft vertex and the
consequent cancellation of mass-singular contributions to
the connected and disconnected flavor-singlet meson cor-
relators should work out in general. We shall see that this is
the case.
With the original staggered-fermion action, Eq. (3), the

interaction connects adjacent sites. Very large discretiza-
tion errors arise in a wide range of observables, washing
out the expected quartet structure in the eigenvalue spec-
trum. These discretization errors have been traced to taste-
changing interactions from gluons with one or more
components of momentum p� 
 �=a [69]. Because of

the gluon exchange, these effects are formally of order
�sa

2, i.e., �s times smaller than normal discretization
effects [70]. In order to reduce these taste-changing
effects, it is necessary to smear the gauge field, replacing
U� and Uy

� in Eq. (3) with sums of products of link

matrices tracing out more complicated paths between x and
x� �̂a [69,71,72].
Several staggered-fermion actions have been developed

along these lines. The Asqtad [73] and Fat7� Asqtad [30]
actions exhibit a reduction, relative to the nearest-neighbor
action in Eq. (3), in splittings between pseudoscalar me-
sons of different taste [26,30]. Similarly, with these actions
the quartet structure of the eigenvalue spectrum more
clearly emerges [27,30].
Here we have calculated low-lying eigenvalues and

eigenvectors for the highly improved staggered-quark
(HISQ) action [63], reusing the same gauge-field configu-
rations. The HISQ action supersedes the Fat7� Asqtad
action; it is essentially the same but corrects the smearing
at the second stage to remove fully the discretization errors
that the smearing introduces. As we shall see in Sec. IVB
this change makes only a small effect. The eigenvalue

TABLE I. Details of the gauge configurations used: � is the
bare gauge coupling, a the lattice spacing [68], V the spacetime
volume in lattice units, and L the linear size in physical units.
The final column gives the number of configurations in each
ensemble with jQj ¼ 1. We refer to set 1 as having a ‘‘coarse’’
lattice spacing, sets 2, 3, and 4 as ‘‘intermediate’’, and set 5 as
‘‘fine.’’

Ensemble � a (fm) V L (fm) #fjQj ¼ 1g
1 4.6 0.125 124 1.50 294

2 4.8 0.093 124 1.12 806

3 4.8 0.093 164 1.49 424

4 4.8 0.093 204 1.86 288

5 5.0 0.077 204 1.54 430

DONALD et al. PHYSICAL REVIEW D 84, 054504 (2011)

054504-8



quartet structure is very clear with the HISQ action, which
is reflected in other properties that, by now, have been
thoroughly tested: small pseudoscalar mass splittings
and small discretization errors, even for heavy quarks
[9,63,74,75].

Appendix B provides explicit equations for the smeared
actions.

We use the Lanczos algorithm to calculate the low-lying
eigenvalues, i
, of the anti-Hermitian massless HISQ
Dirac operator, DHISQ, defined implicitly in Eq. (B6).

Owing to its red-black checkerboard structure, the calcu-
lations can be simplified by using the Hermitian positive
semidefinite operator �D2

HISQ, projected onto either the

red (even) or black (odd) sites of the lattice. This yields 
2,
from the smallest values upwards, and eigenvector f, on
the chosen half of the lattice. The eigenvalues of DHISQ are

then �i
, and the corresponding eigenvector on the other
half of the lattice is �DHISQf=i
. This construction auto-

matically implements the requirement that the eigenvec-
tors corresponding to eigenvalues i
 and �i
 are simply
related by multiplication with "ðxÞ. Thus, on the odd (even)
sites, the�sth eigenvector is opposite (same) in sign as the
þsth eigenvector.

B. Eigenvalues and chirality with HISQ

Figure 2 shows the four near-zero eigenvalues as well as
the 16 pairs of nonzero eigenvalues of DHISQ with smallest

j
j, obtained on typical jQj ¼ 1 configurations from en-
sembles labeled 1 (coarse), 3 (intermediate), and 5 (fine) in
Table I. These lattices have similar physical volume but
lattice spacing varying from 0.125 to 0.077 fm. The antici-
pated picture is unmistakable: four (and only four) very

small eigenvalues appear, followed by distinct quartets. As
the lattice spacing decreases, eigenvalues within a quartet
come closer and closer to being degenerate, typically by
forming two close-by almost degenerate pairs. The near-
zero modes are typically, on these lattices, at least an order
of magnitude smaller than the low-lying nonzero modes.
The Lanczos algorithm also gives the eigenvectors cor-

responding to these eigenvalues. Normalizing them to have
modulus 1, we compute the chirality X in Eq. (26), using
the smeared W� matrices [Eq. (B5)] instead of U�.

Reference [30] showed that it makes little qualitative dif-
ference to the results whether the original U�, Asqtad V�

[Eq. (B2)], or Fat7� Asqtad �W� [Eq. (B8)] are used. The

numerical values of the chirality may change, but the
picture remains qualitatively the same.
Because lattice artifacts break the taste-singlet symme-

try, the chirality defined in Eq. (26) takes values that are not
simply 1 and 0 [62]. References [27,30] found, however,
that it is easy, especially with improved gauge and
staggered-fermion actions, to separate the near-zero modes
with relatively large chirality, close to 1, from the other
modes with chirality close to 0. The number of near-zero
modes defined this way agrees with the index theorem,
Eq. (27), and pure-gauge definitions of the topological
charge. The agreement between the index and the gauge-
field topological charge improves as the lattice spacing gets
smaller. On the a ¼ 0:077 fm ensemble, the disagreement
for Asqtad and Fat7� Asqtad is just 2% [30], which is no
worse than the ambiguity between different gluonic defi-
nitions. For this paper, we therefore simply take the index
to classify the topology.
Figure 3 shows the chirality values for the HISQ action

versus eigenvalues on all configurations defined to be of

1 2
|i|
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FIG. 2 (color online). The four near-zero eigenvalues (left
panel) and the 16 lowest-lying nonzero pairs of DHISQ eigenval-

ues on a typical jQj ¼ 1 configuration from sets 1 (red circles),
3 (green squares), and 5 (blue triangles). For clarity, some modes
are offset horizontally.
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FIG. 3. The absolute value of the chirality jXj plotted against
eigenvalue, 
a, in lattice units for the four lowest (positive)
eigenvalues for the jQj ¼ 1 configurations in ensembles 1, 3, and
5. The dotted line on each graph indicates jXj ¼ 0:4, which is
used to separate large and small chirality in determining the
value of Q (see text).
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topological charge �1 via the index. To reduce clutter,
Fig. 3 shows only the two near-zero modes and the two
lowest-lying nonzero modes. (Because X�s ¼ Xs, we
count only the positive-
 modes here.) One sees a clear
separation of large and small chirality values, especially so
on the finer configurations. Although the values corre-
sponding to the maximum chirality do not change very
markedly from coarse to finer lattices, the spread of results
becomes much narrower. The small chirality values, cor-
responding to nonzero eigenmodes, fall rapidly to zero
with lattice spacing. We take X > 0:4 (drawn on the
graphs) to indicate large chirality and then count the num-
ber of eigenvalues (with positive 
) that have large chi-
rality. Configurations with two (positive-
) large-chirality
modes are taken to be jQj ¼ 1 configurations. Table I lists
the number of such configurations for each ensemble.
More general scatter plots with results at jQj> 1 and the
Asqtad and Fat7� Asqtad actions have been given in
Ref. [30], and with HISQ look very similar.

C. Results for ��
ij

Using the eigenvectors determined in the previous sec-
tion we now go on to look in more detail at the overlaps of
the near-zero-mode eigenvectors that are relevant to the
’t Hooft vertex. Figures 4–6 show scatter plots and histo-
grams of the ��ij distributions for � ¼ 1, �5, and ��, and

i; j ¼ �1;�2 on one or two configurations, ranging over
all x. Each figure displays this information, from top to
bottom, for the coarse (a ¼ 0:125 fm), intermediate
(a ¼ 0:093 fm), and fine (a ¼ 0:077 fm) lattices, at
(nearly) fixed physical volume (sets 1, 3, and 5). The
four panels in each case show the scatter of ��ij in the

complex plane (upper left), the histogram for Re��ij (lower

left), the histogram for Im��ij (upper right), and the histo-

gram for j��ijj (lower right). The number of points in the

histograms for each set is the lattice volume, V, of Table I.
Note the logarithmic scale on the histogram plots. Red
points and lines denote diagonal ��ii , and black off-diagonal
��ij (j � i). In the case of the vector overlap, � ¼ ��, we

separate the off-diagonal ��ij into two. Black is reserved for

jjj � jij and the case of j ¼ �i is shown in blue.
The most striking feature for the scalar (Fig. 4) and

pseudoscalar (Fig. 5) is how different the diagonal and
off-diagonal distributions are. The diagonal scalar overlap
�1ii is a sum of absolute squares, so it is real and positive.
Because f�iðxÞ ¼ "ðxÞfiðxÞ and the taste-singlet scalar
operator is local, �1i;�i is equal to �1i;i on even sites but

real and negative on odd sites. Upon averaging over a
hypercube in Eq. (A1), cancellations render �1i;�i relatively

small. It is visible on Fig. 4 as a black line stretching along
the negative real axis; the positive part being invisible
underneath the red line for �1i;i. The off-diagonal

(jjj � jij) scalar overlap �1ij is a complex number of ran-

dom phase. The width of all the histograms falls going
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FIG. 4 (color). �1ij on coarse (top), intermediate (middle), and
fine (bottom) jQj ¼ 1 gluon field configurations, with j ¼ i (red)
and j � i (black), i, j ¼ �1, �2. Note the logarithmic y-axis
scale for the histograms.
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down the column of plots as the lattices become finer. What
is crucial for the taste structure of the eigenvectors, how-
ever, is the relative width of the histograms for j��ijj for
i � j compared to that for j��ii j. From the plots it can be

seen that the width of the off-diagonal distribution is falling
faster with lattice spacing than that of the diagonal.
Figure 4 shows a single configuration with jQj ¼ 1, but
we have examined others, and they look the same.
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ij on coarse (top), intermediate (middle), and
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the logarithmic y-axis scale for the histograms.
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FIG. 5 (color). ��
5

ij on coarse (top), intermediate (middle), and
fine (bottom) jQj ¼ 1 gluon field configurations, with j ¼ i (red)
and j � i (black), i; j ¼ �1;�2. Note the logarithmic y-axis
scale for the histograms.
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Figure 5 for the pseudoscalar case shows two configu-
rations, one each with Q ¼ þ1 and �1. The plots behave

in the same way as the scalar overlaps, except that ��
5

ii is
real and negative for Q ¼ �1, as a consequence of parity.
From the same arguments as above, since the taste-singlet
pseudoscalar operators links odd sites to odd sites and even

sites to even sites, ��
5

i;�i is also real and takes the same or

opposite sign to ��
5

i;i on odd sites or even sites. ��
5

i;�i is

therefore not visible beneath ��
5

i;i on Fig. 5. Once again,

looking down the plots, we see clearly that the width of the
off-diagonal distribution (combining j ¼ �i and jjj � jij)
decreases with lattice spacing, relative to the diagonal
distribution.

With ��
�

ij the behavior differs. Recall that ��
�

ij should

vanish for all i; j, even j ¼ i. As seen in Fig. 6, we find ��
�

ii

to be pure imaginary, which follows from the definition of

the operator ��
I , Eq. (A2); we find ��

�

i;�i to be pure real,

which follows by changing the sign of the odd pieces of
f�iðxÞ relative to fiðxÞ, because the vector operator couples
even to odd sites and vice versa; and we find ��

�

ij , jjj � jij,
to be complex and of random phase. In this case, however,
the widths of all three distributions not only are the same
(when nonzero) but also decrease with decreasing lattice

spacing together. Indeed the widths of all j���

ij j distribu-
tions are similar to the widths of the j�1ijj and j��5

ij j distri-
butions, j � i.

To visualize the lattice-spacing dependence more di-
rectly, we plot in Fig. 7 the width of the ��ij distributions,

appropriately normalized, vs a2. The widths are defined by
the central 66% of the data in the lower right histogram for
j��ijj, but calculating this histogram for ten configurations

instead of just one or two. The errors are estimated by
comparing the widths for two subsets of five configura-
tions. The values we obtain for the widths, and their errors,
are given in Table II. Since the eigenvectors are normalized
to have modulus 1 at each lattice spacing, the widths do not
have a physical interpretation. The best that one can do is
to normalize the off-diagonal widths against diagonal
widths, as is appropriate for the test of Eq. (32). This ratio
of widths is plotted for the scalar and pseudoscalar in
Fig. 7. For the vector, we have no diagonal quantity that
survives in the continuum limit, so we normalize instead
against the diagonal pseudoscalar width. Although it is
difficult to be quantitative (full ensemble averages of the
widths are too costly, and the determination of the lattice
spacing in the quenched approximation is ambiguous), the
trend in Fig. 7 is clear and consistent with what is needed
according to Eq. (32).

Figure 7 shows, with dashed lines, representative fits as a
polynomial in a2 to our results. The fits include a constant
plus quadratic, quartic, and sixth powers of a. The slope of
the nth polynomial term is constrained by a Bayesian prior
to a size of ð1:0 GeVÞn suggested by the slope of pion taste

splittings [75]. It is very easy to obtain good fits with any
combination of different polynomials, for example, includ-
ing or not including a linear term, so it is not possible to say
definitively what the lowest power of a is that appears in
the a dependence of the �ij. The solid points on the plots in

Fig. 7 give the a ¼ 0 value of the width ratios, compatible
with zero in all cases. Thus, our results are consistent with
the expectation in Eq. (32), although the data are not able to
determine p�� in a definitive way.

We have also investigated the volume dependence of the
��ij for i; j ¼ �1;�2 at the intermediate lattice spacing

(i.e., on sets 2, 3, and 4), and these results are also included
in Table II. We see that the widths again fall as the volume
of the lattice increases. Naively this is simply a result of the
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FIG. 7 (color online). The top plot shows the width of j��ijj,
j � i, divided by the width of j��ii j, for � ¼ 1, �5, i; j ¼ �1;�2.
The � ¼ 1 case is given by open circles (red online), along with
a representative polynomial fit in the square of the lattice spacing
and the corresponding value in the continuum limit (filled
circles). The equivalent results for � ¼ �5 are given by open
and closed squares (blue online). The lower plot shows the width

of j���

ij j divided by the width of j��5

ii j plotted against the lattice

spacing. The case i ¼ j is given by (black) open and closed
squares, the case i ¼ �j by (red) open and closed circles, and
the case jij � jjj by (blue) open and closed triangles.
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normalization of the eigenvectors to 1 over an increasing
number of lattice sites. Indeed the widths do seem to have
simple behavior, inversely proportional to 1=V, at least for
the diagonal scalar and pseudoscalar widths and the vector
widths. Note that this is not inconsistent with the fact that,
for example, the very high values of the pseudoscalar
diagonal overlaps are localized around the instantons that
give rise to the near-zero modes.

The pseudoscalar and scalar widths behave quite differ-
ently as a function of lattice spacing than they do as
a function of volume. We can see this by comparing the
histograms in Fig. 8 for ��ij on the fine lattices, set 5, and

the large intermediate volume lattices, set 4. Both of these
have 204 lattice points. We see that the diagonal distribu-
tion is broader on the finer lattices and the off-diagonal
distribution markedly narrower, consistent with the fairly
rapid fall with lattice spacing of the ratio of the widths
seen in Fig. 7. For the vector case, as is clear from Table II,
the behavior of the widths with the lattice spacing is
only slightly steeper than that with volume. However,
this still represents a fall to zero with lattice spacing
when compared to the diagonal scalar and pseudoscalar
overlaps which survive the continuum limit, as we see in
Fig. 7.

We have not shown histograms for the axial vector or
tensor operators. We have looked at these operators in
terms of the relevant meson correlators (see the following
subsections) and they give qualitatively identical results to
the vector and scalar/pseudoscalar cases, respectively. It
therefore seems unlikely that they would upset the picture
gleaned here.

D. Flavor-singlet meson correlators

Our results in Sec. IVC show how the taste-singlet
overlaps, ��ijðxÞ, of different near-zero-mode eigenvectors

behave as expected to give the correct continuum behavior
for the ’t Hooft vertex. Here we show explicitly how this
translates into the correct continuum behavior for the near-
zero mode contribution to the flavor-singlet meson corre-
lator. We also look at nonzero-mode contributions, as well
as flavor-nonsinglet correlators, wherever they are useful to
fill out the picture obtained. As discussed in Sec. III it is
sufficient to work in the quenched approximation since

the structural issue of the behavior of the eigenvector
overlaps—in a fixed-jQj sector—is the same whether sea
quarks are included or not.
To relate results as closely as possible to those of a

complete meson correlator calculation in lattice QCD, we
consider meson correlators projected onto zero spatial
momentum by summing over spatial sites. This leads us
to consider a modification of the eigenvector overlaps

TABLE II. Widths, in lattice units and multiplied by 104, obtained for different j��ijj histograms on each set of jQj ¼ 1 gauge
configurations. The first column gives the set and then subsequent columns list the width, with an estimate of the error, for different �
and i; j combinations, i; j ¼ �1;�2.

Set �5, i ¼ j �5, i � j ��, i ¼ j ��, i ¼ �j ��, jij � jjj 1, i ¼ j 1, i � j

1 3.93 (31) 0.296 (26) 0.242 (11) 0.202 (21) 0.224 (1) 6.84 (17) 0.285 (23)

2 4.08 (56) 0.180 (11) 0.188 (23) 0.146 (12) 0.155 (16) 6.07 (70) 0.158 (9)

3 1.49 (3) 0.0635 (38) 0.0567 (36) 0.0541 (42) 0.0561 (22) 2.15 (6) 0.0566 (27)

4 0.548 (26) 0.0390 (16) 0.0242 (10) 0.0246 (17) 0.0219 (5) 0.846 (29) 0.0406 (22)

5 0.716 (14) 0.0230 (7) 0.0211 (2) 0.0206 (2) 0.0219 (5) 0.954 (16) 0.0199 (5)
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FIG. 8 (color online). Histogram of j��5

ij j, for i ¼ j (top) and
i � j (bottom), comparing results on the fine lattice (set 5—red/
gray) and the large intermediate lattice (set 4—black).
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�� �
rsðtÞ ¼

X
x

fyr ðx; tÞ�Ifsðx; tÞ; (44)

summing over a time slice instead of a 24 hypercube. Then
the zero-momentum connected and disconnected contribu-
tions can be constructed, as in Eqs. (40) and (41) from
correlations of time slice overlaps

X�
rsðTÞ ¼

X
t

���rsðtÞ ���srðtþ TÞ; (45)

Y�
rsðTÞ ¼

X
t

���rrðtÞ ���ssðtþ TÞ: (46)

Note that X�
rrðTÞ ¼ Y�

rrðTÞ by construction, and we con-
sider values for r, s that correspond to nonzero modes as
well as near-zero modes.

The full connected correlator is CðTÞ ¼P
x;yCðx; t; y; tþ TÞ, with Cðx; yÞ defined in Eq. (35).

Similarly, the disconnected correlator is DðTÞ ¼P
x;yDðx; t; y; tþ TÞ, following Eq. (36). CðTÞ is then

made up of Xrs correlated overlaps (on the quenched
configurations that we are studying) as

CðTÞ ¼ hCðTÞiU ¼ X
r;s

�
XrsðTÞ

ði
r þmÞði
s þmÞ
�
U
; (47)

where we have made explicit the dependence on the ei-
genvalues in the denominator. For DðTÞ we have

DðTÞ ¼ hDðTÞiU ¼ X
r;s

�
YrsðTÞ

ði
r þmÞði
s þmÞ
�
U
: (48)

The disconnected correlator factorizes into the product of
sums over diagonal overlaps ���rr, but the connected corre-
lator contains overlaps between different eigenvectors.

Note that the factor jmjD0 of Eqs. (35) and (36) from the
nf ¼ 1 sea quark determinant is missing. This affects the

weighting of the particular configurations in the ensemble
and therefore the quantitative results obtained for CðTÞ and
DðTÞ. However, it does not affect qualitatively the proper-
ties of the Xrs factors that we demonstrate here, which are
evident in a fixed-jQj sector and even, in some cases, on a
configuration-by-configuration basis in their contribution
to CðTÞ and DðTÞ.

As discussed in Sec. III, we then have to test whether the
near-zero modes give rise to a divergence in the correlator
for flavor-singlet meson H as m ! 0, when the connected
and disconnected contributions are combined with their
appropriate taste factors of 4 and 16 [Eq. (34)]:

MHðTÞ ¼ hMHðTÞiU ¼ 1

4
CHðTÞ � 1

16
DHðTÞ: (49)

To obtain a finite result as m ! 0 for MðTÞ we need the
near-zero-mode contributions to cancel between CðTÞ and
DðTÞ. This in turn requires the off-diagonal correlated
overlaps, Xij, i � j, between different near-zero eigenvec-

tors in the same staggered eigenvalue quartet to vanish in

the continuum limit. Then each quartet behaves as four
copies of a single mode and, including the factors of 1=4
and 1=16, reproduces within MðTÞ the behavior expected
of eigenmodes of the Dirac operator in the continuum. We
show how this works explicitly for the examples of scalar,
pseudoscalar, (axial) vector, and tensor mesons in the
following subsections. We do this with the same jQj ¼ 1
quenched configurations used in the previous subsection.
The correlator results are, however, averaged over all
jQj ¼ 1 configurations for each ensemble, rather than
just 10.

1. Flavor-singlet pseudoscalar mesons

We first discuss the important case of the calculation of
the flavor-singlet pseudoscalar meson (�0) correlator, and
the associated case of the flavor-nonsinglet meson (�)
correlator. In continuum QCD with, say, two equal mass
light quarks, this is readily analyzed in terms of the eigen-
vectors and eigenvalues of the massless Dirac matrix. For
jQj ¼ 1 gluon field configurations there is one zero mode

with a chirality 
y
0�5
0 ¼ �1. The � meson correlator

has no disconnected contribution and the connected con-
tribution is readily seen to obey, on a given gluon field
configuration,

X
T

M�ðTÞ ¼ X
	

1


2
	 þm2

; (50)

where m is the quark mass and the sum is over all eigen-
modes of the massless Dirac matrix, including the zero
mode. Each eigenmode contributes a correlated overlap of
1 when summed over T. For the zero mode, this comes
from the square of the chirality. The nonzero modes have
chirality zero but still contribute a correlated overlap factor
of 1 because the �5 matrix connects the modes 	 and �	

with 
�	 ¼ �
	. Then (continuum)
P

t
���

5

	;�	ðtÞ ¼ 1 from
eigenfunction normalization.
The �0 meson correlator is made from the same eigen-

vectors but now has a disconnected contribution coming
from the zero mode that exactly cancels the zero-mode
contribution to the connected correlator. Thus, on a given
configuration,

X
T

M�0 ðTÞ ¼ X
	�0

1


2
	 þm2

: (51)

There is now no contribution from the zero mode and the
correlator is finite as m ! 0. This continues to be true on
averaging over gauge fields and including determinant
factors.
Now let us show how staggered fermions reproduce

Eqs. (50) and (51). For the Goldstone � meson correlator,
it is straightforward and mechanical. Then � ¼ �5

P ¼ "ðxÞ
connects eigenvectors fs and f�s, and the correlated over-
lap contribution is again 1, when summed over T, simply
from eigenvector normalization. The difference with the
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continuum case is that this is also true for the near-zero
modes. Thus, we obtain an equation very similar to that in
the continuum on a single gluon field configuration:

X
T

M�ðTÞ ¼ 1

4

X
s

1


2
s þm2

¼ X
q

1
�
2
q þm2

þ Oða2Þ; (52)

where s is a sum over all modes including the near-zero
modes and the factor of 1=4 is the same as in Eqs. (34) and
(49). Since the staggered eigenvalues come in quartets that
become degenerate in the a ! 0 limit, the lower equation
replaces the four eigenvalues in a quartet by their mean
square and sums all quartets, q, including the near-zero-
mode quartet. This then clearly reproduces the continuum
Eq. (50) as a ! 0.

The flavor-singlet correlator is constructed differently
and includes both connected and disconnected contribu-
tions. With staggered fermions, we must use the flavor-
taste-singlet pseudoscalar, � ¼ �5

I . In demonstrating that
Eq. (51) is reproduced, we also show that the correlated
overlaps behave so as to give a finite result for the �0
correlator.

From our earlier results on chirality, we can anticipate

what the disconnected correlated overlaps Y�5

ij look like.

Because
P

t
���

5

s ðtÞ ¼ Xs we expect the large values of Y
�5

ij

to be those that involve the near-zero modes with their
large-chirality values. Indeed

X
T

Y�5

ij ðTÞ ¼ XiXj: (53)

This expectation is borne out by the numerical results. On

averaging over jQj ¼ 1 gauge fields, Y�5

11 , Y
�5

22 , and Y
�5

12 are
all equal, being the ‘‘typical’’ product of overlaps for

two near-zero modes. hY�5

11 ijQj¼1 is shown as a function

of T in Fig. 9. Results for modes�1 and�2 from the near-
zero-mode quartet match these because, as discussed
above, the chirality of mode �1 is identical to that of 1
and�2 to that of 2. Thus, the sum over all the zero modes,

i; j 2 f�1;�2g, of Y�5

ij gives 4� 4 ¼ 16 times the square

of the chirality for a typical zero mode. This is divided by
16 in the contribution to the disconnected correlator, as in
Eq. (49), and so the contribution becomes exactly what is
required to match that from the one zero mode for contin-
uum quarks, up to a renormalization factor for the taste-
singlet pseudoscalar current.

The nonzero modes, for example, mode 3, have small

chirality and therefore Y�5

33 is small, as also shown in Fig. 9.

In the continuum this would be zero. Here it is not zero for
nonzero lattice spacing but tends to zero as a ! 0. In fact,
because we find that Yrr ¼ Yss ¼ Yrs for modes in the
nonzero-mode quartet, r; s 2 f3; 4; 5; 6g, then the total con-
tribution from the quartet, when divided by 16, cancels

against the contribution from X�5

rr divided by 4 in the total

pseudoscalar flavor-singlet correlator, as for the near-zero-
mode quartet.

It is also worth discussing the cross term Y�5

13 between

the near-zero-mode quartet and the nonzero-mode quartet
since this would also be identically zero in the continuum.

Figure 9 shows the results for Y�5

13 ðTÞ, which, summed over

T, has a value which is the square root of the product of the

sums over T of Y�5

11 and Y�5

33 . The lower plot of Fig. 9 then

shows explicitly how
P

TY
�5

13 ðTÞ vanishes as a ! 0. Similar

behavior is seen for other terms that are related to the
chirality of nonzero modes.

For X�5
the results for the diagonal case are the same as

for Y�5
. The results for the off-diagonal X�5

are less clear
a priori. In fact, we find in all cases that the off-diagonal
correlated overlaps within a quartet are zero when aver-
aged over gauge fields. Figure 10 illustrates this for
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FIG. 9 (color online). Diagonal and off-diagonal correlated

overlaps Y�5

ij ðTÞ between eigenvectors 1 and 3 that contribute

to the disconnected piece of the �0 correlator at zero spatial
momentum. Results are given for the average over jQj ¼ 1
configurations in the fine ensemble, set 5. The lower plot shows
the off-diagonal correlated overlap summed over time separation
as a function of the square of the lattice spacing.
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modes 1 and 2 in the near-zero-mode quartet. X�5

11 and X�5

22

are large (being equal to Y�5

11 and Y�5

22 ) but X�5

12 has an

average of zero. The same results are obtained for the
�1 and �2 modes. We also see an average of zero for
the correlated overlaps between the positive and negative

eigenmodes within the quartet. This is illustrated for X�5

1;�1

in Fig. 10. X�5

1;�2 is very similar.

The size of correlated overlaps changes very little with
the lattice spacing. Figure 10 also compares correlated

overlaps X�5

ij on the coarsest lattices, set 1, with those for

the finest lattices, set 5.
An average of zero is also seen for off-diagonal terms

between modes in the first nonzero-mode quartet and
between modes in the near-zero-mode quartet and modes
in the first nonzero-mode quartet. These points are illus-
trated in Fig. 11.

To understand X�5

rs more completely, we must also study
correlated overlaps between positive and negative nonzero
eigenmodes. Although this is not relevant to the behavior
of the ’t Hooft vertex, it shows very clearly how the
connected contribution to the �0 correlator becomes equal
to that of the � meson in the continuum limit, up to a
renormalization factor that arises because the taste-singlet
pseudoscalar current is not absolutely normalized.

Figure 12 shows the correlated overlaps, X�5

rs , between
the mode r ¼ 3 and all the negative modes that correspond
to the first negative nonzero quartet (which is the U"
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FIG. 10 (color online). The correlated overlaps X�5

ij ðTÞ be-
tween near-zero modes 1, 2, and �1 that contribute to the
connected piece of the �0 correlator at zero spatial momentum.
Results are given for the average over jQj ¼ 1 configurations in
the fine ensemble, set 5 (top) and the coarse ensemble, set 1
(bottom).
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‘‘mirror’’ of the first positive nonzero quartet), i.e.,
s ¼ �3, �4, �5, and �6. Interestingly, the correlated

overlaps that are nonzero here are X�5

3;�5 and X�5

3;�6. These

are equal and each about half the size of X�5

1;1 ¼ Y�5

1;1

(compare Figs. 10 and 12). Likewise, the nonzero corre-
lated overlap for r ¼ 5 appears with s ¼ �3 and �4

having the same size as X�5

3s , s ¼ �5;�6. The correlated

overlaps X�5

4s and X
�5

6s show the corresponding pattern. Note

the parallel with what happens in the case of the near-zero-

mode quartet, whereX�5

1;�1 andX
�5

1;�2 tend to zero (as shown

in Fig. 10), and X�5

3;�3 and X�5

3;�4 tend to zero too. The

difference here is that another pair belongs to the mirror
quartet, whereas 1, 2, �1, and �2 form a single quartet
that is its own mirror. The pattern seen in Fig. 12 is
repeated for other nonzero-mode quartets. For example,

X�5

7;�9 and X
�5

7;�10 
 0:014, while X�5

7;�7 and X
�5

7;�8 are much

much smaller.
Thus, the large contributions from nonzero modes to the

connected correlator for the taste-singlet pseudoscalar
meson come from correlated overlaps connecting members
of a quartet and members of its mirror quartet, in fact
members of the opposite pair of the mirror quartet. When
these correlated overlaps are summed over a quartet
they give a result, per quartet member, approximately
equal to that of a typical near-zero-mode contribution.
The near-zero-mode contributions, on the other hand,
come from diagonal terms, as a result of nonzero chirality.
On adding all modes together, as in Eq. (47), and dividing
by 4 we obtain a result per quartet, similar to that in
Eqs. (50) and (52). The way in which this is achieved is
rather different from that for the Goldstone � meson, and
the different mode contributions follow more closely that
of the continuum. A difference with both the continuum
and the staggered Goldstone � is that there is a constant of
proportionality which is the square of the chirality of the
zero modes. The disconnected terms cancel all diagonal
connected contributions (having in fact the same constant
of proportionality), and therefore we finally obtain, for the
�0 correlator, a result that tends to Eq. (51) in the contin-
uum limit, once the taste-singlet pseudoscalar current is
appropriately normalized.

Let us now demonstrate the cancellation between the
connected and disconnected contributions from the near-
zero modes more explicitly. Figure 13 shows histograms in
the jQj ¼ 1 sector for

X
i;j¼�1;�2

� X�5

ij ðTÞ
4

þ Y�5

ij ðTÞ
16

; (54)

evaluated at the midpoint of the lattice, T ¼ Tmid for the
three sets—1, 3, and 5—that have the same physical vol-
ume but different lattice spacings. Then Tmid corresponds
approximately to the same physical time separation in each

case. From Fig. 13, it is clear that this combination of X
and Y, which skeptics have worried could be troublesome,
is in fact zero on average at every value of the lattice
spacing. The histogram of values shows that the distribu-
tion is somewhat broader on the coarser lattices, but there
is no other effect from the lattice spacing.
In the above discussion, we have focused on the jQj ¼ 1

case because that is the easiest one with which to study
near-zero and nonzero modes. However, results on
configurations with other Q values also behave exactly
as expected from this picture. Figure 14 shows results

for correlated overlaps X�5

ij for 27 configurations with

jQj ¼ 2 from the finest, set 5 lattices. The correlated over-
laps are between modes 1 and 3 which are now members of
two separate near-zero-mode quartets. We see that there is
negligible correlated overlap between modes from differ-
ent near-zero quartets, so the counting for each quartet,
taken care of by the subsequent division by 4 for the
connected contribution, is exactly as for the jQj ¼ 1 case.

2. Flavor-singlet scalar mesons

The flavor-singlet scalar case is easy to analyze both in
the continuum and for staggered fermions because of the
simple form of the taste-singlet scalar, � ¼ 1I. The
orthogonality and normalization of the eigenvectors
give

P
t
��1rsðtÞ ¼ �rs. Thus, the disconnected contribution

in the continuum becomes

X
T

D	ðTÞ ¼ X
r;s

1

ði
r þmÞði
s þmÞ ; (55)
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FIG. 13 (color online). A histogram of values of the combina-
tion �XðTmidÞ=4þ YðTmidÞ=16 calculated from the near-zero
modes i; j ¼ �1;�2 for the jQj ¼ 1 configurations for sets 1,
3, and 5. The results are plotted for time separation, Tmid, set to
the midpoint of the lattice.
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where the sum is over all eigenmodes. The connected
contribution is

X
T

C	ðTÞ ¼ X
r

1

ði
r þmÞ2 (56)

and we see that it is canceled by diagonal terms from
Eq. (55). In particular, for jQj ¼ 1, the single zero-mode
contribution to the total flavor-singlet correlator cancels
between D and C to give a finite result for M	 as m ! 0.
For staggered fermions, Eqs. (55) and (56) still hold, with a
sum over the total number of eigenmodes. By taking a
suitable average over the eigenvalues in a quartet, the
cancellation of diagonal terms quartet by quartet mimics
that of the continuum. In particular, neglecting the near-
zero 
i relative to m and dividing C by 4 and D by 16, it
is clear that exactly the same cancellation of the contribu-
tions from the near-zero-mode quartet occurs as in the
continuum.

Figures 15 and 16 show a representative sample of Y1
rs

and X1
rs, plotted as a function of T for set 5. Figure 15

shows correlated overlaps Y1
11 for a near-zero mode and Y1

33

for a nonzero mode as well as the off-diagonal Y1
13. Set 5

lattices have a time extent of 20, so we expect values
around 0.05, such that the sum over T yields 1. The results
for all members of the near-zero-mode quartet agree with
those of Y1

11 and those of the first nonzero-mode quartet
agree with those of Y1

33. Unlike the pseudoscalar case, Y
1
13

is not zero but as large as Y1
11 and Y1

33 since
P

TY
1
rsðTÞ ¼ 1

for all r, s both in the continuum and on the lattice.
Figure 16 shows the correlated overlaps X1

rsðTÞ. HereP
TX

1
rsðTÞ ¼ �rs, and it is clear that the diagonal correlated

overlaps are the same as those of the appropriate Y1
rs

and the off-diagonal correlated overlaps are zero in each
case.
Further detail is shown in Fig. 17, which gives the X1

rs

between nonzero modes in mirror quartets. and between
the positive and negative eigenmodes of the zero-mode
quartet. Some of these correlated overlaps are large in
the pseudoscalar case. None of them is large here and all
yield zero after summing over T. Quite different behavior
is seen in the different correlated overlaps, however. In
particular, we see once again in these correlated overlaps
the distinction between different pairs in the nonzero-mode
quartets.
Figure 18 shows histograms in the jQj ¼ 1 sector for

X
i;j¼�1;�2

� X1
ijðTÞ
4

þ Y1
ijðTÞ
16

; (57)

evaluated at Tmid for the three sets—1, 3, and 5—that have
the same physical volume but different lattice spacings.
From Fig. 18, it is clear that, as in the pseudoscalar case,
this combination of X and Y, which corresponds to the
potentially divergent contribution of the near-zero modes
to the scalar meson correlator, again actually vanishes on
average at every value of the lattice spacing. The width of
the histogram distribution is the quantity which changes
with lattice spacing, becoming more narrowly peaked
around zero as the lattice spacing goes to zero.

3. Flavor-singlet vector, axial vector,
and tensor mesons

The correlated overlaps for the flavor-singlet tensor case
behave similarly to the pseudoscalar and scalar. No simple
analysis of correlated overlaps in terms of the chirality or
normalization of the modes is possible and, indeed, we find
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FIG. 14 (color online). Overlaps X�5

ij averaged over the 27
lattices from the finest ensemble, set 5, that had topological
charge jQj ¼ 2. Results are shown for mode 1 from the first
near-zero-mode quartet and mode 3 from the second near-zero-
mode quartet.
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FIG. 15 (color online). Diagonal and off-diagonal correlated
overlaps Y1

rsðTÞ between eigenvectors 1 and 3 that contribute to
the disconnected piece of the flavor-singlet scalar meson corre-
lator at zero spatial momentum. Results are given for the average
over jQj ¼ 1 configurations in the fine ensemble, set 5.
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that none of the correlated overlaps is large. Figure 19
shows that the key requirement for a sensible flavor-singlet
correlator holds, i.e., that the off-diagonal correlated over-
laps between different members of the near-zero-mode
quartet are consistent with zero. This means, as above,
that the connected and disconnected near-zero-mode
contributions cancel rather than giving a potentially diver-
gent piece.

The flavor-singlet vector and axial-vector cases behave
somewhat differently, which can be traced back to the fact
that the taste-singlet versions of these operators couple
even and odd lattice sites together rather than even-to-
even or odd-to-odd as with the other examples. The axial
vector and vector behave in the same way, so we only show
results here for the vector case. As discussed in Sec. III, in
the continuum there is no zero-mode contribution to the
disconnected piece of the flavor-singlet vector meson

correlator because �� and �5 anticommute. We show in
Fig. 20 how this works for staggered fermions. Because
���

�

ii couples odd and even sites, and f�1 has the opposite

sign on odd sites to f1, then ���
�

11 and ���
�

�1�1 have opposite

sign. This means that the near-zero-mode contribution to

the disconnected correlator from Y��

11 has opposite sign to

that from Y��

1�1. This is seen clearly for � ¼ x in Fig. 20.
Summing over i; j 2 f�1;�2g then clearly gives a total
disconnected contribution to the flavor-singlet vector me-
son correlator of zero.
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quartet. Results are averaged over jQj ¼ 1 configurations for
set 5.
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FIG. 18 (color online). A histogram of values of the combina-
tion �X1ðTmidÞ=4þ Y1ðTmidÞ=16 calculated from the near-zero
modes for the jQj ¼ 1 configurations for sets 1, 3, and 5. The
results are plotted for time separation set to the midpoint of the
lattice, Tmid.
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jQj ¼ 1 configurations in the fine ensemble, set 5.

STAGGERED FERMIONS, ZERO MODES, AND FLAVOR- . . . PHYSICAL REVIEW D 84, 054504 (2011)

054504-19



The connected contributions are not zero time slice by

time slice, as we see from Fig. 21. Correlated overlaps X��

ii

(equal to their counterparts Y��

ii in Fig. 20) become pure
oscillations, ð�1ÞT , that cancel upon summing over T.
Oscillatory terms are a feature of staggered meson corre-
lators, stemming from opposite-parity contributions to the
correlator and, ultimately, the remaining time doubling.
They do not then affect the properties of the ground state
meson, in this case the flavor-singlet vector meson. The

off-diagonal X��

ij are close to zero and also oscillatory.

Thus, once again there is no significant net contribution
from near-zero modes to the flavor-singlet vector meson.

4. Summary

We conclude that the behavior of the staggered flavor-
taste singlet meson correlators in every case follows that
expected in continuum QCD. In particular, no chiral-limit
divergence results from the near-zero modes. In all cases,
we find that the Y�

ij take the same average value for i; j both

in a given quartet. Thus, the disconnected contribution
from a quartet of degenerate eigenvalues is 4� 4 ¼ 16
times that of a single mode. The off-diagonal correlated
overlaps Xij are zero for i; j within a quartet in every case.

This means that the connected contributions give instead
4 times that of a single mode. Including the factors of
4 and 16 in Eq. (49) means that the correlator is effectively
made of single-species contributions, as in continuum
QCD, and, in particular, the contribution from near-zero
modes cancels as it does there.
The pseudoscalar and scalar cases are particularly sim-

ple to analyze, both for zero and nonzero modes, and to see
the clear correspondence with continuum behavior. The
correlated overlaps for the taste-singlet pseudoscalar be-
tween mirror quartets are a striking demonstration of how
staggered fermions conspire to give the ‘‘right’’ answer,
but sometimes in a rather nontrivial way. The match dem-
onstrated between the taste-singlet and the Goldstone pseu-
doscalar also leads to a practical suggestion that may
improve the determination of the �0 mass using staggered
fermions. The calculation of the taste-singlet connected
and disconnected contributions is particularly statistically
noisy because of the point-split nature of the taste-singlet
operator. It may be preferable, although numerically chal-
lenging, to determine instead the near-zero-mode eigen-
vectors and then subtract their contribution from the
Goldstone pseudoscalar correlator. This must agree with
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the �0 correlator in the continuum limit and yet is con-
structed of local operators and so has significantly less
gauge noise.

V. CONCLUSIONS

This paper adds weight to the growing evidence that
shows that staggered fermions behave in the correct way to
reproduce QCD in the continuum limit, even with the
rooted determinant. Here we have focused on the eigen-
vectors of the staggered-fermion Dirac operator and the
way in which the ’t Hooft vertex and flavor-singlet meson
correlators are built from the overlaps between different
eigenvectors, using the appropriate taste singlets. The im-
portant overlaps are those between eigenvectors within a
near-zero quartet since these could have generated danger-
ous singular terms as m ! 0. From our theoretical results
we determine a condition for the local overlaps that needs
to hold and then test this numerically and demonstrate that
it does. Indeed we see that the near-zero-mode quartet in all
cases behaves functionally in such a way to reproduce the
required behavior of four copies of a single mode that
mimics the expected behavior in the continuum.

Most of our results are not surprising, but in providing a
clear link between the theoretical requirements and the
numerical results for the eigenvector overlaps, we add
further confidence to the soundness of the framework for
the accurate phenomenology that is being done with stag-
gered fermions. We demonstrate most directly that a cal-
culation of flavor-singlet meson masses, notably that of the
�0 meson, should give the correct QCD result. This is not a
substitute for doing the full calculation and this is under-
way [31,32].
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APPENDIX A: DETAILED FORMULAS

For Sec. IVC it is convenient to spread staggered-
fermion bilinears over a hypercube, inserting the lattice

gauge field to preserve gauge invariance. An explicit con-
struction is

SIðxÞ ¼ 1

16

X
b

��ðxþ bÞ�ðxþ bÞ; (A1)

V�
I ðxÞ ¼

i

16

X
b

��ðxþ bÞ ��ðxþ �bð�ÞÞ

�Uðxþ �bð�Þ; xþ bÞ�ðxþ bÞ; (A2)

T��
I ðxÞ ¼ � 1

16

X
b

��ðxþ �bð��ÞÞ��ðxþ bÞ ��ðxþ �bð��ÞÞ

� �Uðxþ �bð��Þ; xþ bÞ�ðxþ bÞ; � � �; (A3)

A�
I ðxÞ ¼

i

16

X
b

��ðxþ d� �bð�ÞÞ�1ðxþ bÞ�2ðxþ bÞ

� �3ðxþ bÞ�4ðxþ bÞ ��ðxþ d� �bð�ÞÞ
� �Uðxþ d� �bð�Þ; xþ bÞ�ðxþ bÞ; (A4)

PIðxÞ¼ 1

16

X
b

�1ðxþbÞ�2ðxþbÞ�3ðxþbÞ�4ðxþbÞ

� ��ðxþd�bÞ �Uðxþd�b;xþbÞ�ðxþbÞ; (A5)

where b runs over the 24-site hypercube with origin x;
�b
ð�Þ
� ¼ a� b� but �b

ð�Þ
� ¼ b�, � � �; �b

ð��Þ

 ¼ a� b
,


 ¼ �, �, but �bð��Þ
� ¼ b�, � � �; �; and d¼

ð1̂þ 2̂þ 3̂þ 4̂Þa. Gauge invariance is ensured via averages
of parallel transport over paths from x to x0, �Uðx; x0Þ.2
Under shift symmetry these are all taste singlets. The
vector current and scalar density satisfy the Ward identity
corresponding to quark-number conservation for all a, and
the axial-vector and pseudoscalar density satisfy the
anomalous Ward identity as a ! 0. In practice, we use in
place of U the HISQ-smeared gauge field W, defined in
Eq. (B5) below.
For brevity and clarity, it is then helpful to write

SIðxÞ ¼ ��1I�; (A6)

V
�
I ðxÞ ¼ i ���

�
I �; (A7)

T��
I ðxÞ ¼ ��i	��

I �; (A8)

A
�
I ðxÞ ¼ i ���

�5
I �; (A9)

PIðxÞ ¼ ���5
I�; (A10)

2There is no bar on Uðxþ �bð�Þ; xþ bÞ because only the one-
link path enters.
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which with Eqs. (A1)–(A5) define 1I, �
�
I , i	

��
I , �

�5
I , and

�5
I , when acting on �, ��, and the eigenvectors of Dstag for

the analysis of ��ij in Sec. IVC.

When constructing the correlators for the �0 and other
flavor-taste-singlet correlators, it is more customary to
restrict the operators to one time slice. In Sec. IVD1,
therefore, we average over spatial cubes only [and
then time slices, cf. Eqs. (46)]. V4

I and AI remain as in
Eqs. (A2)–(A4), because they naturally extend over a time-
like link or three-dimensional cube. For PI, the operator is
defined as attached to point on a time slice by averaging
over all hypercubes that have a corner at that point, i.e.
extending both forwards and backwards in time. Then
averaging over a time slice is straightforward.

APPENDIX B: IMPROVED
STAGGERED ACTIONS

To introduce improved staggered-fermion actions, it is
convenient to proceed in steps, introducing notation along
the way. The first step is ‘‘Fat7’’ smearing [72],

F �U� ¼ Ysym
���

�
1þ 1

4
ðT� þ T�� � 2Þ

�
U�; (B1)

which yields paths of length 3, 5, and 7. Here T��U�ðxÞ ¼
U��ðxÞU�ðx� �̂aÞU��ðx� �̂aÞ, U��ðxÞ ¼ Uy

�ðx� �̂aÞ.
It is easy to check that the smearing introduces a form
factor that reduces the coupling to taste-changing
gluons [69].

As is often the case with smearing algorithms, Fat7
smearing introduces additional discretization errors.
These can be removed by introducing an order-a2 improve-
ment [73]

V� ¼ ðF � � 1
4L�ÞU�; (B2)

where

L �U� ¼ X
���

ðT� � T��Þ2U� (B3)

introduces the five-link Lepage term. The discretization
error of the simple difference operator in Eq. (3) can be
removed with the three-link Naik term [70],

SNaik ¼ � 1

12
a3
X
x;�

��ðxÞ ��ðxÞðT� � T��Þ3�ðxÞ; (B4)

where now T���ðxÞ ¼ U��ðxÞ�ðx� �̂aÞ.
For the HISQ action, Fat7 smearing is applied twice,

with the Lepage correction taken at the second step

W� ¼ ðF � � 1
2L�ÞUF �U�; (B5)

whereU denotes a reunitarization and projection to SU(3).
[The SU(3) projection makes little difference in practice.]
The HISQ action is then

SHISQ ¼ SstagðW�Þ þ SNaikðUF �U�Þ; (B6)

substituting for the original gauge field U� as shown.

For completeness we write the Fat7� Asqtad [30] and
Asqtad [73] actions in this notation:

SFat7�Asqtad ¼ Sstagð �W�Þ þ SNaikðUF �U�Þ; (B7)

�W � ¼ ðF� � 1
4L�ÞUF �U�; (B8)

SAsqtad ¼ SstagðV�Þ þ SNaikðU�Þ: (B9)

Unfortunately, Ref. [27] referred to Fat7� Asqtad as
‘‘HISQ.’’ The Asqtad action defines the rooted determinant
in the MILC ensembles [11,26], which have been used by
the zero-temperature results cited in the Introduction. For
this action there is an additional tadpole-improvement step
in which one replaces T��� and T��U� by u�1

0 T��� and

u�2
0 T��U�, respectively, where u0 is a measure of the

mean link. In MILC’s simulations of the Asqtad action
[11], u0 is set by the fourth root of the 1� 1 Wilson loop
(the plaquette). (The reunitarization in HISQ makes tad-
pole improvement unnecessary).

APPENDIX C: FURTHER REMARKS ON
REFS. [35,36]

Creutz [35,36] makes several remarks that sound simple,
and thus seem to be accepted by nonexperts, but they do
not withstand careful scrutiny. One, explained elsewhere
[19], is that the different tastes have different chirality.
As discussed above, all near-zero modes within a common
quartet possess (identically for mirrors; empirically other-
wise) the same taste-singlet chirality, Eqs. (25) or (26). The
nonzero modes all have (nearly) zero taste-singlet chirality.
Finally, all modes have no net Goldstone chirality,P

xfsðxÞ�5
PfsðxÞ¼

P
x"ðxÞfsðxÞfsðxÞ¼

P
xf�sðxÞfsðxÞ¼0.

Another incorrect statement [36] concerns the � angle of
the strong CP problem, which can appear via a modified
mass term

m �c c � m cosð�Þ �c c þ im sinð�Þ �c�5c : (C1)

Creutz states correctly that � obtains a physical meaning
via the anomaly and, hence, the ultraviolet regulator. He
also states, incorrectly, that staggered fermions cannot
possess this property, owing to the exact U" symmetry.
With this symmetry, the following two mass terms are,

of course, equivalent:

m ���ðxÞ $ m cosð’Þ ���ðxÞ þ im sinð’Þ"ðxÞ ���ðxÞ: (C2)

In the continuum limit, however, this corresponds to

m �qqðxÞ $ m cosð’Þ �qqðxÞ þ im sinð’Þ �q�5�5qðxÞ; (C3)

namely is a taste nonsinglet. It is superficially the kind of
transformation used to set up twisted-mass Wilson fermi-
ons [76], but we have seen no argument that proves it is the
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same. In particular, unlike the unsubstantiated mass terms

posited in Refs. [59,60], "ðxÞ ¼ P
sfsðxÞfy�sðxÞ is off-

diagonal in any basis where Eq. (13) makes sense.
The correct analog of Eq. (C1) is

m ��� � ðxÞm ��½cosð�Þ þ i sinð�Þ�5
I ��ðxÞ: (C4)

The taste singlet �5
I extends across a hypercube and de-

pends on the lattice gauge field. It thus relies on the
regulator for its definition, as it must. To simulate the �
vacuum via the fermion mass, one needs to implement
Eq. (C4), not Eq. (C2) [25,62].
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