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We employ a variational basis with a number of �qq and �� lattice interpolating fields with quantum

numbers of the � resonance to extract the discrete energy spectrum in a finite volume. In the elastic region,

this spectrum is related to the phase shift of the continuum scattering amplitude by Lüscher’s formula, and

the relation allows the extraction of resonance parameters from the spectrum calculation. The simulations

are performed at three different total momenta of the coupled �qq� �� system, which allows us to extract

the p-wave scattering phase at five values of pion relative momenta near the resonance region. The

effective range formula describes the phase-shift dependence nicely, and we extract the resonance mass

m� ¼ 792ð7Þð8Þ MeV and the coupling g��� ¼ 5:13ð20Þ at our m� ’ 266 MeV. The coupling g��� is

directly related to the width of the � meson, and our value is close to the value derived from the

experimental width. The simulations are performed using dynamical gauge configurations with two mass-

degenerate flavors of tree-level improved clover-Wilson fermions. Correlation functions are calculated

using the recently proposed distillation method with Laplacian-Heaviside smearing of quarks, which

enables flexible calculations, in many cases with unprecedented accuracy.
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I. MOTIVATION AND INTRODUCTION

Almost all hadrons listed in the Particle Data Group [1]
tables are unstable, most of them decaying strongly. In
quenched calculations, where vacuum quark loops are
disregarded, all hadronic states appear as stable states. In
full QCD, on the other hand, truly asymptotic exponential
behavior is always dominated by the lowest stable end
product. This is unsatisfactory.

In continuum physics experiments resonances are iden-
tified via the scattering cross section and subsequent phase-
shift analyses. In the lattice discretization of QCD, instead,
one studies the correlation functions of hadron interpolators
for Euclidean time distances. The result is a combination of
exponentially decaying terms, each corresponding to the
energy level of a contributing eigenstate. Because of the
finiteness of the lattice system, the energy levels are dis-
crete. The spectral density is related to a discretization of
the cross section. However, in realistic lattice simulations
only very few such levels can be determined. The typical
gaps are Oð2�=LÞ for lattices of spatial extent L; for most
simulations this corresponds to level spacingOð400Þ MeV.

However, as has been pointed out in a seminal paper by
Lüscher [2,3], for a resonating system the discrete spec-
trum obtained in a finite volume can be related to the phase
shift of the continuum scattering amplitude in the elastic
region. The resulting volume dependence of the spectrum
can then be used to explore the resonance properties [4].

Model simulations in two dimensions [5] as well as in four
dimensions [6] demonstrated the feasibility of that ap-
proach. The original derivation in the decaying particles
rest frame was then extended to moving frames [7–9], thus
enhancing the practical applicability, allowing one to ob-
tain the phase shift at more momentum points for a given
lattice size. Because of several problems there have only
been a few attempts to apply Lüscher’s proposal to the
decay �! �� [9–14], while the first lattice estimate of
the �! �� amplitude [15] did not apply Lüscher’s
method. Note that widths for most of the other resonances
have not been determined on the lattice at all.
There are two major complications. The first one con-

cerns the hadronic lattice interpolators used. Let us assume
that we work with the fully dynamic vacuum, i.e., including
the dynamical quark vacuum loops in a full QCD simula-
tion. Naively one would expect that, even if one correlates
only quark-antiquark interpolators with the correct quantum
numbers of the �, due to the vacuum loops, �� intermedi-
ate states should also contribute and affect the energy levels
accordingly. This is hardly observed; actually, already in
model calculations [5] it proved necessary to include both
the heavy boson and the two light bosons in the set of
interpolators. Similar observations were made in other cal-
culations involving baryon and meson correlation functions
[16–19]. The obvious interpretation is that the overlap of the
quark-antiquark interpolators with the meson-meson decay
channel interpolators is too weak to have been observed.
For that reason one should extend the set of hadron

interpolators to include both various versions of the quark-
antiquark interpolator (like, e.g., different Dirac structure or
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different quark smearing functions) and meson-meson in-
terpolators. The latter involve four propagating fermions,
and the corresponding entries of the correlation function
usually will involve backtracking loops. In addition to this
technical complication, there is also the notorious issue of
statistical weight for such contributions. The so-called dis-
tillation [or Laplacian-Heaviside (LapH) quark smearing]
method introduced in [20] and employed in [19,21–24]
helps us significantly to deal with that problem.

The second challenge concerns the energy levels. One
works with several hadronic interpolators, all with the
correct quantum numbers and total momentum in the given
channel. The diagonalization of the correlation matrix
gives the eigenstates and eigenenergies according to the
so-called variational method [25–28]. The set of lattice
interpolators should be large enough to be able to represent
the leading eigenstates and thus the leading energy levels.
The better the set is, the better the results will be and the
more energy levels can be determined, depending of course
also on the available statistics. In previous calculations
aimed at � meson decay, at most two interpolators were
used: one quark-antiquark and one pion-pion interpolator.
We extend this to a larger interpolator basis.

For our calculation we use one lattice ensemble with
nf ¼ 2 dynamical mass-degenerate light quarks and

clover-improved Wilson fermionic action (generated in
the context of the work [29,30] in order to study reweight-
ing techniques). The ensemble consists of 163 � 32 lattices
with spatial extent 1.98 fm and m� ’ 266 MeV. We con-
sider cross correlations of several interpolators (16 for the
� channel, six for the pion channel) and solve the gener-
alized eigenvalue problem to reliably determine the two
lowest energy levels. We study the � channel for three
values of the total momentum and obtain the elastic phase
shift in the resonance region.

Section II gives an overview of the methods: quarks
sources, interpolators, variational analysis, phase-shift
relations, and finite time effects. In Sec. III the set of con-
figurations and details on the computations are summarized,
and in Sec. IV we discuss the results: correlation functions,
energy levels, phase shift, and resonance parameters.

Reference [31] suggests an alternative approach which
has recently been investigated in [32]. Furthermore, an-
other procedure has been suggested in [33].

II. TOOLS

A. Phase-shift formulas, brief review

On finite lattices there are, strictly speaking, no asymp-
totically free states, and the energy spectrum is always
discrete. It was pointed out by Lüscher [3,4] that, assuming
a localized interaction range, the energy level of a corre-
lation matrix for channels with resonances in a finite
volume can be related to the corresponding phase shift in
infinite volume in the elastic region (i.e., where only one
decay channel is open). The relation was derived for

interpolators with spatial momentum zero. For a particle
like the � meson, which can decay into two pions with
back-to-back momenta, the available momenta are discrete
on finite lattices and depend on the spatial extent.
In the noninteracting case the various two-pion energy

levels will decrease with growing volume, and this leads to
level crossing with the stable � state. If the interaction is
switched on, the level crossing is avoided and the energy
levels ‘‘change their identity.’’ This was demonstrated in a
two-dimensional resonance model in [5] as well as in four-
dimensional �4-model simulations [6].
For the analysis of resonances in that method, one needs

several ingredients. The set of interpolators should overlap
with both the single particle content (i.e., for a meson, the
quark-antiquark component) and the two particle content
(i.e., the meson-meson decay channel). Furthermore, it
should be possible to analyze more levels than just the
ground state energy. Third, in the originally proposed
method one needs several spatial volumes to obtain the
phase shift at several values of relative momentum. This
makes the approach costly.
The third aspect can be ameliorated, though, by also

studying channels with nonvanishing total momentum,

P ¼ 2�

L
d with d 2 Z3: (1)

In our simulation we study the cases

d ¼ ð0; 0; 0Þ; ð0; 0; 1Þ; ð1; 1; 0Þ (2)

and permutations, which have previously been combined
in the simulation [13]. Different values of P allow us to
obtain the phase shifts at different values of pion relative
momenta. The lowest �� state in the � channel with
jPj ¼ 0 is �ð2�=LÞ�ð�2�=LÞ (due to ‘ ¼ 1) and is sig-
nificantly above the � resonance in typical simulations. In
the case of a � with jPj ¼ 2�=L, the �ð0Þ�ð2�=LÞ is
closer to the resonance region, for example. However,
this case involves relativistic kinematics in the nonzero
momentum frame, as pointed out in [7–9]. The relativistic
distortion reduces the full cubic symmetry Oh to that of
prismatic dihedral groups, i.e., to the symmetry of a cuboid
(quadratic prism) D4h for total momenta of type (0,0,1)
and to the symmetry of a rhombic prism D2h for momen-
tum (1,1,0).
In the laboratory frame, the total three-momentum of

two noninteracting bosons in a cubic lattice of volume L3

and periodic boundary conditions is

P ¼ p1 þ p2 ¼ 2�

L
d (3)

and the energy is

E ¼ E1 þ E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2

q
with

pi ¼ 2�

L
ni;ni 2 Z3: (4)
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The velocity v ¼ P=E gives the relativistic boost factor

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p

. In the center-of-momentum frame (CMF)
the total momentum vanishes and the boson momenta are

p �1 ¼ �p�2 � p�: (5)

The energy in the CMF is

ECM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p�2

q
¼ E=�; (6)

and the momentum is related to the laboratory frame
through

p � ¼ 1
2�
�1
op ðp1 � p2Þ; (7)

where the boost factor acts in the direction of v,

��1opp � pk=�þ p?; pk ¼ vðp � vÞ=jvj2;
p? ¼ p� pk: (8)

The relativistic four-momentum squared is invariant; thus
the relation to the laboratory energy E is

E2
CM ¼ E2 � P2 ! p�2 ¼ 1

4E
2
CM �m2: (9)

Because of the coarseness of the lattice we replace, in our
calculations, this continuum dispersion relation by the
lattice dispersions relation as suggested in [7], i.e.,

coshECMa ¼ coshEa� 2
X3
k¼1

sin2
�
Pka

2

�
; (10)

�
2 sin

ap�

2

�
2 ¼ 2 cosh

ECMa

2
� 2 coshma: (11)

For the interacting case, the momenta p1;2 of individual

pions in the laboratory frame are no longer multiples of
2�=L. Assuming a localized interaction region, one asso-
ciates the outside region with that of two free bosons. The
observed energy levels En are shifted and related to the
scattering phase shift. Expressed through the CMF variable

p �2 �
�
q
2�

L

�
2
; (12)

one obtains relations of the form tan�ðqÞ ¼ fðqÞ for tran-
scendental functions fðqÞ.
We concentrate on the decay �! ��, where the two

pions are in the p wave (‘ ¼ 1). Details have been
discussed in the original papers [3,4,7–9,13]. For com-
pleteness, we summarize here only the relevant final ex-
pressions, where phase shifts are expressed in terms of the
generalized zeta function defined by

Zd
‘mðs;q2Þ ¼

X
x2Pd

Y�‘mðxÞ
ðx2 � q2Þs ;

Pd ¼
�
x 2 R3 j x ¼ ��1op

�
mþ d

2

�
;m 2 Z3

�
;

Y‘mðxÞ ¼ jxj‘Y‘mðxÞ; (13)

and Y‘m are the harmonic polynomials to the spherical
harmonics functions Y‘m. The zeta function has to be
analytically continued to s ¼ 1. The simpler form for
d ¼ 0 is given in [3]. A rapidly convergent expression
for nonvanishing d is derived in [9]. We numerically
compared the different representations of the zeta func-
tions of [8,9] and found agreement.
The symmetry groups of the sum appearing in Zlm (13)

are Oh, D4h, and D2h, respectively, for d ¼ ð0; 0; 0Þ,
(0, 0, 1), and (1, 1, 0). The JP ¼ 1� states appear in the
specific representations of these symmetry groups, and the
final expressions for the phase shifts are as follows:
Zero momentum P ¼ ð0; 0; 0Þ (for irrep. T�1 in Oh) [3]:

tan�ðqÞ ¼ �3=2q

Z00ð1; q2Þ
: (14)

Nonzero momentum P ¼ ð0; 0; 1Þ 2�L (for irrep. A�2 in

D4h) [7]:

tan�ðqÞ ¼ ��3=2q3

q2Zd
00ð1; q2Þ þ

ffiffi
4
5

q
Zd

20ð1; q2Þ
: (15)

Nonzero momentum P ¼ ð1; 1; 0Þ 2�L (for irrep. B�1 in

D2h) [13]:

tan�ðqÞ ¼ ��3=2q3

q2Zd
00ð1; q2Þ �

ffiffi
1
5

q
Zd

20ð1;q2Þ þ i
ffiffiffiffi
3
10

q
ðZd

22ð1; q2Þ �Zd
2�2
ð1; q2ÞÞ

: (16)

We independently derived this relation and we agree with
this expression, originally presented in [9,13].

B. Variational analysis

To extract the lowest two energy levels with the quantum
numbers IGðJPCÞ ¼ 1þð1��Þ of the �meson as well as the
ground state energies with quantum numbers IGðJPCÞ ¼
1�ð0�þÞ of the pion, we construct a matrix CðtÞij of lattice

interpolating fields containing both quark-antiquark and
meson-meson (in our case, pion-pion) interpolators,

CðtÞij ¼
X
n

e�tEnh0jOijnihnjOyj j0i: (17)

For this matrix, the generalized eigenvalue problem

CðtÞ ~c ðnÞ ¼ �ðnÞðtÞCðt0Þ ~c ðnÞ (18)
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is solved for each time slice. For the eigenvalues �ðnÞðtÞ one
obtains

�ðnÞðtÞ / e�tEnð1þOðe�t�EnÞÞ; (19)

so that each eigenvalue is dominated by a single energy at
large time separations. This method is called the varia-
tional method [25–28]. For a detailed discussion of the
energy difference �En, which is, in general, given by the
difference between the energy level in consideration and
the closest neighboring level, please refer to [28].

We calculate the eigenvector components of the regular
eigenvector problem

Cðt0Þ�ð1=2ÞCðtÞCðt0Þ�ð1=2Þ ~c ðnÞ0 ¼ �ðnÞðtÞ ~c ðnÞ0: (20)

In addition to the eigenvalues, the eigenvectors provide
useful information and can serve as a fingerprint for a given
state. To track the eigenvalue corresponding to a given
energy over the full range of time separations, the eigen-
values have to be sorted, either by their magnitude or by
scalar products of their eigenvectors. In the presence of
backwards running contributions caused by the finite time
extent of the lattice, a combination of both methods works
well: the eigenvalues are sorted by magnitude at low time
separations and by scalar products at larger time separa-
tions. For our analysis we choose this method.

C. Interpolators

For the � channel we employ 15 quark-antiquark
interpolators and one pion-pion interpolator with

JPC ¼ 1�� and jI; I3i ¼ j1; 0i in the variational basis
for each of the three choices for P as given in (2). All
previous simulations aimed at determining the � meson
width used at most one quark-antiquark and one pion-
pion interpolator and extracted the two lowest energy
levels from a 2� 2 variational basis. This may not be
reliable if the third energy level is nearby and does not
allow testing whether the resulting two levels are robust
against the choice of interpolators. A larger basis
enables us to exploit the dependence of the extracted
energies on the choice of the interpolators. It also indi-
cates whether the lowest two states can be reliably ex-
tracted using our quark-antiquark interpolators alone, or
whether the pion-pion interpolators are required in the
variational basis.
The 15 different quark-antiquark interpolators Os

type

(type ¼ 1; . . . ; 5, s ¼ n, m, w) differ in type (Dirac and
color structure) and width of the smeared quarks qs. We
use three different smearing widths, s ¼ n, m, w (narrow,
middle, wide), for individual quarks, and all quarks in a
given interpolator have the same width s in this simula-
tion. (Choosing different quark widths within an interpo-
lator is a straightforward generalization, and one just
needs to pay attention that the resulting C parity is
correct.) The details on the smearing are given in
Sec. II E. The interpolator O6 is the �� interpolator
whose structure is explained at the end of this subsection.
Our 16 � interpolators are

Os
1ðtÞ ¼

X
x;i

1ffiffiffi
2
p �usðxÞAi�ie

iPxusðxÞ � fus $ dsg; ðs ¼ n;m;wÞ;

Os
2ðtÞ ¼

X
x;i

1ffiffiffi
2
p �usðxÞ�tAi�ie

iPxusðxÞ � fus $ dsg; ðs ¼ n;m;wÞ;

Os
3ðtÞ ¼

X
x;i;j

1ffiffiffi
2
p �usðxÞr

 
jAi�ie

iPxr
!

jusðxÞ � fus $ dsg; ðs ¼ n;m;wÞ;

Os
4ðtÞ ¼

X
x;i

1ffiffiffi
2
p �usðxÞAi

1

2
½eiPxr

!
i �r

 
ie

iPx�usðxÞ � fus $ dsg; ðs ¼ n;m;wÞ;

Os
5ðtÞ ¼

X
x;i;j;k

1ffiffiffi
2
p �ijl �usðxÞAi�j�5

1

2
½eiPxr

!
l �r

 
le

iPx�usðxÞ � fus $ dsg; ðs ¼ n;m;wÞ;

Os¼n
6 ðtÞ ¼ 1ffiffiffi

2
p ½�þðp1Þ��ðp2Þ � ��ðp1Þ�þðp2Þ�; ��ðpiÞ ¼

X
x

�qnðxÞ�5�
�eipixqnðxÞ:

(21)

In the pion interpolator �� denote the corresponding
combination of Pauli matrices and the �� interpolator
O6 is always composed from narrow quarks. The covariant
derivative (often denoted by ~Di)

~r iðx; yÞ ¼ Uiðx; 0Þ�xþi;y �Uyi ðx� i; 0Þ�x�i;y (22)

is used in some of the quark-antiquark interpolators (used
already in a number of lattice simulations, e.g. [16,34]) and
will also be employed to prepare smeared quarks qs below.
It acts on the spatial and color indices and leaves time and
Dirac indices intact. The linear combinations in O4;5 are
required for goodC parity. The polarization vectorA of the
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quark-antiquark vector current depends on the total mo-
mentum P ¼ 2�

L d as

d ¼ ð0; 0; 0Þ A ¼ ð0; 0; 1Þ; p1 ¼ � 2�

L
A; p2 ¼ 2�

L
A:

d ¼ ð0; 0; 1Þ A ¼ d; p1 ¼ 0; p2 ¼ P:

d ¼ ð1; 1; 0Þ A ¼ d; p1 ¼ 0; p2 ¼ P: (23)

Our choices for �� interpolators O6 (21) with momentum
projections for individual pions (23) are the same as in [13]:

(i) For d ¼ ð0; 0; 0Þ with the symmetry group Oh, our
interpolator transforms according to the three-
dimensional representation T�1 (so just like ez) under
elements of Oh.

(ii) For d ¼ ð0; 0; 1Þ with the symmetry group D4h,
the interpolator transforms according to one-
dimensional A�2 (like ez) under elements of D4h.

(iii) For d ¼ ð1; 1; 0Þ with the symmetry group D2h,
our interpolator transforms according to one-
dimensional B�1 (like ex þ ey) under elements of

D2h. Note that the interpolator O6 with p1 ¼
ð1; 0; 0Þ and p2 ¼ ð0; 1; 0Þ has the same total mo-
mentum, but it has positive parity and it will not
appear as an eigenstate for interpolators with B�1
transformation properties.

For the isovector pion JPC ¼ 0�þ correlation matrix we
use, altogether, six interpolators, employing three smear-
ing widths for each of the two Dirac structures,

O�
type;sðtÞ ¼

X
x

�usðxÞ�typee
iPxdsðxÞ;

�1 ¼ �5; �2 ¼ �5�t; s ¼ n;m;w: (24)

D. Correlators and contractions

In the � channel we compute 16� 16 correlation ma-
trices for

Cjkðtf; tiÞ ¼ h0jOjðtfÞOyk ðtiÞj0i; j; k ¼ 1; 16; (25)

where the indices j and k stand for the combination
ðtype; sÞ in Otype;s (21). These correlators involve

(cf. Fig. 1) connected contractions (a,b), singly discon-
nected contractions (c), and contractions (d,e). Because
of the momentum projections at the sink time slices tf,

the contractions (c) and (d), in particular, require the
propagators M�1 from any spatial point at the sink time
slice tf ¼ 1; . . . ; NT .

E. Laplacian-Heaviside smearing for quarks
and the distillation method

Since calculating all elements of M�1 for the fermion
Dirac operator matrix M is prohibitively time consuming,
we apply the distillation method proposed in [20]. This
method is based on a special kind of smearing for quarks
that allows treatment of all necessary contractions. All
quarks are smeared according to a prescription similar to

the conventional one, qGausss ðx; tÞ ¼ e	sr2
qðx; tÞ, where r2

denotes the 3D lattice Laplacian acting in a time slice. The
major simplification is due to the spectral decomposition1

fðAÞ ¼ XN
k¼1

fð�ðkÞÞvðkÞvðkÞy (26)

for matrix A ¼ r2, giving e	sr2 ¼ P
N
1 e	s�

ðkÞ
vðkÞvðkÞy.

Here �ðkÞ and vðkÞ are eigenvalues and eigenvectors
of r2 (22) which is a N3

LNc � N3
LNc matrix on a given

gauge configuration

r2
xc;x0c0 ðtÞvðkÞx0c0 ðtÞ ¼ �ðkÞðtÞvðkÞxc ðtÞ (27)

and all the resulting eigenvalues are negative. The choice
of smearing is arbitrary, and instead of this Gaussian
smearing, we use the truncated spectral representation of
the unit operator (also called the LapH smearing), as
proposed in [20] and employed also in [19,21–24],

qs��ð	2
sþr2Þq¼ XNcN

3
L

k¼1
�ð	2

sþ�ðkÞÞvðkÞvðkÞyq;

q
cs ðx; tÞ¼
XNv

k¼1
vðkÞxc ðtÞvðkÞyx0c0 ðtÞq
c

0 ðx0; tÞ

�h
Nv

xc;x0c0q

c0 ðx0; tÞ;


;
0 ¼ 1; . . . ;Nd¼ 4; c;c0 ¼ 1; . . . ;Nc¼ 3: (28)

The Heaviside smearing denoted by hNv is particularly
suitable since it cuts away the terms for k > Nv, where the
number of eigenvectors Nv kept in the sum depends on the
chosen width 	s¼n;m;w. This choice of smearing reduces

(a)

(b)

(c)

(e)(d)

FIG. 1. Contractions for our correlators with �qq and ��
interpolators.

1A is an N � N matrix with eigenvalues �ðkÞ and eigenvectors
vðkÞ, AvðkÞ ¼ �ðkÞvðkÞ (k ¼ 1; . . . ; N).
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the number of needed inversions (per time slice, Dirac
index, and configuration) from the prohibitively large num-
ber N3

LNc (needed for the conventional all-to-all approach)
to a manageable number Nv ’ Oð100Þ.

Different truncations correspond to different effective
smearing widths. We choose three smearing widths for
quarks,

Nv ¼ 96 for s ¼ n ðnarrowÞ;
Nv ¼ 64 for s ¼ m ðmiddleÞ;
Nv ¼ 32 for s ¼ w ðwideÞ;

(29)

which lead to the spatial distributions [20] of

�ðrÞ ¼X
x;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trc½hx;xþrðtÞhx;xþrðtÞ�

q
(30)

shown in Fig. 2.
We build each interpolator (21) from quarks of the same

width for all three widths. This enlarges the variational
basis and increases the possibility for optimal eigensets.

F. Evaluation of the correlators

The interpolators O1�5 given in (21) are linear combi-
nations of quark-antiquark currents, which can be gener-
ally written as

�Q
0c0
s ðx0; tÞ�
0
F c0c

x0xðt;pÞq
cs ðx; tÞ; q; Q ¼ u; d;

(31)

where the shape function F ðt;pÞ incorporates the momen-
tum projection to p and the effect of covariant derivatives.

Shape functions F for our interpolators (21) are given in
(A3) of the Appendix. The pion-pion interpolator O6 is a
linear combination of products of two currents (31).
After inserting the expression for smeared quarks qs of

(28) into interpolators (21), all the contractions for Cðtf; tiÞ
can be expressed in terms of three quantities �, �, and �,
analogous to the original proposal [20] which considered
only one smearing width. Correlators are expressed in
terms of the following:
(i) Dirac matrices � of size Nd � Nd.
(ii) The interpolator shape matrices �ðt;F Þ are square

matrices of size Nv � Nv for an interpolator with a
given smearing width Nv,

�k0kðt;F Þ ¼ X
x0;x;c0;c

vðk
0Þy

x0c0 ðtÞF c0c
x0xðt;pÞvðkÞxc ðtÞ: (32)

Our � is related to � in [20] as �k0k

0
 ¼ �k0k�
0
.

(iii) The so-called perambulator matrices �k
0kðt0; tÞ [20]

denote the propagators from source of shape vkðtÞ
to the sink of shape vk0 ðt0Þ,
�k
0k

0
ðt0;tÞ�

X
x0;x;c0;c

vðk
0Þy

x0c0 ðt0ÞðM�1Þc
0c

0
ðx0;t0;x;tÞvðkÞxc ðtÞ:

(33)

Our correlators depend on the perambulators
�ðtf; tiÞ, �ðti; tfÞ, �ðti; tiÞ, �ðtf; tfÞ. These are, in ge-
neral, rectangular matrices of sizes NdN

f
v�NdN

i
v,

NdN
i
v � NdN

f
v, NdN

i
v�NdN

i
v, and NdN

f
v�NdN

f
v,

respectively, where Ni;f
v ¼ 32, 64, 96 denote the

smearing widths of the source or sink.

The analytic expressions for the needed contractions
(Fig. 1) in terms of �, �, and � are given in the Appendix.
We precalculated and stored the perambulators �ðtf; tiÞ

from all source time slices ti ¼ 1; . . . ; NT ¼ 32 to all sink
time slices tf ¼ 1; . . . ; NT ¼ 32. This allows us to com-

pute all needed contractions for Cðtf; tiÞ straightforwardly.
We sum2 Cðtf; tiÞ over all initial time slices ti to

decrease the relative errors on the resulting correlators
Cðt ¼ tf � tiÞ.
We also sum over the results for the three � polarizations

A ¼ ð0; 0; 1Þ, (0, 1, 0), (1, 0, 0) for d ¼ ð0; 0; 0Þ, or sum
over the directions d ¼ ð0; 0; 1Þ, (0, 1, 0), (1, 0, 0) for
jdj ¼ 1, and over the directions d ¼ ð1; 1; 0Þ, (0, 1, 1),
(1, 0, 1) for jdj ¼ ffiffiffi

2
p

. So, our final correlation matrices are

Cjkðt ¼ tf � tiÞ ¼
X

ti¼1;...;NT

X
A or d

Cjkðtf; tiÞ: (34)

These correlation functions finally enter the variational
analysis (18) to provide the energy levels.

0 2 4 6 8 10 12 14
r

0

0.2

0.4

0.6

0.8

1
ψ

(r
)

N
v
=32   s=w  (wide)

N
v
=64   s=m  (middle)

N
v
=96   s=n (narrow)

FIG. 2 (color online). The spatial distribution �ðrÞ (30) of the
distillation operator hNv (28) constructed from the eigenvectors
corresponding to the Nv lowest eigenvalues of the Laplace
operator. The values are computed on each time slice of 49
configurations at distances along the main axes and diagonals
and plotted only until their respective symmetry points. Circles
(black), triangles (red), and stars (green) denote wide, middle,
and narrow sources (Nv ¼ 32, 64, 96), respectively.

2The sum plays the role of an average here.
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G. Finite NT effects and the ‘‘PþA’’ trick

Our dynamical quarks have antiperiodic boundary con-
ditions in time. Using the valence quarks with the same
antiperiodic boundary condition in time, we find that the
finite time extent NT ¼ 32 (T ¼ 3:96 fm) severely affects
the eigenvalues �ðtÞ near t ’ NT=2 ¼ 16. There are two
major sources for this:

(i) The �ðp1Þ�ðp2Þ state receives contributions from
both pions traveling forward or both traveling back-
ward in time. But it also receives the contribution
from �ðp1Þ traveling forward and �ðp2Þ traveling
backward in time, and vice versa [35,36]. As a result,
the cosh-type effective mass for some of the eigen-
values is not flat at t > 11.

(ii) In the pion channel, the ground state starts to domi-
nate the second largest eigenvalue (and vice versa)
at some moderate t [34,37].

We use a previously applied trick, which effectively
extends the time direction to 2NT ¼ 64 by combining the
periodic propagatorM�1P and antiperiodic propagatorM�1A

(see, for example, [36,38]). All results in this paper have
been obtained using the so-called ‘‘Pþ A’’ propagators

M�1PþAðtf; tiÞ ¼
8<
:

1
2 ½M�1P ðtf; tiÞ þM�1A ðtf; tiÞ� tf � ti
1
2 ½M�1P ðtf; tiÞ �M�1A ðtf; tiÞ� tf < ti:

(35)

All our eigenvalues obtained from M�1PþA agree with those
obtained fromM�1A at t 	 11. In the case ofM�1A , the finite
T effects seriously affect some of the eigenvalues for
t > 11. In the case of M�1PþA, the finite T effects never
show up in any of the � eigenvalues for t 	 16, which
allows us stable fit ranges at least until t ¼ 16.

The Pþ A trick is not a valid field theoretic prescrip-
tion, since the valence quarks do not have the same peri-
odicity as the dynamical quarks (which remain antiperiodic
in time). In practice, the pion correlators with zero
momentum, for example, are perfectly consistent with

periodicity 2NT ; i.e. they are proportional to e�m�t þ
e�m�ð2T�tÞ and keep falling until t ¼ 32. We note that
some of the nonzero momentum � correlators do not
keep falling until t ¼ 32, as would have been expected in
the case of the proper field theoretic prescription. However,
none of the � correlators show finite T effects for t < 16,
which is the time window used for our analysis.

III. COMPUTATIONS

For the calculations presented here we use configura-
tions generated for the study of reweighting techniques
in the p regime of chiral perturbation theory (ChPT). A
description of the normalized hypercubic smearing (nHYP
smearing) used in the dynamic fermion action can be found
in [39]. Results from simulations with this action have
previously been published in [29,30], and the authors

kindly provided the gauge configurations used in this study.
The action used to generate the gauge configurations con-
taining nf ¼ 2 flavors of mass-degenerate light quarks is a

tree-level improved Wilson-Clover action with gauge links
smeared using one level of nHYP smearing. Table I lists
the parameters used for the simulation along with the
number of (approximately independent) gauge configura-
tions used and the pion mass resulting from the determi-
nation of the lattice scale detailed in the next subsection.
The gauge field obeys a periodic boundary condition in

time, while dynamical quarks are antiperiodic in time. As
discussed in Sec. II G, we compute and combine valence
quark propagators with both antiperiodic and periodic
boundary conditions.
On each gauge configuration we calculate the lowest 96

eigenvectors of the lattice Laplacian on every time slice
using a standard three-point stencil. Throughout, the gauge
links are four-dimensional nHYP smeared with the same
parameters used for generating the gauge configurations:
ð
1; 
2; 
3Þ ¼ ð0:75; 0:6; 0:3Þ. For the calculation of the
eigenmodes and the interpolating fields containing cova-
riant derivatives, we also experimented with additional
three-dimensional link smearing (using regular HYP
smearing) and found only mild effects on the quality of
simple meson two-point correlators. We therefore opted to
use no additional link smearing. For the calculation of the
eigenmodes we use the PRIMME package [40]. In particular,
the routine JDQMR_ETOL results in a fast determination for
a small to moderate number [Oð10Þ to Oð100Þ] of eigen-
modes. For a larger number of eigenmodes the Arnoldi/
Lanczos method (and variants) eventually outperform this
method. For the methods implemented in PRIMME we also
tried a preconditioner using Chebychev polynomials, very
similar to the method described in [18]. While this greatly
improved the performance of some methods, our preferred
method was largely unaffected and still outperformed
all other PRIMME methods for a moderate number of
eigenmodes.
For the determination of the quark propagators we use

the DFL_SAP_GCR algorithm provided in Lüscher’s DDHMC

package [41,42]. Because of the large number of sources
necessary for the distillation approach, an inverter employ-
ing low-mode deflation techniques is especially well
suited. For the case presented here we observed a speedup
factor of approximately 5 compared to a BICGSTAB

TABLE I. Configurations used for the current study. NL and
NT denote the number of lattice points in spatial and time
directions. For the determination of the lattice spacing a, please
refer to Sec. III. The first error on m� is statistical while the
second error is from the determination of the lattice scale.

N3
L � NT � � a (fm) L (fm)

Number

of configs.

m�

(MeV)

163 � 32 0.1283 7.1 0.1239(13) 1.98 280 266(3)(3)
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algorithm without low-mode deflation, while the comput-
ing time needed to generate the deflation subspace was
negligible compared to the actual calculation of quark
propagators. Notice that this difference gets more pro-
nounced for the lighter quark masses needed for future
studies at or close to the physical point.

Statistical errors are determined with a single elimina-
tion jackknife procedure throughout. When extracting
energy levels we properly account for correlation in
Euclidean time t by estimating the full covariance matrix
in the given fit interval. For the covariance matrix we use a
jackknife estimate which is calculated on the ensemble
average only.3

We determine the lattice spacing using the Sommer
parameter [44]. We extract the static potential from planar
Wilson loops Wðr; tÞ obtained on gauge configurations
smeared with hypercubic blocking [45] with standard pa-
rameter values ð
1; 
2; 
3Þ ¼ ð0:75; 0:6; 0:3Þ. The poten-
tial is computed for each value of r from linear fits to
logWðr; tÞ in the range t ¼ 4 . . . 7 and then fitted to the
lattice corrected form

VðrÞ ¼ Aþ B

r
þ 	rþ C

��
1

r

�
� 1

r

�
(36)

in the range 1 	 r 	 7 or to the continuum form (i.e.,
C ¼ 0) in the range 2 	 r 	 7. Both values agree within
less than 1 standard deviation. The lattice corrections in-
volve the lattice Coulomb potential [1=r] corrected for
the hypercubic blocking [46,47]. To convert our numbers
to physical units (cf. Table I) we assume for the Sommer
parameter the value r0 ¼ 0:48 fm and obtain a ¼
0:1239ð13Þ fm.

IV. RESULTS

A. Pion results

The pion energies are extracted from the variational
analysis of the six interpolators given in (24). The extracted
pion mass and pion energies for the two lowest nonzero
momenta are given in Table II, along with the analytic
predictions from the continuum and lattice dispersion
relations.

B. Rho meson results

1. Energy levels

An example of the resulting correlators for interpolators
�� ¼ O6 and �qq ¼ O1, and their cross correlators, are
given in Fig. 3.
Given our 16� 16 correlation matrices (21), we ex-

tracted the two lowest energy levels for a number of differ-
ent submatrices (i.e., interpolator sets) of dimension 6� 6
or less. Resulting levels for eight different choices of
interpolator sets are shown in Fig. 4. The extracted ground
state energy is robust with regard to the choice of the
interpolator set, while the first excited energy is robust
only if the interpolator set includes the �� interpolator
and if the correlation matrix is larger than 2� 2. The first
five choices include �� in the interpolator basis, while the
last three do not. The first excited energy for d ¼ ð0; 0; 0Þ
and d ¼ ð0; 0; 1Þ has much larger errors and is often sub-
stantially higher if�� is not in the set. On the other hand, it
seems that the first excited energy in the case d ¼ ð1; 1; 0Þ
can be extracted also without a �� interpolator in the set.
The choice set ¼ 5 shows the result from the two-
dimensional basis �� ¼ O6 and �qq ¼ O1, which was
used by some previous simulations [10,12–14]. Figure 4
indicates that such a choice gives a reasonable estimate
for the first excited energy in the cases d ¼ ð0; 0; 0Þ and

TABLE II. The ground state pion energy extracted for three momenta: E is extracted from the
variational analysis using the chosen interpolator sets, while Ed:r: are obtained using the ground
state pion mass and the continuum and lattice dispersion relations (10).

P L
2� t0 Interpolator Fit range 
2=d:o:f: Ea (simul.) Ed:r:

conta Ed:r:
lat a

(0, 0, 0) 3 Ow
1;2O

m
1;2O

n
1;2 8–14 1:57=5 m�a ¼ 0:1673ð16Þ � � � � � �

(0, 0, 1) 3 Ow
2O

n
2 12–17 0:98=4 0.4374(64) 0.4268(65) 0.4215(65)

(1, 1, 0) 4 Ow
2O

n
1 8–13 1:31=4 0.5823(46) 0.5800(48) 0.5690(47)

2 4 6 8 10 12 14 16 18
t

10
-2
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10
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C
(t

)

<ππ|ππ> (Fig. 1a+1c)
<ππ|ππ>

dis
   (Fig. 1c)

Im[<O
1

qq
|ππ>]   (Fig. 1e)

- Im[<ππ|O
1

qq
>]   (Fig. 1d)

<O
1

qq
 |O

1

qq
>  (Fig. 1b)

P=(0,0,1)

FIG. 3 (color online). An example of correlators for interpo-
lators O6 ¼ �� and On

1 and their cross correlators.3This procedure has been referred to as jackknife reuse in [43].
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d ¼ ð0; 0; 1Þ, while it gives a much higher energy for the
first excited state with d ¼ ð1; 1; 0Þ. Our study shows that a
basis larger than 2� 2 is needed to extract the first excited
level in this case.

Given that our lowest two energy levels are robust with
respect to the choice of interpolator set, provided the set is
large enough and contains the �� interpolator, we present
the final interpolator set choices in Table III. The corre-
sponding effective masses for our preferred interpolator
choices are shown in Fig. 5. The final values for the six
energy levels in Table III are extracted using correlated
two-exponential fits with t0 as indicated in the table and
starting at a rather small time separation t. We verified that
the extracted levels agree with results obtained from one-
exponential fits starting at larger t and using t0 ¼ ½2; 5�.

2. Phase shifts and resonance parameters

Each of the energy levels of Table III gives the value of
the scattering phase shift �ðsÞ at a different pion CMF
momentum p�. We employed the lattice dispersion relation
(10) to get p� ¼ 2�

L q and used the phase-shift formulas in

Sec. II A to get �ðq2Þ. Our results, including jackknife error
estimates, are also given in Table III.
The resulting phase shift is related to the relativistic

Breit-Wigner form for the elastic p-wave amplitude in
the resonance region [1]

a1 ¼ � ffiffiffi
s
p

�ðsÞ
s�m2

� þ i
ffiffiffi
s
p

�ðsÞ ¼ ei�ðsÞ sin�ðsÞ; (37)

where s ¼ E2
CM is the Mandelstam variable and m2

� is the

resonance position. Relation (37) can be conveniently
written for later use as

ffiffiffi
s
p

�ðsÞ cot�ðsÞ ¼ m2
� � s; (38)

and the decay width �ðsÞ is expressed in terms of the
coupling constant g���, taking into account the �� phase

space [48,49]

�ðsÞ ¼ p�3

s

g2���
6�

; (39)

where the � width �� ¼ �ðm2
�Þ is evaluated at the reso-

nance position.
The final relation, the so-called effective range formula,

combines (38) and (39) and is valid in the elastic region
s < ð4m�Þ2,

p�3ffiffiffi
s
p cot�ðsÞ ¼ 6�

g2���
ðm2

� � sÞ: (40)

It allows a linear fit for the two unknown parameters
6�=g2��� and 6�m2

�=g
2
���. Values of s, p

�, and � for the

energy levels En are given in Table III, and appropriate
combinations (40) are plotted in Fig. 6. In the fit and in the
figures we do not include the first excited state with P ¼ 0,
since this lies above the 4� inelastic threshold.
Figure 6 shows the result of the linear fit to the data,

giving our final result for g��� and the mass of the �

resonance [at our m� ¼ 266ð3Þð3Þ MeV],
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n a
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1

E
n a

1 2 3 4 5 6 7 8

interpolator set

0.4

0.6

0.8

1

E
n a

interpolator set:

qq ππ

1: O1,2,3,4,5 ,  O6

2: O1,2,3,4 ,   O6

3: O1,2,3 ,     O6

4: O2,3,4,5 ,    O6

5: O1       ,    O6

6: O1,2,3,4,5

7: O1,2,3,4

8: O1,2,3
P=(1,1,0)

P=(0,0,1)

P=(0,0,0)

with ππ without ππ

FIG. 4 (color online). The lowest two energy levels (circles
denoting the ground state, squares the first excited state) ex-
tracted using different submatrices (interpolators sets) of the full
16� 16 correlation matrix (21), all for t0 ¼ 4. The horizontal
dashed lines indicate the energy values for two noninteracting
pions. The interpolators O1–5 have �qq valence structure, while
O6 ¼ ��. All interpolators in this plot are composed of narrow
quarks qs ¼ qn, with the exception of interpolator set 3 which is
Ow

1O
m
2 O

n
3O

n
6 . In order to make different interpolator choices

comparable, we use the same fit range t ¼ 7–10 in the one-
exponential correlated fit for the purpose of this figure [with the
exception of E2ðd ¼ 0Þ obtained for t ¼ 5–7].

TABLE III. Final results for the lowest two � energy levels, all obtained using 2-exp correlated fits with given 
2=d:o:f:. The choice
of interpolator basis (21) is indicated. The pion momenta ap� in the CMF and scattering phases � are obtained using the lattice
dispersion relation (10) and m�a in Table II. The state E2ðP ¼ 0Þ is above the 4� threshold and is denoted by a star.

P L
2� Level n t0 Interpolator Fit range Ena 
2=d:o:f: ap� sa2 �

(0, 0, 0) 1 2 On
1;2;3;4;6 3–18 0.5107(40) 6:10=12 0.1940(29) 0.2608(41) 130.56(1.37)

(0, 0, 0) 2 2 On
1;2;3;4;6 3–12 0.9002(101) 0:85=6 0.4251(58) 0.8103(182) 146.03 (6.58) [*]

(0, 0, 1) 1 2 On
1;2;3;4;6 4–16 0.5517(26) 4:06=9 0.1076(36) 0.1579(29) 3.06 (0.06)

(0, 0, 1) 2 2 On
1;2;3;4;6 4–15 0.6845(49) 3:10=8 0.2329 (40) 0.3260(69) 156.41(1.56)

(1, 1, 0) 1 3 On
1;2;3;6 4–12 0.6933(33) 4:33=5 0.1426(42) 0.1926(49) 6.87(0.38)

(1, 1, 0) 2 3 On
1;2;3;6 4–12 0.7868(116) 2:34=5 0.2392(101) 0.3375(191) 164.25(3.53)
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g���¼5:13ð20Þ; m�a¼0:4972ð42Þ; m�¼792ð7Þð8ÞMeV:

(41)

Figure 7 exhibits the corresponding phase shift in the reso-
nance region. The values (41) are obtained using the lattice
dispersions relation (10). Given the systematic uncertainty
with simulations on a single ensemble, they agree reason-
ably well with the results g��� ¼ 5:60ð18Þ and m�a ¼
0:4833ð41Þ obtained using the naive dispersion relation.
The value for the coupling (41) is near the experimental

value g
exp
��� 
 5:97. Our coupling is also compatible with

the results in [10,12] within the errors given there. Note
that [10,12] computed the coupling at larger pion mass.
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FIG. 5 (color online). The effective energies observed in the
three momentum frames (0, 0, 0), (0, 0, 1), and (1, 1, 0), based on
diagonalization of a correlation matrix with four or five opera-
tors, listed in Table III. The horizontal bands indicate the
resulting energy levels derived from two-exponential fits to
�iðtÞ, as discussed in the text. The dashed lines indicate the
noninteracting two-pion levels as determined from the energies
Ed:r:
lat a in Table II.
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FIG. 6. Our data for ððap�Þ3=
ffiffiffiffiffiffiffiffi
sa2
p

Þ cot�ðsÞ as a function of
sa2, fitted to straight line behavior according to (40). The fit has

2=d:o:f: ¼ 7:42=3 and gives g��� ¼ 5:13ð20Þ and m�a ¼
0:4972ð42Þ. The states EnðdÞ corresponding to various points
can be deduced by the value of s in Table III. The plot data are
shown in units of the lattice spacing.
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FIG. 7. The p-wave phase-shift values compared with the
result from the fit to (40) in Fig. 6 for g��� ¼ 5:13 and m�a ¼
0:4972. The states EnðdÞ corresponding to various points can be
deduced by the value of s in Table III.
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In [13] a larger value g��� ¼ 6:77ð67Þ and a substantially

larger m� ¼ 980 MeV are observed at a similar pion mass

m� ¼ 290 MeV. Our m� is close to the prediction of the

unitarized one-loop4 ChPT, which leads to about m� ’
800 MeV at m� ’ 266 MeV [50,51]. We also compared
our �ðsÞ with the prediction of unitarized ChPT, recalcu-
lated for our m� ¼ 266 MeV by the authors of [52]: We
find good agreement for

ffiffiffi
s
p

<m� and reasonable agree-

ment with one-loop results for
ffiffiffi
s
p

>m�.

Since the width is crucially influenced by the ��-phase
space, this number derived for our pion mass comes out
significantly smaller than the experimental value, so we
present only g���. This dimensionless coupling is expected

to be almost independent of m� [51], which was also
explicitly verified in a study for several pion masses [13].

V. CONCLUSIONS AND OUTLOOK

Extracting scattering phase shifts and resonance proper-
ties is one of the most challenging problems in hadron
spectroscopy based on lattice QCD. We combine several
sophisticated tools to approach this problem: Lüscher’s
phase-shift relations for finite-volume lattices, moving
frames, and variational analysis of correlation matrices,
where a number of quark-antiquark and �� interpolators
with quantum numbers IðJPCÞ ¼ 1ð1��Þ are used. All
needed contractions are evaluated using the distillation
method with the Laplacian-Heaviside smearing of quarks.
We find that these tools lead to precise values of the
p-wave phase shift for �� scattering at five values of
pion relative momenta in the vicinity of the resonance.
This allows a determination of the � resonance parameters
m� and �� at our value of m�.

The simulation is performed on an ensemble [29,30] of
280 gauge configurations with two mass-degenerate dy-
namical clover-improved Wilson fermions. The pion mass
m� is roughly 266 MeV, the lattice volume V is 163 � 32,
and the spatial extent of the lattice is L ’ 1:98 fm. The
exponentially suppressed finite-volume corrections may
not be completely negligible at ourm�L ’ 2:68, and future
simulations will have to improve on this. Larger lattices
will necessitate stochastic estimation techniques to avoid
the unsatisfactory scaling of full distillation with the lattice
volume. Such a method has recently been provided in [18].
In the present study we calculated the quark propagation by
calculating the distillation perambulators on all time slices,
which is not very economical and only feasible in small
volumes.

Along the way, we explore how well the lowest two
energy levels can be obtained without the �� interpolators

in the variational basis. We also propose how to treat
interpolators of different smearing widths in the same
variational basis within the distillation method.
We demonstrate that a relatively accurate determination

of the resonance parameters is possible with present-
day techniques, within the limitation of small m�L.
For our pion mass we obtain the resonance mass m�¼
792ð7Þð8ÞMeV and the �!�� coupling g���¼5:13ð20Þ,
which is close to the experimental value gexp��� 
 5:97. We
prefer to give the coupling, since the actual width �� is

strongly affected by the phase space, which is small due to
the large value of our pion mass.
Following the pion, the rho is the most prominent me-

son. With sharpened tools it is now becoming possible to
analyze its decay properties. The present study of the �
resonance gives us confidence that similar techniques can
be applied to also extract the resonance parameters of some
other hadronic resonances, and we intend to pursue re-
search along these lines in the near future.
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APPENDIX: CONTRACTIONS IN THE
DISTILLATION METHOD

Here we provide the analytic expressions for correlators
Cðtf; tiÞ ¼ hOfðtfÞOiðtiÞi that follow from general quark-

antiquark interpolators with jI; I3i ¼ j1; 0i [with examples
given by O1–5 in (21)]

O �qq
f ðtfÞ¼

1ffiffiffi
2
p ½ �usf ðtfÞ�0

fF
0
fðtf;PÞusf ðtfÞ�fu$dg�;

O �qq
i ðtiÞ¼

1ffiffiffi
2
p ½ �usiðtiÞ�0

iF
0
i ðti;�PÞusiðtiÞ�fu$dg�; (A1)

and general meson-meson (MM) interpolators with
jI; I3i ¼ j1; 0i [with examples given by O6 in (21)]

4The two-loop result strongly depends on a number of poorly
known low energy constants, which are fixed in [51] also by
using the lattice data on m�, so the comparison to the two-loop
result is not appropriate.
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OMM
f ðtfÞ ¼ 1ffiffiffi

2
p ½ �dsf ðtfÞ�1fF fðtf;p1fÞusf ðtfÞ �usf ðtfÞ�2fF fðtf;p2fÞdsf ðtÞ � fu$ dg�;

OMM
i ðtiÞ ¼ 1ffiffiffi

2
p ½ �usiðtiÞ�1iF iðti;�p1iÞdsiðtiÞ �dsiðtiÞ�2iF iðti;�p2iÞusiðtÞ � fu$ dg�: (A2)

The subscripts si, sf ¼ n, m, w denote the smearing width
of the sink and source. The superscript ‘‘0’’ denotes that �0

and F 0 apply to �qq interpolators, while � and F without
superscripts apply to meson-meson interpolators.

The shape functionsF (31) for our interpolators (21) are
of three types:

nor:F c0c
x0xðt;pÞ¼�c0c�x0xe

ipx;

forr:F c0c
x0xðt;pÞ¼

1

2
½eipxðr

!
jÞc0cx0xðtÞ�ðr

 
jÞc0cx0xðtÞeipx�;

forrr:F c0c
x0xðt;pÞ¼

X
j¼1;2;3

ðr
 

jÞc
0c0
x0x0
ðtÞeipx0ðr

!
jÞc0cx0xðtÞ; (A3)

and we use the first choice (without r) within our meson-
meson interpolators.
The contractions in Fig. 1 are expressed in terms of the

perambulators � (33), interpolator shape matrices � (32),
and Dirac matrices �, which are presented in Sec. II F
of the main text. The analytic expressions for the con-
tractions (A4)–(A7) below can be generally used for
the interpolators of the form (A1) and (A2), or their
cross correlators.

hO �qq
f ðtfÞO �qq

i ðtiÞi ¼ CFig: 1bðtf; tiÞ ¼ �Tr½�ðti; tfÞ�0
f�ðtf;F 0

fðPÞÞ�ðtf; tiÞ�0
i �ðti;F 0

fð�PÞÞ�: (A4)

hOMM
f ðtfÞO �qq

i ðtiÞi ¼ CFig: 1dðtf; tiÞ ¼ Tr½�ðti; tfÞ�1f�ðtf; ðp1fÞÞ�ðtf; tfÞ�2f�ðtf;F ðp2fÞÞ�ðtf; tiÞ�0
i �ðti;F 0

i ð�PÞÞ�
� fp1f $ p2f;�1f $ �2fg; (A5)

hO �qq
f ðtfÞOMM

i ðtiÞi ¼ CFig: 1eðtf; tiÞ ¼ �Tr½�ðtf; tiÞ�1i�ðti;F ð�p1iÞÞ�ðti; tiÞ�2i�ðti;F ð�p2iÞÞ�ðti; tfÞ�0
f�ðtf;F 0

fðPÞÞ�
þ fp1i $ p2i;�1i $ �2ig; (A6)

hOMM
f ðtfÞOMM

i ðtiÞi ¼ CFig: 1a
con ðtf; tiÞ þ CFig: 1c

dis ðtf; tiÞ:
CFig: 1a
con ðtf; tiÞ ¼ Tr½�ðti; tfÞ�1f�ðtf;F fðp1fÞÞ�ðtf; tiÞ�1i�ðti;F ið�p1iÞÞ�

� Tr½�ðti; tfÞ�2f�ðtf;F fðp2fÞÞ�ðtf; tiÞ�2i�ðti;F ið�p2iÞÞ� � fp1i $ p2i;�1i $ �2ig;
CFig: 1c
dis ðtf; tiÞ ¼ Tr½�ðti; tfÞ�2f�ðtf;F fðp2fÞÞ�ðtf; tfÞ�1f�ðtf;F fðp1fÞÞ�ðtf; tiÞ�2i�ðti;F ið�p2iÞÞ�ðti; tiÞ

� �1i�ðti;F ið�p1iÞÞ� þ Tr½�ðti; tfÞ�1f�ðtf;F fðp1fÞÞ�ðtf; tfÞ�2f�ðtf;F fðp2fÞÞ�ðtf; tiÞ
� �1i�ðti;F ið�p1iÞÞ�ðti; tiÞ�2i�ðti;F ið�p2iÞÞ� � fp1i $ p2i;�1i $ �2ig: (A7)
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[6] M. Göckeler, H. Kastrup, J. Westphalen, and F.

Zimmermann, Nucl. Phys. B425, 413 (1994).
[7] K. Rummukainen and S. Gottlieb, Nucl. Phys. B450, 397

(1995).
[8] C. Kim, C. T. Sachrajda, and S. R. Sharpe, Nucl. Phys.

B727, 218 (2005).

[9] X. Feng, K. Jansen, and D. B. Renner, Proc. Sci., LAT2010
(2010) 104.

[10] S. Aoki, M. Fukugita, K.-I. Ishikawa, N. Ishizuka, K.
Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, K.
Sasaki, A. Ukawa, and T. Yoshi (CP-PACS
Collaboration), Phys. Rev. D 76, 094506 (2007).
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