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We study the quark mass dependence of the finite temperature QCD phase transition in the heavy

quark region using an effective potential defined through the probability distribution function of the

average plaquette. Performing a simulation of SU(3) pure gauge theory, we first confirm that the

distribution function has two peaks indicating that the phase transition is of first order in the heavy quark

limit, while the first-order transition turns into a crossover as the quark mass decreases from infinity,

where the mass dependence of the distribution function is evaluated by the reweighting method combined

with the hopping parameter expansion. We determine the endpoint of the first-order transition region

for Nf ¼ 1, 2, 3 and 2þ 1 cases. The quark mass dependence of the latent heat is also evaluated in the

first-order transition region.
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I. INTRODUCTION

The QCD phase transition is one of the important in-
gredients in understanding the evolution of the early uni-
verse. Monte Carlo simulation of lattice QCD is the most
powerful approach to study the nature of the QCD phase
transition at present [1]. It is known that the order of the
phase transition depends on the values of quark masses:
The deconfinement phase transition is of first order when
masses of all three (up, down, and strange) quarks are
either sufficiently large or small, while it turns into a
crossover in the intermediate region [2–7]. Previous studies
with staggered quarks strongly suggest that the transition
becomes a crossover at physical quark masses [8–10]. A
confirmation of this result by other fermion formulations
such as Wilson-type fermions or by other methods of
analyses is, however, mandatory to draw a definite con-
clusion on the nature of the transition at physical quark
masses [11–13].

Among several methods to study the nature of phase
transitions, a probability distribution of physical observ-
ables provides us with the most intuitive way to determine
the order of the phase transition. Adopting an appropriate
physical quantity such as a quark number, chiral order
parameter, gauge action etc., the corresponding probability
distribution function is constructed by measuring a

generation rate of configurations at each fixed value of
the physical quantity. Then an existence of double or
multiple peaks in the probability distribution function
give a signal of a first-order phase transition, since two
phases coexist at a first-order phase transition point.
In this study, we investigate the quark mass dependence

of the order of the QCD phase transition in the large
quark mass region using the hopping parameter expansion.
We expect the first-order phase transition in the heavy
quark limit becomes a crossover as we decrease the
quark masses from infinity. We take the plaquette, i.e.
1� 1 Wilson loop, as the quantity to study the order of
the transition. The reweighting technique [14,15] is em-
ployed to vary quark masses in the lowest order of the
hopping parameter expansion, and we determine an end
point where the first-order phase transition turns into a
crossover.
This paper is organized as follows. Basic properties of

the plaquette distribution function are discussed in Sec. II.
A method to calculate the plaquette distribution function
by the hopping parameter expansion is introduced in
Sec. III. Details of our simulations and results for the
effective potential defined from the distribution function
are presented in Sec. IV. Results show that the first-order
phase transition becomes a crossover as the quark mass
decreases from infinity. We then determine the location of
the end point for the cases of Nf ¼ 1, 2, 3 and 2þ 1 with

the Wilson quark action. Our conclusions are given in
Sec. VI.
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II. PROBABILITY DISTRIBUTION FUNCTION

A probability distribution function provides us with one
of the most powerful methods to determine the order of
phase transitions. Since there exist two phases simulta-
neously at a first-order phase transition point, we expect
that the probability distribution function has multiple peaks
near the transition point. In this study, we consider the
distribution function of the average plaquette P,

P ¼ 1

6Nsite

X
n;�<�

1

3
Re tr½Un;�Unþ�̂;�U

y
nþ�̂;�U

y
n;��; (1)

where Un;� is the link variable and Nsite ¼ N3
s � Nt is the

lattice volume. We adopt the standard one-plaquette action
ðSgÞ for glues and the standard Wilson fermion action ðSqÞ
for quarks:
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where Nf is the number of flavors, �f is the hopping

parameter for the f-th flavor, and � ¼ 6=g2 is the (inverse)
gauge coupling. The hopping parameter �f controls the

quark mass, which is proportional to 1=�f for small �f,

while the lattice spacing is mainly controlled by �. For
the case of degenerate quark masses, i.e. �f ¼ � for

f ¼ 1; . . . ; Nf, the plaquette distribution function is de-

fined as

wðP0; �; �Þ ¼
Z

DUDcD �c�ðP0 � PÞe�Sq�Sg

¼
Z

DU�ðP0 � PÞðdetMð�ÞÞNfe6�NsiteP: (5)

The partition function is given by Zð�; �Þ ¼R
wðP0; �; �ÞdP0. In the followings, we denote the argu-

ment P0 in w simply as P.
The plaquette distribution function has the following

useful property [15]. Under the change from �0 to �,
wðP;�; �Þ transforms as

wðP;�; �Þ ¼ e6ð���0ÞNsitePwðP;�0; �Þ: (6)

Therefore, the effective potential defined by

VeffðP;�; �Þ ¼ � lnwðP;�; �Þ (7)

transforms as

VeffðP;�; �Þ ¼ VeffðP;�0; �Þ � 6ð�� �0ÞNsiteP: (8)

From this property, we find that

dVeff

dP
ðP;�; �Þ ¼ dVeff

dP
ðP;�0; �Þ � 6ð�� �0ÞNsite; (9)

and d2Veff=dP
2 is independent of �.

Since the distribution function is doubly peaked at and
around a first-order transition point, the corresponding
effective potential has a double-well structure and the
derivative dVeff=dP becomes an S-shaped function.
Therefore, close to the transition point, dVeff=dP must
vanish at three points. In general, to find the first-order
phase transition by observing these properties, a fine-
tuning of � is required. For the case of the plaquette
effective potential, however, we can detect the existence
of the first-order transition through the appearance of the
S-shape in dVeff=dP without fine tunings, since the
P-dependence of dVeff=dP itself is independent of � as
shown in Eq. (9). After the detection, the first-order tran-
sition region in �, in which dVeff=dP vanishes at three
values of P, can be identified using Eq. (9). Therefore,
dVeff=dP is useful to determine a region of the first-order
phase transition.
We next discuss the �-dependence of Veff considering

the ratio of the distribution functions at � and �0:

RðP0;�;�0Þ� wðP0;�;�Þ
wðP0;�;�0Þ (10)

¼
R
DU�ðP0 �PÞðdetMð�ÞÞNfe6�NsitePR
DU�ðP0 �PÞðdetMð�0ÞÞNfe6�NsiteP

¼
R
DU�ðP0 �PÞðdetMð�ÞÞNfR
DU�ðP0 �PÞðdetMð�0ÞÞNf

¼
h�ðP0�PÞ ðdetMð�ÞÞNf

ðdetMð�0ÞÞNf ið�;�0Þ
h�ðP0 �PÞið�;�0Þ

: (11)

Note that RðP;�;�0Þ is independent of �, and thus
RðP;�;�0Þ can be evaluated at any �. Using RðP; �; �0Þ,
the �-dependence of the effective potential is given by

VeffðP;�; �Þ ¼ � lnRðP; �; �0Þ þ VeffðP;�; �0Þ: (12)

This argument can be easily generalized to improved
gauge actions including larger Wilson loops, for which we
redefine the average plaquette as P ¼ �Sg=ð6Nsite�Þ. On
the other hand, �-dependent improved quark actions make
the analysis more complicated.
We note that the identification of the order of the phase

transition by the Veff is equivalent to that by the fourth-
order Binder cumulant, B4 ¼ hðX � hXiÞ4i=hðX � hXiÞ2i2
with X an appropriate operator signaling the phase tran-
sition, since both Veff and B4 detect a change of the
distribution function. On the other hand, to correctly evalu-
ate B4 at a first-order transition point, we need to know
precisely the probability distribution in a wide range of X
covering both peaks [15]. A fine-tuning to the transition
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point and a high statistics with sufficiently many flip-flops
are required for a reliable estimate of B4 at the transition
point. Furthermore, to achieve well-separated peaks, a
large system volume is required. This makes the whole
study quite demanding, in particular, for weak first-order
transitions such as the case of the heavy quark limit of
QCD. On the other hand, a reliable Veff in a wide range of
P can be easily obtained by combining data at different �
points thanks to the relation (8).

III. QUARK DETERMINANT IN THE HEAVY
QUARK REGION

To investigate the quark mass dependence of the pla-
quette effective potential, we evaluate the quark determi-
nant by a Taylor expansion with respect to the hopping
parameter � in the vicinity of the simulation point �0:

ln

�
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detMð�0Þ

�
¼ X1
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�
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Calculating the derivative of the quark determinantDn, the
�-dependence of the effective potential can be estimated.
Adopting �0 ¼ 0, the Eq. (14) reads

D n ¼ ð�1Þnþ1ðn� 1Þ!tr
��

@M

@�

�
n
�
�¼0

; (15)

where Mx;y ¼ �x;y at � ¼ 0. and ð@M=@�Þx;y is the

gauge connection between x and y. Therefore, the non-
vanishing contributions toDn are given byWilson loops or
Polyakov loops. Considering the antiperiodic boundary
condition and gamma matrices in the hopping terms, the
leading-order contributions to the Taylor expansion are
given by

ln

�
detMð�Þ
detMð0Þ

�
¼ 288Nsite�

4Pþ 12� 2NtN3
s�

NtRe�

þ � � � ; (16)

where � is the Polyakov loop defined by

�¼ 1

N3
s

X
n

1

3
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The ratio RðP; �; 0Þ ¼ wðP;�; �Þ=wðP;�; 0Þ is then calcu-
lated at arbitrary values of � but small � as follows.

RðP0; �; 0Þ ¼ h�ðP0 � PÞ exp½Nfð288Nsite�
4Pþ 12� 2NtN3

s�
NtRe�þ � � �Þ�ið�;�0¼0Þ

h�ðP0 � PÞið�;�0¼0Þ

¼ e288NfNsite�
4P0 h�ðP0 � PÞ exp½Nfð12� 2NtN3

s�
NtRe�þ � � �Þ�ið�;�0¼0Þ

h�ðP0 � PÞið�;�0¼0Þ
: (18)

For the case of Nt ¼ 4 we study, the truncation error
is Oð�6Þ. The contribution from the plaquette can be
absorbed by a shift of �.

IV. NUMERICAL SIMULATIONS
AND THE RESULTS

A. Simulation parameters and plaquette
effective potential

In the heavy quark limit we perform simulations of
SU(3) pure gauge theory on a 243 � 4 lattice. We generate
the configurations by a pseudo heat bath algorithm fol-
lowed by four over-relaxation sweeps. We perform simu-
lations at five � values in the range 5.68–5.70. Simulation
points and statistics are summarized in Table I.

The results for the histogram of P, i.e. the plaquette
distribution function Eq. (5) normalized by the partition
function Z, are plotted in Fig. 1. In this calculation, we

approximate the delta function by a Gaussian function:
�ðxÞ � 1=ð� ffiffiffiffi

�
p Þ exp½�ðx=�Þ2�, where � corresponds to

the width of the Gaussian function. As � decreases, the
resolution of the distribution function becomes better,
while the statistical error increases. Examining the resolu-
tion and the statistical error, we adopt � ¼ 0:000283. This

TABLE I. The number of configurations and the bin size for
jackknife error analyses.

� configurations bin size

5.6800 100 000 100

5.6850 430 000 2150

5.6900 500 000 2000

5.6925 670 000 3350

5.7000 100 000 500
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figure shows that the value of P generated in a simulation at
single � distributes in a narrow range.

We then calculate the derivative dVeff=dP by the differ-
ence between the potentials at P� �P=2 and Pþ �P=2.
The value of �P is set to be 0.0001, considering the reso-
lution in P. The �P-dependence is much smaller than the
statistical error around this value of �P. Results of
dVeff=dP at � ¼ 0 are shown in Fig. 2, where data points
with low statistics are removed for clarity. In this figure, we
adjust results at different �’s to � ¼ 5:69 by using Eq. (9).
Results of dVeff=dP obtained in simulations at different �
are consistent with each other within statistical errors,
though the ranges of P in which Veff is reliably obtained
are different. The jackknife method is used to estimate the
statistical error of the effective potential and its derivatives.
The bin size of the jackknife analysis is listed in Table I.
We then combine these data by taking an average weighted

with the inverse-square of errors in the overlapping
regions. We here exclude data at P far away from the
peak of the distribution at each � which thus has poor
statistics. The final result for dVeff=dP at � ¼ 0 is shown
by the black line without symbols in Fig. 2. We find that
dVeff=dP is not a monotonically increasing function at
�¼0, indicating that the effective potential has a double-
well shape.
The quark mass dependence of the effective potential is

investigated by calculating RðP; �; 0Þ up to the order �4 in
Eq. (18). Using the data of wðP;�; � ¼ 0Þ and RðP; �; 0Þ,
we evaluate the dVeff=dP at nonzero �. Results for Nf ¼ 2

are plotted in Fig. 3. The S-shape structure becomes
weaker as � increases and turns into a monotonically
increasing function around � ¼ 0:066. This behavior sug-
gests that the first-order phase transition at � ¼ 0 becomes
weaker as � increases and the transition becomes a cross-
over at � � 0:066. In Fig. 4 we show the � dependence of
Veff obtained by a numerical integration of dVeff=dP. In
this figure, � is adjusted such that the two minima have the
same height (see Sec. IVB 2 for details), and the integra-
tion is started from the peak point Ppeak of Veff between
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FIG. 2 (color online). Derivative of the effective potential in
SU(3) pure gauge theory at � ¼ 5:69 converting data obtained at
� ¼ 5:68–5:70 by Eq. (9). The bold black curve is an average
over the results obtained at different �.
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FIG. 3 (color online). Derivative of the effective potential at
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the two minima. We find that the double-well becomes
shallower as � increases and become almost flat around
� ¼ 0:066.

B. Critical point in the heavy quark region for Nf¼2

In this subsection, we evaluate the value of � at which
the first-order phase transition terminates. We denote the
corresponding critical point as �cp.

1. Critical point from d2Veff=dP
2

We first calculate the second derivative of VeffðP;�; �Þ
by a numerical differentiation of dVeff=dP. When the
transition is of first order, there is a region in P where
d2Veff=dP

2 is negative between the two bottoms of
VeffðP;�; �Þ. The first-order transition region is thus iden-
tified by calculating the sign of the second derivative of
Veff . As discussed in Sec. II, the second derivative of
VeffðP;�; �Þ is independent of �. Therefore, the identifi-
cation can be performed at any �.

In Fig. 5, we plot the results of d2Veff=dP
2 at � ¼ 0:058

(left), 0.062 (middle) and 0.066 (right) forNf ¼ 2, together

with the results at � ¼ 0 which are shown as black
symbols. We find that the region where d2Veff=dP

2 < 0
becomes narrower as � increases. Bold horizontal lines
at zero show the range of P where the curvature vanishes
within statistical errors. Hereafter we denote the position
at which d2Veff=dP

2 ¼ 0 as PðV00
eff
¼0Þð�Þ or �ðV00

eff
¼0ÞðPÞ.

Results of PðV00
eff
¼0Þ are plotted in Fig. 6 as a function

of �. The region of the negative curvature seems to
vanish around � ¼ 0:066. Since the curvature is always
positive beyond this �, the effective potential is no longer a
double-well type, i.e. the transition becomes a crossover at
� * 0:066.
To evaluate the critical point �cp we study the

�-dependence of d2Veff=dP
2 at fixed P, as shown in

Fig. 7 for typical points. Data with large statistical errors
are removed from this figure. Fitting data by a linear
function in �, we obtain �ðV00

eff
¼0ÞðPÞ, which is shown by a

square symbol in the same figure. The horizontal bar
represents the statistical error. Results of �ðV00

eff
¼0Þ are

plotted in Fig. 8 for 0:5474 � P � 0:5487. When � is
larger than the maximum value of �ðV00

eff
¼0Þ, d2Veff=dP

2 is

non-negative for all values of P in this region. Therefore,
the maximum value of �ðV00

eff
¼0Þ is nothing but the critical

point �cp. We obtain �cp ¼ 0:0685ð72Þ for Nf ¼ 2.
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FIG. 5 (color online). Curvature of the effective potential at � ¼ 0:058 (left), 0.062 (middle), 0.066 (right). Black symbols are
results at � ¼ 0. Bold horizontal lines on the line of d2Veff=dP

2 ¼ 0 represent errors of the plaquette values where d2Veff=dP
2

vanish.
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2 vanishes at
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FIG. 7 (color online). �-dependence of d2Veff=dP
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results of �ðV00
eff
¼0Þ at P ¼ 0:5479, 0.5483 and 0.5486.
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2. Critical point from the double-well structure of Veff

Alternatively, we may determine �cp as the point where

the two minima of VeffðPÞ merge and the barrier between
the two minima vanishes. The double-well structure of Veff

is most clearly seen at � where the two minima of Veff has
the same height (see Fig. 4). Such �, say �trans, can be
determined by a Maxwell’s construction for dVeff=dP:
Let us denote the values of P at the two minima as PA

and PB. The condition VeffðPAÞ ¼ VeffðPBÞ impliesRPB

PA

dVeff

dP ðP;�trans; �ÞdP ¼ 0, or, equivalently,

Z Ppeak

PA

dVeff

dP
ðP;�trans; �ÞdP

¼ �
Z PB

Ppeak

dVeff

dP
ðP;�trans; �ÞdP (19)

where Ppeak is the peak position of Veff between PA and PB

at which dVeff=dP vanishes. Changing � by Eq. (9), we

search �trans where Eq. (19) is satisfied. The results for
�trans are plotted in the left panel of Fig. 9 as a function of
�. At � ¼ 0, we obtain �trans ¼ 5:69138ð3Þ. At � ¼ 0:066,
because the minima of Veff are too shallow to apply the
Maxwell construction, we instead determine �trans as the
point where the bottom region of Veff becomes flat, as
shown in Fig. 4. In the right pane of Fig. 9, we replot
�trans as a function of �4, as motivated by the hopping
parameter expansion. We note that the data is well fitted by
a linear function of �4.
In an approximation to disregard fluctuations around the

plaquette expectation value P, we can identify VeffðPÞ with
the free energy of the system. Then the conditionVeffðPAÞ¼
VeffðPBÞ means that the pressure p is balanced between
the phases A and B. Therefore, we may view �trans

as an estimate of the first-order transition point. Actually,
our result �trans ¼ 5:69138ð3Þ for � ¼ 0 is quite close
to the first-order transition point �trans¼5:69153ð86Þ–
5:69211ð35Þ defined by the peak position of the plaquette
susceptibility in SU(3) pure gauge theory with the same
lattice size 243 � 4 [3].
In Fig. 10, results of the potential barrier height

Vpeak � VeffðPpeakÞ � VeffðPAÞ and the gap �P �
PB � PA at �trans are shown as functions of �. We find
that both Vpeak and �P decrease drastically above � ¼
0:05 and vanish around � � 0:066. Performing a linear
extrapolation using three nearest points of Vpeak [�P] as

shown in Fig. 10, we obtain �cp ¼ 0:0647ð6Þ [0.0662(4)].
A corresponding value of �cp at the critical point can be

estimated by extrapolating �trans to �cp, assuming a linear

function in � or �4 as plotted in Fig. 9. Results for �cp and

�cp are summarized in Table II. In the table, we also

present �cp for �cp determined by d2Veff=dP
2. From these

results, we obtain

�cp ¼ 0:0658ð3Þðþ4�11Þ; �cp ¼ 5:6843ð1Þð4Þ (20)
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FIG. 9 (color online). �trans as a function of � (Left) and �4 (Right) for Nf ¼ 2. Also shown are the results of the critical point ð�cpÞ,
which are obtained by linearly extrapolating �trans in � (Left) or �4 (Right) to �cp determined by Vpeak (diamonds) or d2Veff=dP
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FIG. 8 (color online). Value of � where d2Veff=dP
2 vanishes at
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where the central values and their statistical errors given in
the first brackets are determined by a weighted average of
the results, and systematic errors given in the second
brackets are determined from the scattering of the results
due to the method and extrapolation function, neglecting
the data from the d2Veff=dP

2 method which are consistent
with other results within large errors.

To get a rough idea about the value of the pseudoscalar
meson mass ðmPSÞ corresponding to the critical point, we
estimate the ratio T=mPS ¼ 1=ðNtmPSaÞ at the critical
point. Using a data of zero-temperature pseudoscalarmeson
mass inNf ¼ 2QCD along the finite temperature crossover

curve for Nt ¼ 4 in the range � ¼ 0:16–0:19 [16], we
perform a fit ðmPSaÞ�1 ¼ f1�

2 þ f2�
4 with fitting parame-

ters f1 and f2, where the constraint ðmPSaÞ�1 ¼ 0 at � ¼ 0
is taken into account.We findT=mPS � 0:023 forNf ¼ 2 at

the critical point �cp � 0:066. Because Ttrans=mPS ¼ Oð1Þ
around the physical point, the small value 0.023 means that
the critical pseudoscalarmesonmass ismuch larger than the
physical pion mass.

C. Latent heat

The gap of the internal energy density, �", at a first-
order transition point is called the latent heat. Since p is

continuous there, �" can be evaluated as the gap of the
trace anomaly:

"� 3p

T4
¼ � 1

VT3
a
d lnZ
da

� ½T ¼ 0�

¼ �N4
t

�
a
d�

da
6hPi þ Nfa

d�

da
ð1152�3hPi

þ N�1
t 12� 2Nt�Nt�1hRe�iÞ þOð�6Þ

�

� ½T ¼ 0� (21)

where [T ¼ 0] is the zero-temperature contribution
to be subtracted for renormalization. At � ¼ 0,
ð1=6Þaðd�=daÞ � �ð0:064–0:078Þ at � ¼ �cðNt ¼ 4Þ,
depending on the method to define the scale [17–20]. At
� ¼ 0, hRe�i ¼ 0 due to the center Zð3Þ symmetry, and
aðd�=daÞ ¼ 0 because � ¼ 0 is a line of constant physics.
Neglecting terms proportional to �3aðd�=daÞ at small �,
the latent heat is roughly evaluated as

�"

T4
¼ �ð"� 3pÞ

T4
� �6N4

t a
d�

da
h�Pi (22)

where �P is shown in Fig. 10 for Nf ¼ 2. It is found from

the behavior of �P that the latent heat decreases as �
increases.

V. THE CASES OF 2þ1-FLAVORAND
DEGENERATE Nf -FLAVOR QCD

The analysis can be easily generalized to an arbitrary
value of Nf and also to the case of Nf ¼ 2þ 1 QCD. At

the leading order of the hopping parameter expansion, the
contribution of quark determinants in the partition function
is given by

TABLE II. Critical point �cp and �cp defined by Vpeak, �P and
d2Veff=dP

2.

�cp �cp

method � fit �4 fit

Vpeak 0.0647(06) 5.6847(02) 5.6846(03)

�P 0.0662(04) 5.6842(01) 5.6838(02)

d2Veff=dP
2 0.0685(72) 5.6834(23) 5.6827(39)

total 0:0658ð3Þðþ4�11Þ 5.6843(1)(4)
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FIG. 10 (color online). Potential barrier height Vpeak (Left) and the gap �P (Right) between the two minima at �trans for Nf ¼ 2.
Critical point �cp is estimated by linear extrapolations shown in the figures.
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ln

�ðdetMð�udÞÞ2 detMð�sÞ
ðdetMð0ÞÞ3

�
¼ 288Nsiteð2�4

ud þ �4
s ÞPþ 12� 2NtN3

s ð2�Nt

ud þ �Nt
s ÞRe�þ � � � (23)

for the case of Nf ¼ 2þ 1, where �ud and �s are hopping parameters for light and strange quarks. The modification factor
for the reweighting in � thus becomes

RðP0; �ud; �s; 0Þ ¼ e288Nsiteð2�4
ud
þ�4

s ÞP0 h�ðP0 � PÞ exp½12� 2NtN3
s ð2�Nt

ud þ �Nt
s ÞRe�þ � � ��ið�;�¼0Þ

h�ðP0 � PÞið�;�¼0Þ
: (24)

Since the contribution from the plaquette in this
equation does not affect the second derivative of Veff ,
the difference from the case of Nf ¼ 2 is just the replace-
ment of 2�Nt by 2�Nt

ud þ �Nt
s . Thus, the line which sepa-

rates the first-order phase transition and the crossover is
given by

2ð�udÞNt þ ð�sÞNt ¼ 2ð�Nf¼2
cp ÞNt (25)

where Nt ¼ 4 and �
Nf¼2
cp ¼ 0:0658ð3Þðþ4�11Þ as determined

in Sec. IVB. We draw the line in Fig. 11, in which
the colored region corresponds to the first-order transition.
The case of degenerate Nf-flavor QCD can be similarly
investigated. Results for �cp are summarized in Table III
for Nf ¼ 1, 2 and 3. Our �cp for Nf ¼ 1 is consistent
with the result obtained by an effective model in
Ref. [21]. In the present approximation of the lowest-order
hopping parameter expansion at Nt ¼ 4, �cp is indepen-
dent of Nf.

VI. CONCLUSION

We have investigated the order of the deconfinement
phase transition in the heavy quark region of QCD by calcu-
lating an effective potentialVeffðPÞ defined as the logarithms
of the probability distribution function for the average pla-
quette P. To study the fate of the first-order deconfinement
transition,Veff has to be reliably evaluated in a wide range of
P covering the both phases. Applying a reweighting method,
we combine the results at five different� points to calculate
Veff in a wide range of P. We evaluate Veff at � ¼ 0 by
simulations in SU(3) pure gauge theory, and reweight it to
nonzero but small values of � using the leading-order hop-
ping parameter expansion on an Nt ¼ 4 lattice.
At � ¼ 0, VeffðPÞ show clear double-well structure in

accordance with the first-order deconfinement transition of
the SU(3) pure gauge theory. When we increase � from
zero, the double-well shape becomes weaker, and eventu-
ally disappear at finite �, indicating that the first-order
transition turns into a crossover at that point as suggested
from the effective Z(3) model with an external magnetic
field. We estimated the critical point �cp by examining

various properties of Veff . The results for the critical point
in degenerate Nf-flavor QCD as well as that in the Nf ¼
2þ 1 QCD are summarized in Table III and Fig. 11.
The calculations are done in the leading-order approxi-

mation of the hopping parameter expansion on an Nt ¼ 4
lattice. Although the values of �cp we obtained are quite

small, it is important to confirm the reliability of the leading-
order approximation quantitatively. In the next leading or-
der, we have Oð�6Þ contributions from Wilson loops with
length 6 and Oð�Ntþ2Þ contributions from Polyakov loops
which haveNt þ 2 link variables including two spatial links.
To estimate the effects of them, measurement of the proba-
bility distribution function including expectation values for

0 0.05 0.1

κ
ud

0
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0.1

κ s 1st order

Crossover

κ cp
=

0.
07

83

κ
cp

=0.0658

N
f =

 1
 (

κ ud
=

0)

N f
 =

 3 
(κ ud

=κ s
)

κ cp
=0.0

59
5

N
f
 = 2 (κ

s
=0)

FIG. 11 (color online). The phase boundary separating the
first-order transition region and crossover region in the
ð�ud; �sÞ plane.

TABLE III. �cp for Nf ¼ 1, 2 and 3 determined by the re-
weighting method with the lowest-order hopping parameter
expansion at Nt ¼ 4.

Nf �cp

1 0:0783ð4Þð þ5
�13Þ

2 0:0658ð3Þð þ4
�11Þ

3 0:0595ð3Þð þ4
�10Þ
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these operators is required. Another important point to be
studied is the continuum extrapolation by increasingNt. We
leave these studies as future works.
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