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The conventional series in powers of the coupling in perturbative QCD have zero radius of convergence

and fail to reproduce the singularity of the QCD correlators like the Adler function at �s ¼ 0. Using the

technique of conformal mapping of the Borel plane, combined with the ‘‘softening’’ of the leading

singularities, we define a set of new expansion functions that resemble the expanded correlator and share

the same singularity at zero coupling. Several different conformal mappings and different ways of

implementing the known nature of the first branch-points of the Adler function in the Borel plane are

investigated, in both the contour-improved (CI) and fixed-order (FO) versions of renormalization-group

resummation. We prove the remarkable convergence properties of a set of new CI expansions and use

them for a determination of the strong coupling from the hadronic �-decay width. By taking the average

upon this set, with a conservative treatment of the errors, we obtain �sðM2
�Þ ¼ 0:3195þ0:0189

�0:0138.
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I. INTRODUCTION

The conventional perturbation expansion of the QCD
correlators in powers of the strong coupling �s is problem-
atic, because the function that is expanded, like, for in-

stance, the Adler function D̂, viewed as a function of the
coupling, is known to be singular at the expansion point,
�s ¼ 0 [1]. On the other hand, the powers �n

s are holo-
morphic and, therefore, they can tell us nothing about the
singularities of the expanded function, including their very
existence. As a consequence, no finite-order perturbative
approximant can share the singularity with the expanded
function at zero coupling. Singularities can emerge only
from the infinite series as a whole, which, unfortunately, is
not defined, since the perturbation series is divergent [2–5].

A perturbation series would be more instructive if the
individual finite-order approximants could retain at least
some information about the known singularities of the QCD
correlators. Such approximants would, in every order of
approximation, bear some information about the singular-
ities of the expanded function and, moreover, would tell us
more about the function from the numerical point of view.

An approach proposed by us some time ago [6] consists
in replacing the conventional set of powers of �s (occur-
ring in the standard perturbation expansion) by a new set of
functions, in which the available information about the
singularities of the expanded function is built in. In order
to define such a new perturbation series, two methods can
be used: (A) extension of the region of convergence by
conformally mapping the region of holomorphy of the
expanded function onto a disk [7], and (B) singularity
softening, discussed, for instance, in [6,8]. When combined
in a suitable way, they mutually amplify their effect.

The method of conformal mapping was introduced
and applied in particle physics in [7], with an intent of
extending the convergence region beyond the circle of

convergence of an expansion and increasing the conver-
gence rate at points lying inside the circle. In the context of
perturbative QCD, the properties of the new expansions
based on this technique were investigated in [6,9,10], while
in [11], the method was applied for a determination of �s

from hadronic �-decays.
The conformal mapping method [7] is not applicable to

the (formal) perturbative series of D̂ in powers of �s, be-

cause D̂ is singular at the point of expansion.1 On the other

hand, the method can be applied [6], rather than to D̂, to its
Borel transform BðuÞ (the precise definition of this function
will be given in Sec. II). Being holomorphic in a region
containing the origin u ¼ 0 of the Borel complex plane,
BðuÞ can be expanded in powers of the Borel variable as

BðuÞ ¼ X
n�0

bnu
n: (1)

This series is convergent inside the circle centered at the
origin u ¼ 0 and reaching the nearest singularity of BðuÞ.
It often happens in practice that the disk of convergence
of (1) is considerably smaller than B, the holomorphy
domain of BðuÞ (we assume throughout the paper that
B is simply connected). It is the method of conformal
mapping (A) that can significantly extend the region of
convergence of (1), by replacing the series in powers of u
with a series in powers of a new variable, ~wðuÞ,

BðuÞ ¼ X
n�0

cnð ~wðuÞÞn: (2)

1In the so-called ‘‘order-dependent’’ conformal mappings,
which were defined also in the coupling plane [12,13], the
singularity is shifted away from the origin by a certain amount
at each finite order, and tends to the origin only when an infinite
number of terms are considered.
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Here, ~wðuÞ denotes the function that conformally maps
the holomorphy region B in the u-plane onto the unit disk
jwj< 1 in the w � ~wðuÞ-plane centered at the origin (the
explicit form of ~wðuÞ will be given in Sec. III). The expan-
sion coefficients cn are determined by the bn coefficients
and by the conformal mapping function ~wðuÞ. The expan-
sion (2), unlike (1), is convergent in the whole region of
holomorphyB. Moreover, as proved in Ref. [7] and will be
discussed also in Sec. III of the present paper, it provides the
fastest large-order convergence rate.

In the present work, we focus on the procedure of
singularity softening, which exploits the known nature of
the leading singularities of the correlators in the Borel
plane, by compensating them with suitable factors. As
discussed in [6,11,14], this procedure is not unique, in
contrast with the definition of the optimal mapping [7],
which is unambiguous.

To illustrate the method, we consider the Adler function
in massless QCD. In the next section, we briefly review the
properties of this function in perturbative QCD. In Sec. III,
we discuss themethod of conformalmapping for improving
the convergence rate of power series [7]. Although the
method has been adopted and applied by many authors, its
mathematical foundation is not very widely known. We
therefore formulate two lemmas which allow the definition
of the so-called ‘‘optimal’’ conformal mapping in this con-
text. The proof of the lemmas is presented in Appendix .

In Sec. IV, we discuss various possibilities of exploiting
the known nature of the leading singularities of the Borel
transform, and in Sec. V, we define a class of new expan-
sion functions that implement the two ingredients, singu-
larity softening and expansion in a new variable. Both
the contour-improved and the fixed-order versions of the
expansions are presented. In Sec. VI, we illustrate the
convergence properties of the new expansion functions
using some mathematical models for the Adler function.

The determination of the strong coupling �s is one of
the most important tests of QCD. As discussed in [15], the
recent determinations at various scales are in an impressive
agreement among each other. The hadronic decays of the �
lepton provide one of the most precise determination,
which is particularly interesting as it concerns a relatively
low scale, the mass of the �. The recent calculation of the
Adler function to four loops [16], the same order to which
the �-function is known [17,18], renewed the interest in
the determination of �sðM2

�Þ [19–28]. In Sec. VII, we
present an updated calculation of the strong coupling using
the new CI expansion functions defined in this work.
Finally, Sec. VIII contains a summary of the work and
our conclusions.

II. ADLER FUNCTION

We consider the Adler function [29], i.e. the logarithmic
derivative of the correlation function of two hadronic cur-
rents, which is expressed in massless perturbative QCD as

D̂ðsÞ ¼ X
n�1

½Kn þ �nð�s=�2Þ�½asð�2Þ�n; (3)

where s ¼ q2 is the momentum variable and asð�2Þ �
�sð�2Þ=� is the strong coupling at the renormalization
scale �2. From studies of classes of Feynman diagrams, it
is known [3–5] that the series in the right-hand side of (3) is
divergent. This series is often assumed [5] to be an asymp-
totic expansion in the limit as ! 0. Then, the equality sign
in (3) is interpreted as �, the sign used for asymptotic
expansions.

The first coefficients Kn calculated in the MS scheme
are [16]

K1¼1; K2¼1:63982; K3¼6:37101; K4¼49:0757:

(4)

Several estimates of the next coefficient K5 are available:
the value K5 ¼ 378, obtained from the assumption of
a geometrical growth, was adopted in [19], while the
‘‘Fastest Apparent Convergence’’ (FAC) principle [30]
predicts K5 ¼ 275 [16,23]. A slightly different value,
K5 ¼ 283, was adopted in [21].
The coefficients �nð�s=�2Þ depend on the

renormalization-group (RG) �-function, which is calcu-
lated at present to four loops [17,18]. The first coefficients

�j in the MS scheme for nf ¼ 3 are

�0¼9=4; �1¼4; �2¼10:0599; �3¼47:228: (5)

An additional term is sometimes added to the perturbative
expansion of the �-function, assuming a geometrical
growth, �4 ¼ ��2

3=�2 [19,26].

The Adler function plays a crucial role in the determi-
nation of �sðM2

�Þ from hadronic � decays. The method is
discussed in the seminal paper [31] and is reviewed in
several recent articles [19,21,26,27]. For completeness,
we give below a few details.
The inclusive character of the total � hadronic width

makes possible an accurate calculation of the ratio R� �
�½�� ! ��hadrons�=�½�� ! ��e

� ��e�. Of interest is the
Cabbibo allowed component which proceeds either
through a vector or an axial vector current, since in this
case the power corrections are especially suppressed. It can
be expressed in the form

R�;VþA ¼ NcSEWjVudj2½1þ �ð0Þ þ �0
EW þ �PC�; (6)

where Nc ¼ 3 is the number of colors, SEW and �0
EW

are electroweak corrections, �PC denotes nonperturbative
power corrections which arise in the framework of the

operator product expansion (OPE), and �ð0Þ is the genuine
perturbative QCD correction. Unitarity implies that this
quantity can be written as an integral over the spectral
function of the polarization function along the timelike
axis. As shown in [31], the analytic properties of the
polarization function and Cauchy theorem allow one to

write equivalently �ð0Þ as the contour integral
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�ð0Þ ¼ 1

2�i

I
jsj¼M2

�

ds

s

�
1� s

M2
�

�
3
�
1þ s

M2
�

� bDðsÞ: (7)

As discussed in [31], perturbative QCD is valid outside the
timelike axis, so the Adler function can be calculated along
the complex contour using the expansion (3).

More generally, of interest are the moments of the
spectral function, defined for arbitrary s0 either as [32]

Mk ¼ 1

2�i

I
jsj¼s0

ds

s

�
1� skþ1

skþ1
0

�
D̂ðsÞ; k � 0; (8)

or as [20]

�M k ¼ 1

2�i

I
jsj¼s0

ds

s

�
1� s

s0

�
k
D̂ðsÞ; k � 1: (9)

The main ambiguity in the evaluation of these contour
integrals is related to the renormalization scale. The choice
�2 ¼ �s, when (3) reads

D̂ðsÞ ¼ X
n�1

Kn½asð�sÞ�n; (10)

leads to the so-called ‘‘contour-improved’’ (CI) expansion
[33], where the coupling is determined by solving the
renormalization group equation exactly along the circle.
The more conventional fixed-order (FO) expansion (3)

of D̂ðsÞ, when �2 ¼ M2
� (or more generally �2 ¼ s0), is

obtained formally from (10) by expanding the running
coupling asð�sÞ as

asð�sÞ ¼ X
j�1

	jðasðM2
�ÞÞj: (11)

The coefficients 	j depend on the parameters �k, k � j,

and the powers of lnð�s=M2
�Þ, which can acquire large

imaginary parts for s on the integration circle near the
timelike axis. As discussed recently [21,26,28], the dis-
crepancy between the results given by the CI and FO
expansions is the main theoretical error in the extraction
of �sðM2

�Þ.
As already mentioned, the renormalized perturbation

series (3) or (10) are divergent, the coefficients displaying
at large orders a factorial growth, Kn � n!. From indepen-
dent arguments, it is known that correlation functions like

D̂, regarded as functions of �s, are singular at �s¼0 [1].
For QED, where these facts are well known [34], the
divergence of the series does not affect the phenomeno-
logical predictions since the coupling is very small. By
contrast, for a large coupling like �sðM2

�Þ in QCD the
consequences are nontrivial.

The information about the high-order behavior of the
series (3) is included in the singularities of the Borel
transform BðuÞ, defined by the series (1), with the coeffi-
cients bn related to Kn by

bn ¼ Knþ1

�n
0n!

; n � 0; (12)

where �0 is the first coefficient of the �-function given
in (5). According to present knowledge [5], BðuÞ has
singularities on the real axis for u � �1 and u � 2, known
as ultraviolet (UV) and infrared (IR) renormalons, respec-
tively. In the present paper, we assume there are no other
singularities in the complex plane, so that the holomorphy
domainB is the u-plane cut along the real axis for u � �1
and u � 2.
The expansions (3) and (10) can be formally obtained

from BðuÞ by means of an integral of Borel-Laplace type.

The recovery of the function bDðsÞ is actually ambiguous:
there aremany integral representations admitting (3) or (10)
as asymptotic expansions (for a recent discussion, see [35]).
As shown in [36], the definition based on the principal value
prescription,

bDðsÞ ¼ 1

�0

PV
Z 1

0
e�ðu=�0asð�sÞÞBðuÞdu; (13)

yields a function bDðsÞ satisfying to a large extent the general
analyticity requirements in the s-plane, and we shall adopt
this definition.

III. ACCELERATING CONVERGENCE BY
CONFORMAL MAPPINGS

Because of the first UV singularity at u ¼ �1, the
expansion (1) converges only on the disk juj< 1, although
BðuÞ is holomorphic in a much larger region. The domain
of convergence and the convergence rate can be increased
by expanding the function in powers of a different variable,
defined by the conformal mapping of B (the cut u-plane),
or a part of it, onto a disk (without loss of generality the
disk can be taken of radius equal to unity, and we shall
adopt this convention). It may intuitively seem that the
larger the domain mapped onto the unit disk, the better the
convergence properties of the series expansion in powers
of the new variable. This is indeed true, and we shall give
this hope a precise mathematical form. The result, proved
in Ref. [7], important and interesting as it is for a number of
applications, did not raise enough interest as it deserved, in
spite of the many applications of the conformal mapping
method during the decades. We shall therefore state below
the main ideas of the proof, in order to make the present
paper self-contained. The following two lemmas show
which is the variable that provides the best asymptotic
rate of convergence.
Lemma 1: Let D1 and D2 be two domains in the

complex u-plane, with D2 � D1, D2 � D1, such that
the conformal mappings D1 ! K1 and D2 ! K2 exist,
where K1 and K2 are unit disks. Consider the two con-
formal mappings
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z1 ¼ ~z1ðuÞ: D1 ! K1 ¼ fz1:jz1j< 1g;
z2 ¼ ~z2ðuÞ: D2 ! K2 ¼ fz2:jz2j< 1g: (14)

Let Q be a point ofD2, Q 2 D2, such that ~z1ðQÞ ¼ 0 and
~z2ðQÞ ¼ 0. Then,

j~z1ðuÞj< j~z2ðuÞj; for all u 2 D2; u � Q: (15)

Lemma 2: Let D1 and D2 be the domains defined in
Lemma 1, ~z1ðuÞ and ~z2ðuÞ the mappings (14), and BðuÞ a
function holomorphic in D1. Define the expansions

BðuÞ ¼ X1
n¼0

cn;1½~z1ðuÞ�n; (16)

BðuÞ ¼ X1
n¼0

cn;2½~z2ðuÞ�n; (17)

which are convergent for z1 � ~z1ðuÞ 2 K1 and z2 �
~z2ðuÞ 2 K2, respectively. Assume in addition that the

limits limn!1
ffiffiffiffiffiffiffiffiffiffiffi
jcn;1jn

q
and limn!1

ffiffiffiffiffiffiffiffiffiffiffi
jcn;2jn

q
exist2 and are

equal to one:

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffi
jcn;1jn

q
¼ lim

n!1

ffiffiffiffiffiffiffiffiffiffiffi
jcn;2jn

q
¼ 1: (18)

Then, a positive integer N ¼ NðuÞ exists such that the
following inequality holds:

R nðuÞ ¼
��������cn;1ð~z1ðuÞÞ

n

cn;2ð~z2ðuÞÞn
��������<1; (19)

for any n integer, n > N, and u 2 D2, u � Q.
Proofs of Lemma 1 and Lemma 2 are presented in

Appendix .

Optimal conformal mapping

It is now easy to understand fromLemma 1 and Lemma 2
that the larger the domain mapped onto the disk, the larger
the domain where the expanded function is represented by a
convergent power series and, also, the faster the conver-
gence rate at a given point. From the inequality (19), it
follows that the best asymptotic convergence rate is ob-
tained with the variable ~wðuÞ that mapsB, the holomorphy
domain of BðuÞ, onto the unit disk jwj< 1 in the plane
w � ~wðuÞ. In this case, the boundary ofB is mapped on the
boundary circle of the unit disk and the series (2) in powers
of ~wðuÞ is convergent everywhere in B. Moreover, the
asymptotic convergence rate of this series is, at any point
u 2 B, the fastest among all conformal mappings. This
mapping is known as ‘‘optimal’’ conformal mapping for
convergence acceleration [6,7,11].

Let us discuss an example to illustrate this result.
Assume we decide to modify this mapping by adding a
region lying outside the holomorphy domain. In doing so,
we wedge a region containing singularities inside the circle
and unavoidably make the convergence radius smaller. As
a consequence, the large-order convergence rate is worse.
If, on the other hand, we omit to map a part of the

holomorphy region inside the unit circle, the convergence
rate becomes worse, as follows by a direct application of
(19). The reason is that we do not make full use of
analyticity in this case, leaving aside a part of the holo-
morphy region. We conclude that by ~wðuÞ, the optimal
conformal mapping function, neither any singularity is
mapped inside the circle nor any part of the holomorphy
region is left out of the circle.
As can be seen from the proof of Lemma 2, when n is

large enough, the inequality (A8) reduces to ln
ðuÞ< 0,
i.e. the coefficients cn;j play no role in the ratio RnðuÞ of
the convergence rates. On the other hand, when n is finite
(and small), the term gðnÞ=n in (A8) may be positive and
greater than ln
ðuÞ, making the ratio RnðuÞ greater than
one. This may happen, in particular, when both j~z1ðuÞj and
j~z2ðuÞj, as well as their ratio 
, are close to 1. Therefore, the
expansions in powers of other conformal mappings can
provide at finite orders a better approximation compared to
the optimal expansion, a fact observed numerically in some
cases, especially for points near the boundary of the ana-
lyticity domain.
For the Adler function, assuming that there are no other

singularities except for the cuts along the real axis for
u � �1 and u � 2, the optimal conformal mapping is [6]

~wðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=2

p ; (20)

with the inverse

~uðwÞ ¼ 8w

3� 2wþ 3w2
: (21)

Using the optimal expansion (2) and the definition (13),
we were led in a natural way to the new perturbative
expansion [6]

D̂ðsÞ ¼ X
n�0

cnW nðsÞ; (22)

W nðsÞ ¼ 1

�0

PV
Z 1

0
e�ðu=�0asð�sÞÞð ~wðuÞÞndu: (23)

By construction, the series (22), when reexpanded in
powers of �s, reproduces the expansion (10) with the
coefficients Kn known from Feynman diagrams. On the
other hand, the expansion functions W n are singular at

�s ¼ 0, resembling the expanded function bD itself [10].
Moreover, as discussed in [9], under certain conditions, the
expansion (22) converges in a domain of the s-plane.

2The essence of this is that the expansions (16) and (17) have
equal radii of convergence. This assumption is nontrivial, be-
cause the expanded (Adler) function might be of such a form that
certain singularities of BðuÞ in z1 or z2 might disappear.
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IV. SINGULARITY SOFTENING

In the particular case of the Adler function in massless
QCD, the nature of the leading singularities in the Borel
plane is known: near the first branch-points, u ¼ �1 and
u ¼ 2, BðuÞ behaves like

BðuÞ � r1
ð1þ uÞ�1

and BðuÞ � r2
ð1� u=2Þ�2

; (24)

respectively. The residues r1 and r2 are not known, but the
exponents �1 and �2, calculated using renormalization-
group invariance, have known values [21,37,38]

�1 ¼ 1:21; �2 ¼ 2:58: (25)

The expansion (2) takes into account only the position of
the renormalons in the Borel plane. If a sufficient number
of expansion coefficients were known, (2) would be ex-
pected to describe also the character, strength, etc., of the
singularities as well. Since, however, only a few perturba-
tive coefficients are at present explicitly available, one
cannot expect that the expansion of the type (2) might be
able to give a satisfactory approximation of BðuÞ. It is
better than (1), which has no singularities in any finite-
order approximation, while every finite-order approximant
to (1) has the same location of cuts as the expanded
function. But it can hardly be expected that the first four
or five perturbative coefficients would be able to represent
BðuÞ with a satisfactory accuracy.

An explicit account for the leading singularities (24)
would therefore be helpful to further improve the conver-
gence. This can be done by multiplying BðuÞ with suitable
factors that vanish at u ¼ �1 and u ¼ 2 and compensate
the dominant singularities. The subsequent expansion of
the product in powers of a conformal mapping variable is
expected to converge better. This procedure is known as
‘‘singularity softening’’ [6,8].

In contrast with the optimal conformal mapping, singu-
larity softening is not unique [11,14,25]. The singularities
are present in BðuÞ, but we do not know their actual
form, except for the behavior (24) near the corresponding
branch-points. A possibility is to multiply BðuÞ by
simple factors like ð1þ uÞ�1ð1� u=2Þ�2 [6,8]. In [11] the
alternative softening factors ð1þ wÞ2�1ð1� wÞ2�2 were

adopted, where w ¼ ~wðuÞ is the optimal mapping (20).
The product of BðuÞ with these factors was afterwards
expanded in powers of the same variable w. Other possi-
bilities will be investigated in the next section.

V. NEW EXPANSION FUNCTIONS

The product of BðuÞwith softening factors is expected to
contain milder singularities, which vanish instead of ex-
ploding at u ¼ �1 and u ¼ 2 (in very peculiar cases the
singularities may disappear altogether, but this situation is
very unlikely). The effect of a mild singularity in a function
is not visible at low orders in its series expansions, and is
expected to appear only at large orders. Therefore, we can
ignore their effects, expanding the product in powers of
variables that account only for the next branch-points of
BðuÞ. In the case of the Adler function, these singularities
are placed at u ¼ 3, 4, etc., on the positive axis, and at
u ¼ �2, �3, etc., on the negative axis.
In general, we consider the functions

~w jkðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=j

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=j

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=k

p ; (26)

which map the u-plane cut along u � �j and u � k to the
disk jwjkj< 1 in the planewjk � ~wjkðuÞ. For j ¼ 1, k ¼ 2,

we recover the optimal mapping (20). In the following, we
shall consider also the variables w12, w13, w11 and w23, for
which the corresponding unit disks jwjkj< 1 are shown in

Fig. 1. We mention that the mappingw11, suggested in [2],
was discussed in a similar context in [39], and w13 was
investigated in [40]. According to the discussion in the
previous section, the last three mappings ‘‘push’’ inside the
unit circle a part of the u-plane containing some singular-
ities (indicated in Fig. 1). As a consequence, the expan-
sions based on these variables will converge in a smaller
domain and their convergence rates will be, in principle,
worse than that of the optimal mapping w12.
According to the above discussion, we shall expand in

powers of wjk the product of BðuÞ with suitable softening

factors. Specifically, we consider the expansions

SjkðuÞBðuÞ ¼
X
n�0

cjkn ð ~wjkðuÞÞn; (27)

-1 0 1

Re w
12

Im
 w

12

-1.5 -1 -0.5 0 0.5 1 1.5

Re w
13

Im
 w

13

-1.5 -1 -0.5 0 0.5 1 1.5

Re w
1∞

Im
 w

1∞

-1.5 -1 -0.5 0 0.5 1 1.5

Re w
23

Im
 w

23

FIG. 1. The unit disks jwjkj< 1 on which the conformal mapping defined in (26) maps the cut u-plane, for several values of j and k.
In the last three figures, the thick lines indicate the residual cuts along the segments ð ~w13ð2Þ; 1Þ, ð ~w11ð2Þ; 1Þ and ð�1; ~w23ð�1ÞÞ,
ð ~w23ð2Þ; 1Þ, which correspond, in the u-plane, to the segments (2, 3), ð2;1Þ, and ð�2;�1Þ, (2, 3), respectively.
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where SjkðuÞ must ‘‘soften’’ in principle all the singular-

ities of BðuÞ at�j � u < 0 and 0< u � k. Numerically, it
appears to be convenient to choose the factor Sjk as a

simple expression with a rapidly converging expansion in
powers of wjk, thus ensuring a good convergence of the

product (27).
A systematic application of this idea to the singularities

of BðuÞ requires the knowledge of the nature of the
branch-points, which at present is limited to the leading
singularities at u ¼ �1 and u ¼ 2. Therefore, we shall
limit ourselves to compensating factors that vanish at these
points, and take Sjk of the form:

SjkðuÞ ¼
�
1� ~wjkðuÞ

~wjkð�1Þ
�
�ðjÞ
1

�
1� ~wjkðuÞ

~wjkð2Þ
�
�ðkÞ
2
: (28)

The exponents �ðjÞ
1 ¼ �1ð1þ �j1Þ and �ðkÞ

2 ¼ �2ð1þ �k2Þ,
where �ij is Kronecker’s function, are taken such as to

reproduce the nature of the first branch-points ofBðuÞ, given
in (24). In particular, for the optimal case j ¼ 1, k¼2
we recover from (28) the factor ð1þ wÞ2�1ð1� wÞ2�2

used in [11], with w ¼ ~wðuÞ defined in (20).
Strictly speaking, for a fixed pair (j, k) the expansion (27)

converges only on the disk jwjkj<min½j ~wjkð�1Þj;j ~wjkð2Þj�.
For the optimal choice j ¼ 1; k ¼ 2, the expansion con-
verges in the whole unit disk jw12j< 1, i.e. in the whole
u-plane except for the cuts along the real axes for u � 2 and
u � �1 [6]. For other mappings, the convergence disk is
limited by the beginning of the cuts shown in Fig. 1. In
particular, if j ¼ 1 and k > 2 the expansions (27) diverge
for real u greater than 2, while for the conformal mappings
with j > 1, the expansions start to diverge for u greater than
one, due to the singularity at u ¼ �1 pushed inside the
circle (as in the last case shown in Fig. 1). However, the
product SjkðuÞBðuÞ has only mild singularities. Moreover,

the expansion (27) enters the Laplace-Borel integral (13)
where, for values of as in the domain of interest, the con-
tribution of high values ofu is suppressed. In particular, ifas
is not very large, the region u > 2 brings a small contribu-
tion to the integral, so signs of divergence in the case of the
variables w13 and w11 are expected to occur only at very
large orders N. On the other hand, for the variable w23, it is
natural to expect signs of divergence at lower values of N,
since the series (27) does not converge for u > 1.

By combining the expansion (27) with the definition
(13), we are led to the class of expansions

D̂ðsÞ ¼ X
n�0

cjkn W
jk
n ðsÞ; (29)

W jk
n ðsÞ ¼ 1

�0

PV
Z 1

0
e�ðu=�0asð�sÞÞ ð ~wjkðuÞÞn

SjkðuÞ du: (30)

By inserting into (30) the coupling asð�sÞ calculated
by solving the renormalization-group equation for s along

the circle defined in the integral (7), we obtain the
countour-improved (CI) version of the new expansions.
The new fixed-order (FO) expansions can be obtained in

a straightforward way [11], using as starting point (3).
They have the generic form

D̂ðsÞ ¼ X
n�0

~cjkn ðsÞ ~W
jk
n ; (31)

~W
jk
n ¼ 1

�0

PV
Z 1

0
e�½u=�0asðM2

�Þ� ð ~wjkðuÞÞn
SjkðuÞ du: (32)

The expansion functionsW 12
n coincide with the optimal

functions investigated in detail in [11]. In the following, we
shall also consider the expansion in terms of the func-
tions W 13

n , W 11
n and W 23

n (and their corresponding FO
versions). We emphasize that these expansions contain
different softening factors, which coincide only for u
near the corresponding singularities, when they reproduce
the known behavior (24). The treatment of the residual
singularities after softening is also different: the expansion
in powers of the optimal mapping uses the position of
the first singularities, which in general do not disappear
completely after the multiplication with the compensating
factors. The other expansions exploit the fact that a mild
singularity can be neglected at low perturbative orders, and
use also some information about the position of higher
renormalons. So, the representations (29)–(32) for differ-
ent j and k can be considered independent perturbative
expansions of the Adler function.

VI. MODELS

For testing the convergence of the various expansions,
we consider a class of models of the type proposed in [21]
(but analyzed without using conformal mappings), which
parametrize the Borel transform BðuÞ and then recover the
Adler function by means of the PV prescription (13).
In the model proposed in [21], the function BðuÞ is

expressed in terms of a few UV and IR renormalons

BBJðuÞ¼BUV
1 ðuÞþBIR

2 ðuÞþBIR
3 ðuÞþdPO0 þdPO1 u; (33)

parametrized as

BIR
p ðuÞ¼ dIRp

ðp�uÞ�p
½1þ ~b1ðp�uÞþ ~b2ðp�uÞ2þ . . .�;

(34)

BUV
p ðuÞ¼ dUVp

ðpþuÞ ��p
½1þ �b1ðpþuÞþ �b2ðpþuÞ2þ . . .�:

(35)

Most of the parameters are fixed using a renormalization-
group analysis at four loops, the free parameters of the
models being the residues dUV1 , dIR2 and dIR3 of the first

renormalons and the coeficients dPO0 , dPO1 of the polynomial
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in (33). They were fixed in [21] by the requirement to
reproduce the perturbative coefficients Kn for n � 4 from
(4) and the estimate K5 ¼ 283, and are:

dUV1 ¼�1:56	10�2; dIR2 ¼ 3:16; dIR3 ¼�13:5;

dPO0 ¼ 0:781; dPO1 ¼ 7:66	10�3:
(36)

We also investigated alternative models, where we im-
posed a specific residue at u ¼ 2. In one such example,
we kept the same expressions as in [21] for the first three
singularities and the same values of the residues at u ¼ �1
and u ¼ 3, while choosing a smaller residue at u ¼ 2,
dIR2 ¼ 1. The model must contain then three additional
free parameters in order to reproduce the first five Kn.
Specifically, we introduced a quadratic term in the poly-
nomial and two additional IR singularities, at u ¼ 4 and
u ¼ 5. For convenience, the nature of these additional
singularities, which is not known, was taken to be same
as that of the u ¼ 3 singularity. Thus, we considered the
alternative model:

BaltðuÞ ¼ BUV
1 ðuÞ þ BIR

2 ðuÞ þ BIR
3 ðuÞ þ dIR4

ð4� uÞ3:37

þ dIR5
ð5� uÞ3:37 þ dPO0 þ dPO1 uþ dPO2 u3; (37)

where, as discussed above, we took as input

dUV1 ¼�1:56	10�2; dIR2 ¼ 1; dIR3 ¼�13:5; (38)

and determined the remaining five parameters by matching
the same coefficients Kn for n � 5:

dPO0 ¼ 3:2461; dPO1 ¼ 1:3680; dPO2 ¼ 0:2785;

dIR4 ¼ 1560:614; dIR5 ¼�1985:73:
(39)

We emphasize that we consider these models only as a
mathematical frame to test the convergence properties of
the various expansions. The physical plausibility of one
model or another [21,24] will not be discussed here.
In Figs. 2 and 3, we show the real part of the Adler

function for the model [21], calculated along the circle
s ¼ M2

� expði�Þ with the standard and the new CI and FO
expansions defined in (29)–(32), where the perturbative
expansions were truncated at N ¼ 5 and N ¼ 18, respec-
tively. To facilitate the comparison with previous works
[11,21], we took �sðM2

�Þ ¼ 0:3156 in this calculation. For
N ¼ 18, the standard expansions exhibit big oscillations
and are not shown.
The curves show that the new CI expansions based on

conformal mappings give a good approximation, which

improves with increasing N, of the real part of bDðsÞ along
the whole circle (only the mapping w23 shows signs of
divergence for large N, as expected). This behavior is valid
also at higher N (we explored values up to N ¼ 25), for
both the real and imaginary parts of the Adler function.
As concerns the FO expansions, the description they

provide is quite good for points close to the spacelike
axis, � ¼ �, but gradually deteriorates near the timelike
axis, � ¼ 0. To understand this behavior, we remark that
the coupling asð�sÞ is calculated along the circle as the
exact solution of the RG equation in terms of asðM2

�Þ, both
in the ‘‘true’’ function (13) and the CI expansion functions
(30) (recall that as ¼ �s=�). Therefore, the improvement
of the series achieved by the conformal mappings is clearly
seen along the whole circle in the case of the CI expan-
sions. On the other hand, the FO expansions are obtained
by expanding asð�sÞ in powers of asðM2

�Þ, according
to (11). As remarked in [33], this expansion has a poor
convergence near the timelike axis, due to the appearance
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FIG. 2. Real part of the Adler function of the model [21] defined in (33)–(36), calculated along the circle s ¼ M2
� expði�Þ for

�sðM2
�Þ ¼ 0:3156, using the perturbative expansions with N ¼ 5 terms. Left panel: CI expansions. Right panel: FO expansions. The

exact function is represented by the solid line.
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of large imaginary logarithms in the coefficients. The curves
in the right panels of Figs. 2 and 3 show clearly the effect of
the weak convergence of the additional series (11) involved
in the definition of the FO expansions. The detailed behavior
depends on the conformal mapping: for instance, the
expansions based on the variables w13 and w11 provide,
for increasing N, a good approximation up to points rather
close to � ¼ 0, as shown in the right panel of Fig. 3.

In Figs. 4 and 5 we repeat the analysis for the alternative

model (37)–(39). The perturbative curves in Figs. 4 coincide

with those in Fig. 2, since the first five perturbative coeffi-

cients of the two models coincide. On the other hand, the

‘‘true’’ function is slightly flatter in the secondmodel, and is

better approximated by the standard CI expansion with

N ¼ 5 terms than it was the model shown in Fig. 2. By
increasing N, the new CI expansions based on conformal

mappings again converge nicely towards the true function,
as is seen in the left panel of Fig. 5. The new FO expansions
give a good approximation near the spacelike axis, but a
poor description, even worse than for the previous model,
near the unitarity cut. The conclusion is that, for both
models, the newCI expansions give a precise approximation

of D̂ðsÞ along thewhole circle, while the FO expansions give
a description that deteriorates near the timelike axis.
For the determination of �sðM2

�Þ, the quantity of interest
is the integral �ð0Þ defined in (7). In Table I, we give the

values of �ð0Þ for the model [21], calculated with the
standard and the modified CI and FO expansions, as a
function of the perturbative order N. To facilitate the
comparison with similar results reported in [11,21] we
took �sðM2

�Þ ¼ 0:34. As discussed in [21], at low N, the
standard CI expansion gives values systematically lower
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FIG. 4. Real part of the Adler function of the alternative model defined in (37)–(39), calculated along the circle s ¼ M2
� expði�Þ for

�sðM2
�Þ ¼ 0:3156, using the perturbative expansions with N ¼ 5 terms. Left panel: CI expansions. Right panel: FO expansions. The

exact function is represented by the solid line.

0 0.5 1 1.5 2 2.5 3

φ (radians)

0.05

0.1

0.15

Re D(φ)

CI w
12

CI w
13

CI w
1∞

CI w
23

0 0.5 1 1.5 2 2.5 3

φ (radians)

-0.2

-0.1

0

0.1

0.2

Re D(φ)

FO w
12

FO w
13

FO w
1∞

FO w
23

FIG. 3. As in Fig. 2 for N ¼ 18. The standard CI and FO expansions exhibit big oscillations and are not shown.
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than the true result, while the standard FO expansion gives
a better approximation. As remarked already in [11], for
the same low values of N, the difference between the
results of the new CI and FO expansions is smaller than
that of the standard ones. Moreover, as seen from Table I,
the difference decreases when passing from N ¼ 4 to
N ¼ 5, contrary to what happens with the standard expan-
sions. At larger N, the new CI expansions approach the
exact value (deviations appear only for the expansion
based on the conformal mapping w23, for the reasons
discussed in Sec. V). The new FO expansions give slightly
worse values, however, the mappings w13 and w11 lead to
good approximations at large N also in the FO case.

In Table II, we present similar results for the alternative
model (37)–(39). By construction, the first five rows in
Tables I and II are the same (but the ‘‘true’’ value is now

different, �ð0Þ ¼ 0:2102 instead of �ð0Þ ¼ 0:2371 in
Table I). The CI expansions based on the mappings w12,
w13 and w11 approach at large N the exact value as in this
case. In the FO case, the description is less precise and, for
the values of N considered, only the expansion based on
the mapping w11 exhibits a good numerical convergence.
Finally, we illustrate the properties of the expansions

by calculating the perturbative part of the moments
of the spectral function, defined in (8) and (9). Detailed
studies of the moments have been performed in
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FIG. 5. As in Fig. 4 for N ¼ 18. The standard CI and FO expansions exhibit big oscillations and are not shown.

TABLE I. The quantity �ð0Þ for the model BBJ proposed in [21] and specified in (33)–(36), calculated for �sðM2
�Þ ¼ 0:34 with the

standard and modified CI and FO expansions truncated at the order N. Exact value �ð0Þ ¼ 0:2371.

N CI st. FO st. CI w12 FO w12 CI w13 FO w13 CI w11 FO w11 CI w23 FO w23

2 0.1776 0.1692 0.1977 0.2228 0.2070 0.2203 0.1883 0.2524 0.2123 0.2099

3 0.1898 0.2026 0.2009 0.2460 0.2030 0.2440 0.1975 0.2530 0.2028 0.2437

4 0.1983 0.2200 0.2263 0.2463 0.2194 0.2460 0.2288 0.2465 0.2206 0.2463

5 0.2022 0.2288 0.2290 0.2440 0.2268 0.2423 0.2310 0.2427 0.2292 0.2423

6 0.2046 0.2328 0.2324 0.2484 0.2306 0.2421 0.2321 0.2431 0.2319 0.2449

7 0.2046 0.2342 0.2339 0.2536 0.2331 0.2457 0.2333 0.2454 0.2345 0.2502

8 0.2017 0.2353 0.2339 0.2505 0.2343 0.2484 0.2341 0.2471 0.2347 0.2476

9 0.2004 0.2367 0.2341 0.2431 0.2348 0.2457 0.2346 0.2465 0.2347 0.2377

10 0.1842 0.2390 0.2351 0.2420 0.2348 0.2394 0.2348 0.2436 0.2353 0.2337

11 0.1962 0.2402 0.2359 0.2406 0.2348 0.2352 0.2349 0.2399 0.2348 0.2335

12 0.1123 0.2436 0.2362 0.2298 0.2351 0.2349 0.2349 0.2370 0.2374 0.2262

13 0.2629 0.2408 0.2362 0.2229 0.2355 0.2341 0.2349 0.2356 0.2348 0.2226

14 �0:2915 0.2575 0.2364 0.2242 0.2361 0.2303 0.2349 0.2354 0.2395 0.2314

15 1.1011 0.2170 0.2367 0.2173 0.2366 0.2277 0.2350 0.2357 0.2356 0.2365

16 �3:362 0.3818 0.2368 0.2102 0.2369 0.2305 0.2351 0.2360 0.2343 0.2374

17 9.5931 �0:1881 0.2368 0.2176 0.2372 0.2356 0.2352 0.2360 0.2533 0.2512

18 �31:52 2.144 0.2368 0.2201 0.2373 0.2371 0.2354 0.2359 0.1926 0.2665
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Refs. [20,26,32,33], especially in connection with the
power corrections.

The approximation provided by various expansions re-
sults from the interplay between the behavior of the series
and that of the integrand along the circle. Both integrands
in (8) and (9) vanish on the timelike axis, but, while the
second integrand suppresses the contribution of a region,
which increases with k, near the timelike axis, the first
exhibits oscillations increasing with k along the circle, and
vanishes also on the spacelike axis for odd k. From the
behavior shown in Figs. 2–5, we expect therefore a better
approximation by the new FO expansions of the moments
(9) compared to (8). We recall that the new FO expansions
give a good description of the Adler function near the
spacelike axis, but the accuracy deteriorates near the
timelike axis, due to the poor convergence of the expansion
(11). For the new CI expansions, a more or less comparable
description at low orders, depending on the specific

integrand, and a very good convergence at high N, are
foreseen. For the standard expansions, the results depend
on the fortuitous cancellations of the contributions along

the circle, as in the case of �ð0Þ.
This expectation is confirmed in Figs. 6–9,wherewe show

themomentsM5 and �M5 calculatedwith the standard and the
new expansions for the model (33)–(36) defined in [21], and
for the alternative model defined in (37)–(39). We chose a
rather highmoment to see clearly the difference between the
behavior of (8) and (9). In all cases, we took s0¼M2

�.
For the first model, the new CI expansions give a very

good description of both moments, as shown in the left
panels of Figs. 6 and 7. The new FO expansions give a
rather poor description of the momentM5, but a very good
approximation of the moment �M5. The right panel of Fig. 7
shows that, for an integrand that strongly suppresses the
region near the timelike axis, the new FO expansions
provide a very good description. As for the standard

TABLE II. The quantity �ð0Þ for the modified model Balt specified in (37)–(39), calculated for �sðM2
�Þ ¼ 0:34 with the standard

and modified CI and FO expansions truncated at the order N. The rows for N � 5 are identical to those in Table I. Exact value
�ð0Þ ¼ 0:2102.

N CI st. FO st. CI w12 FO w12 CI w13 FO w13 CI w11 FO w11 CI w23 FO w23

6 0.2041 0.2318 0.2263 0.2493 0.2271 0.2420 0.2284 0.2431 0.2260 0.2454

7 0.2041 0.2290 0.2201 0.2628 0.2220 0.2481 0.2230 0.2472 0.2174 0.2580

8 0.2023 0.2213 0.2202 0.2756 0.2164 0.2595 0.2182 0.2541 0.2136 0.2734

9 0.2037 0.2110 0.2175 0.2742 0.2143 0.2686 0.2154 0.2608 0.2138 0.2706

10 0.1924 0.2032 0.2055 0.2709 0.2144 0.2651 0.2146 0.2629 0.2115 0.2517

11 0.2124 0.2004 0.1982 0.2905 0.2136 0.2504 0.2146 0.2578 0.2068 0.2531

12 0.1412 0.2071 0.2007 0.3063 0.2111 0.2406 0.2148 0.2468 0.2081 0.2627

13 0.3121 0.2117 0.2022 0.2820 0.2086 0.2449 0.2149 0.2340 0.2060 0.2133

14 �0:2105 0.2344 0.2001 0.2666 0.2074 0.2459 0.2146 0.2239 0.2124 0.1338

15 1.2336 0.1934 0.2009 0.2865 0.2079 0.2176 0.2142 0.2187 0.2087 0.1192

16 �3:147 0.3500 0.2044 0.2562 0.2091 0.1676 0.2136 0.2175 0.2073 0.0930

17 9.948 �0:2333 0.2059 0.1822 0.2102 0.1355 0.2130 0.2175 0.2275 �0:0415

18 �30:94 2.084 0.2058 0.1722 0.2107 0.1345 0.2124 0.2159 0.1617 �0:1019
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FIG. 6. MomentM5 defined in (8) for the model [21], calculated for js0j ¼ M2
� and �sðM2

�Þ ¼ 0:34, as a function of the perturbative
order N, for the standard and the new expansions based on several conformal mappings wjk defined in (26). The grey horizontal line is

the exact value. Left panel: CI expansions. Right panel: FO expansions.

IRINEL CAPRINI AND JAN FISCHER PHYSICAL REVIEW D 84, 054019 (2011)

054019-10



6 82 4 10 12 14 16 18

Perturbative order

0

0.2

0.4

0.6

0.8

1
CI standard
CI w

12

CI w
13

CI w
1∞

CI w
23

6 82 4 10 12 14 16 18

Perturbative order

0

0.2

0.4

0.6

0.8

1
FO standard
FO w

12

FO w
13

FO w
1∞

FO w
23

FIG. 7. Moment �M5 defined in (9) for the model [21], calculated for js0j ¼ M2
� and �sðM2

�Þ ¼ 0:34, as a function of the perturbative
order N, for the standard and the new expansions based on several conformal mappings. The grey horizontal line is the exact value.
Left panel: CI expansions. Right panel: FO expansions.
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FIG. 8. MomentM5 defined in (8) for the alternative model (37)–(39), calculated for js0j ¼ M2
� and �sðM2

�Þ ¼ 0:34, as a function of
the perturbative order N for the standard and the new expansions. The grey horizontal line is the exact value. Left panel: CI expansions.
Right panel: FO expansions.

6 82 4 10 12 14 16 18

Perturbative order

0

0.2

0.4

0.6

0.8

1
CI standard
CI w

12

CI w
13

CI w
1∞

CI w
23

6 82 4 10 12 14 16 18

Perturbative order

0

0.2

0.4

0.6

0.8

1
FO standard
FO w

12

FO w
13

FO w
1∞

FO w
23

FIG. 9. Moment �M5 defined in (9) for the alternative model (37)–(39), calculated for js0j ¼ M2
� and �sðM2

�Þ ¼ 0:34, as a function of
the perturbative order N for the standard and the new expansions. The grey horizontal line is the exact value. Left panel: CI expansions.
Right panel: FO expansions.
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expansions, at low orders they give a better approximation
of the moment M5, for which suitable cancellations of the
terms along the circle occur. At larger N, both standard
expansions show large deviations from the true result.

For the second model, Figs. 8 and 9 indicate a similar
pattern, with a slightly worse approximation given by the
new expansions at low orders. For both models, the most
impressive feature is the good description of the moments
by the new CI expansions at large orders (only the expan-
sion based on the variable w23 exhibits small deviations at
large N, as expected from the discussion in Sec. V).

VII. DETERMINATION OF �sðM2
�Þ

The above analysis demonstrated the good convergence
properties of the new contour-improved (CI) perturbative
series based on singularity softening and expansions of the
Borel transform in powers of suitable conformal mappings.
We apply now these expansions for a determination of
�sðM2

�Þ from the experimental rate of hadronic � decays.
We emphasize that our calculation is not based on the
models discussed in the previous section, but relies only
on the known coefficients Kn given in (4) and a very
conservative choice [21,28] for the next coefficient,
K5 ¼ 283� 283. For the running of the coupling, we use
the calculated perturbative coefficients �j from (5), an

assumption about the next coefficient �4 being considered
only for the assessment of the errors.

The standard determination of �sðM2
�Þ from hadronic

�-decays requires the theoretical calculation of the integral
defined in (7), using the perturbative expansion of the

Adler function. On the other hand, the quantity �ð0Þ can
be determined with great precision from (6). The recent
determination R�;VþA ¼ 3:4771� 0:0084 [41] leads to the
updated phenomenological value [28]

�ð0Þ
phen ¼ 0:2037� 0:0040exp � 0:0037PC; (40)

where the first error is experimental and the second
accounts for the power corrections.

Using this input, the values of �sðM2
�Þ obtained with

the new CI expansions defined in (29) and (30), with the
expansion functions W 12

n , W 13
n , W 11

n and W 23
n , respec-

tively, are:

0:3195� 0:0034exp � 0:0031PC�0:0137
þ0:0246ðK5Þþ0:0018

�0:0019ðscaleÞ;
0:3208� 0:0035exp � 0:0032PC�0:0093

þ0:0131ðK5Þþ0:0024
�0:0088ðscaleÞ;

0:3182� 0:0033exp � 0:0031PC�0:0111
þ0:0172ðK5Þþ0:0025

�0:0088ðscaleÞ;
0:3193� 0:0034exp � 0:0031PC�0:0115

þ0:0182ðK5Þþ0:0023
�0:0063ðscaleÞ:

(41)

The first two errors are produced by the uncertainties of �ð0Þ
phen

given in (40), the third one is obtained by varying the coef-
ficientK5 in the conservative rangementioned above, and the

last error accounts for thevariation of the scale as	M2
�, with	

in the range 0.5–1.5 [26].
The largest errors in (41) are produced by the uncer-

tainty in the coefficient K5. To understand this result, we
remark that the series (29) and (30), when reexpanded in
powers of �s, generate an infinite number of higher-order
terms [6,11]. In particular, the representations based on the
expansion functions W 12

n , W 13
n , W 11

n and W 23
n , trun-

cated after four terms (i.e. neglecting the fifth term propor-
tional toK5), lead to coefficientsK5 equal to 256, 161, 256,
and 179, respectively. If a very different value, like K5 ¼ 0
or K5 ¼ 566, is imposed, the expansions can match the

same �ð0Þ
phen only with the price of a much larger/smaller

coupling, respectively. In fact, if K5 is assumed to be
negative and large, the coupling should be so large that
the calculation becomes unreliable, and no solution
�sðM2

�Þ exists at all.
By taking the average of the values in (41), we obtain

�sðM2
�Þ ¼ 0:3195� 0:0034exp

� 0:0031PC�0:0114
þ0:0182 ðK5Þþ0:0018

�0:0019ðscaleÞ
� 0:0005�4

; (42)

where we added an uncertainty to account for the trunca-
tion of the�-function (obtained by including a further term
based on a geometrical growth, �4 ¼ ��2

3=�2 [19,26]).

We emphasize that the errors quoted in (42) were obtained
as simple averages of the individual errors given in (41).
Much lower uncertainties would be obtained if standard
statistical procedures for independent determinations (for
instance, Eqs. (14) and (15) of [15]) were applied. In
practice, although the values given in (41) may be consid-
ered independent theoretical determinations, we prefer the
conservative errors given in (42), which avoid any bias.
The remarkable consistency of the theoretical determina-
tions (41) is nevertheless a strong argument in favor of our
predictions.
By combining in quadrature the errors given in (42), we

finally obtain

�sðM2
�Þ ¼ 0:3195þ0:0189

�0:0138: (43)

The central value in (43) coincides practically with our
previous determination [11], �sðM2

�Þ ¼ 0:320� 0:011,
obtained with the optimal mapping w12 and the slightly

different value �ð0Þ
phen¼0:2052�0:0050 from [21]. The

smaller error quoted in [11] is due mainly to a smaller
range,K5¼283�142, adopted there for the coefficientK5.
We note that for the same input, the standard CI expan-

sion to 5-loops leads to �sðM2
�Þ ¼ 0:3419� 0:012, while

the standard FO expansion gives �sðM2
�Þ ¼ 0:3199þ0:0118

�0:0074

[28]. The smaller errors are mainly due to the fact that the
standard expansions are less sensitive to the variation of
K5. However, these expansions have the behavior expected
for an asymptotic series, approaching the expanded
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function up to a certain order N, and starting to oscillate
violently afterwards. For some expanded functions, the
minimal error reached before the onset of oscillations
may be rather small, but in other cases, the standard
expansion never describes the function with sufficient
accuracy. Therefore, the uncertainty of K5 can generate
only a part of the truncation error, an additional term being
necessary in order to account for the divergent pattern (this
term may be taken, for instance, as the difference of about
0.022 between the predictions of the standard CI and FO
expansions to 5-loops).

VIII. SUMMARYAND CONCLUSIONS

In this paper, we investigated a new class of expansions
of the Adler function in perturbative QCD and applied
them to a determination of �s from hadronic � decays.
Our work extends previous studies reported in [6,9–11,25].

As remarked in [13], if a series is divergent and the
expansion parameter is not very small, a summation of the
perturbative expansion is indispensable. The definition of
the expansion functions investigated in this work exploits
the information available on the large-order behavior of the
perturbative series, together with mathematical results on
accelerating the series convergence by conformal map-
pings [7]. These techniques are suitable for the Borel plane,
where an analyticity domain around the origin exists. An
important feature [9] is that the expansion functions share
the singularity of the expanded function at the origin
�s ¼ 0 of the coupling plane.

In the present study, we focused on the procedure of
‘‘singularity softening,’’ by which the strong leading sin-
gularities in the Borel plane are turned into milder singu-
larities, where the function vanishes instead of exploding.
In practice, this is achieved by expanding the product of
BðuÞ with suitable factors that vanish at the points u ¼ �1
and u ¼ 2. The procedure is possible due to the exact
results available on the nature of the leading singularities
[21,37,38]. Since the effect of a mild singularity is ex-
pected to occur only at higher orders in a power series, one
can choose as expansion variable a conformal mapping that
accounts only for the further singularities of the Borel
transform. Extensive numerical studies showed that it is
convenient to take the factors that multiply the function
BðuÞ (which in principle are arbitrary) as simple expres-
sions of the same variable that is used for expanding the
product.

In Sec. VI, we investigated in detail the properties of the
expansions defined in Sec. V by using two specific models
for the Adler function. As already mentioned, we consider
these models only as a mathematical frame for testing the
convergence properties of the various expansions and make
no assumption about their physical plausibility (actually,
there is no consensus on this subject in the literature). In all
cases, we obtain a good convergence of the new contour-
improved (CI) expansions defined in (29) and (30), for the

choices of j and k adopted in this work. The alternative
fixed-order (FO) expansions (31) and (32) converge near
the spacelike axis, but provide a worse approximation near
the timelike axis, since they also involve the expansion
(11), which converges slowly in this region.
Suitable cancellations between the two terms in the

expansion (3) make the standard FO expansions more
suitable for calculating integrals like (7) for some models.
Such fortuitous cancellations are not expected to occur in
the case of the new FO expansions, where the approxima-
tion is quite good near the spacelike axis and gradually
deteriorates for points closer to the timelike axis. Thus, the
new CI expansions considered in the present work have a
more solid theoretical basis than the new FO expansions.
In Sec. VII, we present a determination of �sðM2

�Þ based
on the new CI expansions defined in Eqs. (29) and (30). We
emphasize that in our analysis we do not rely on models
and make no assumption about the strength of the leading
singularities in the Borel plane. The predictions of the
various expansions, reported in (41), exhibit a remarkable
consistency among each other.
Our final prediction (43), obtained by averaging the

individual values (41), is very close to that of the standard
FO expansion, while the standard CI expansion gives a
value larger by about 0.022. It is important to understand
the origin of this result. In our opinion, it is related to the
consistent treatment of the running of the coupling and the
Adler function coefficients in the standard FO expansion
and the new CI one.
As discussed in [21], the standard FO expansion is

suitable for models like the ansatz (33)–(36), where the
residues of the dominant renormalons are fixed in a natural
way from the first coefficients Kn. On the other hand, as
noticed in Sec. VI, this expansion is not so efficient for
more artificial models like that presented in Eqs. (37)–(39),
where the strength of the first IR renormalon is forced by
hand to a lower value. So, the standard FO expansion
seems more suited than the standard CI one for describing
functions with a natural pattern of leading singularities.
Suitable compensations of the two terms of the same order
in (3) play an important role in this description. As noticed
in [28], these cancellations are destroyed in the standard CI
expansion (10), which sums the running coupling terms,
but drops the Adler function coefficients Kn in higher
orders.
It is precisely this deficiency that is corrected by the new

CI expansions, which sum also the Adler function coeffi-
cients, by properly implementing the singular behavior
near the leading renormalons (with no assumptions about
their strength) and expanding in powers of a conformal
mapping. So, the new CI expansions sum both the running
coupling terms and the expansion of the Adler function,
while in the standard FO expansion, the fixed-order option
is made for both expansions. This symmetric treatment
explains why their predictions are similar, at least for
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truncation orders N ¼ 4 or N ¼ 5 of interest at present. At
higher N, while both the standard FO and CI expansions
start to diverge, the new CI expansions show an impressive
convergence for all types of expanded functions.

As we already discussed, the largest errors in (41) are
due to the conservative range K5 ¼ 283� 283 adopted for
the 5-loop coefficient K5. Expressed in other words, the
new expansions appear to exclude both very large and very
small (or negative) values of K5, which would require
unusual values of �sðM2

�Þ to reproduce the input (40).
For the standard expansions, the error related to K5 is
much smaller, but it cannot fully account for the asymp-
totic character of the series, which may start to oscillate at a
certain N without approaching the expanded function with
a sufficient accuracy.

The value given in (43) represents our best determina-
tion, obtained as the average of the determinations (41)
with a very conservative treatment of the uncertainties. Our
analysis shows that for increasing the precision of �sðM2

�Þ
determination with the new expansions a more precise
knowledge of the 5-loop coefficient K5 is crucial.
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APPENDIX A: PROOF OF LEMMAS
GIVEN IN SEC. III

Proof of Lemma 1: We remind the reader that Lemma 1
was stated and proved in Ref. [7]; we recall it for com-
pleteness here.

Let us define

fðz2Þ ¼ ~z1½~z½�1�
2 ðz2Þ� (A1)

for z2 2 K2, where ~z
½�1�
2 is the inverse to ~z2, which exists

since ~z2ðuÞ is a conformal mapping.
The function fðz2Þ is holomorphic on the unit disk K2

of the z2-plane and maps this disk into the unit diskK1 of
the z1-plane, i.e. jfðz2Þj � 1. Moreover, since ~z1ðQÞ ¼ 0
and ~z2ðQÞ ¼ 0 by assumption, it follows that fð0Þ ¼ 0.

We now apply Schwarz’s lemma, which states that if a
function FðzÞ is holomorphic on the disk jzj<1 and sat-
isfies the conditions Fð0Þ ¼ 0 and jFðzÞj< 1 for jzj< 1,
then

jFðzÞj � jzj (A2)

everywhere in jzj< 1. Besides, if the equality sign occurs
in (A2) at least at one interior point, then it takes place
everywhere and FðzÞ has the form FðzÞ ¼ z expði�Þwith �
real.
Applying Schwarz’s lemma to the function f defined in

(A1), we have jfðz2Þj � jz2j for z2 2 K2. Using the defi-

nition (A1) and the obvious relation ~z½�1�
2 ðz2Þ ¼ u for u 2

D2, we obtain

j~z1ðuÞj � j~z2ðuÞj; u 2 D2: (A3)

Ignoring the mappings that reduce to mere rotations
according to Schwarz’s lemma, we are left with a sharp
inequality in (A3),

j~z1ðuÞj< j~z2ðuÞj; u 2 D2; u � Q; (A4)

which proves Lemma 1.
Proof of Lemma 2: The relations (18) imply that the

coefficients jcn;jj can, for large enough n, be represented in
the form

jcn;jj ¼ egjðnÞ; j ¼ 1; 2; (A5)

where gjðnÞ are real-valued functions, subject to the

conditions limn!1gjðnÞ=n ¼ 0, j ¼ 1, 2. Then, the ratio

defined in (19) can be written as

R nðuÞ ¼ egðnÞ 	 ½
ðuÞ�n; (A6)

where

gðnÞ¼g1ðnÞ�g2ðnÞ; 
ðuÞ¼ j~z1ðuÞ=~z2ðuÞj: (A7)

Taking the logarithm of (A6), one obtains, for large n, the
inequality

lnRnðuÞ ¼ n

�
gðnÞ
n

þ ln
ðuÞ
�
< 0; (A8)

since from (A7) it follows that limn!1gðnÞ=n ¼ 0, while

ðuÞ< 1 for all u 2 D2, u � Q, according to Lemma 1.
This implies (19), proving Lemma 2.

[1] G. ’t Hooft, in Proceedings of the 15th International

School on Subnuclear Physics, Erice, Sicily, 1977,

edited by A. Zichichi (Plenum Press, New York, 1979),
p. 943.

[2] A. H. Mueller, in QCD—Twenty Years Later, Aachen 1992,

edited by P. Zerwas and H.A. Kastrup (World Scientific,

Singapore, 1992).
[3] D. Broadhurst, Z. Phys. C 58, 339 (1993).

IRINEL CAPRINI AND JAN FISCHER PHYSICAL REVIEW D 84, 054019 (2011)

054019-14

http://dx.doi.org/10.1007/BF01560355


[4] M. Beneke, Phys. Lett. B 307, 154 (1993); Nucl. Phys.
B405, 424 (1993).

[5] M. Beneke, Phys. Rep. 317, 1 (1999).
[6] I. Caprini and J. Fischer, Phys. Rev. D 60, 054014 (1999).
[7] S. Ciulli and J. Fischer, Nucl. Phys. 24, 465 (1961).
[8] D. E. Soper and L. R. Surguladze, Phys. Rev. D 54, 4566

(1996).
[9] I. Caprini and J. Fischer, Phys. Rev. D 62, 054007

(2000).
[10] I. Caprini and J. Fischer, Eur. Phys. J. C 24, 127

(2002).
[11] I. Caprini and J. Fischer, Eur. Phys. J. C 64, 35 (2009).
[12] R. Seznec and J. Zinn-Justin, J. Math. Phys. (N.Y.) 20,

1398 (1979).
[13] J. Zinn-Justin and U.D. Jentschura, J. Math. Phys. (N.Y.)

51, 072106 (2010).
[14] I. Caprini and J. Fischer, Rom. J. Phys. 55, 527 (2010).
[15] S. Bethke, Eur. Phys. J. C 64, 689 (2009).
[16] P. A. Baikov, K.G. Chetyrkin, and J. H. Kühn, Phys. Rev.
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