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The quark-gluon string model reproduces well the global characteristics of the pp collisions at energies

of
ffiffiffi
s

p ¼ 200 GeV (RHIC) and
ffiffiffi
s

p ¼ 900 GeV (LHC). In present paper the quark-gluon string model is

employed for the description of femtoscopic characteristics of identical pions produced in the afore-

mentioned reactions. The study is concentrated on the low multiplicity and multiplicity averaged events,

where no collective effects are expected. The different procedures for fitting the one-dimensional

correlation functions of pions are studied and compared with the space-time distributions extracted

directly from the model. Particularly, it is shown that the double-Gaussian fit reveals the contributions

coming separately from resonances and from directly produced particles. The comparison of model results

with the experimental data favors a decrease in particle formation time with rising collision energy.
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I. INTRODUCTION

Experiments at the Relativistic Heavy Ion Collider
(RHIC) have demonstrated that hot and dense matter
with partonic collectivity has been formed in ultrarelativ-
istic Auþ Au collisions at

ffiffiffi
s

p ¼ 200 AGeV [1]. Proton-
proton collisions are conventionally used as a reference to
compare with nuclear collisions and to understand the
observed collective effects. The new interest in general
features of pp collisions at ultrarelativistic energies ap-
peared after the first publications of Large Hadron Collider
(LHC) data obtained in pp interactions at

ffiffiffi
s

p ¼ 900 GeV
and 7 TeV [2,3].

The Bose-Einstein enhancement in the production of
two identical pions at low relative momenta was first
observed in �pp collisions about 50 years ago [4]. Since
then, the developed correlation method, colloquially
known at present as the ‘‘femtoscopy technique,’’ was
successfully applied to the measurement of space-time
characteristics of the production process at the distances
of a few fermis (1 fm ¼ 10�15 m) (see, e.g., [5–7] and
references therein). The space-time relative distances are
‘‘measured’’ by femtoscopy studies at the points where the
particles stop to interact. This moment occurs at the very
late stage of the collision, long after the quark-gluon

plasma or any other exotic state of matter has disappeared.
But signals like the geometric growth of the reaction zone
and the specific features of the collective flow, generated
by quark-gluon plasma pressure gradients, could be im-
printed in the final state as very specific space-momentum
correlations influencing particle spectra and femtoscopic
radii.
The system created in ultrarelativistic pp collisions at

RHIC and especially at LHC energies can be similar to the
system created in noncentral heavy-ion collisions because
of the large energy deposited in the overlapping region and
therefore can also demonstrate collective behavior. The
strong argument supporting this point of view comes
from the observation of the almost identical multiplicity
and momentum dependencies of the femtoscopic radii in
pp and Auþ Au collisions by the STAR collaboration at
RHIC [8]. In particular, the transverse momentum depen-
dence of the radii can be linked to the collective flow
developed in the system [7]. The striking result obtained
by the ALICE collaboration from study of the Bose-
Einstein correlations in pp collisions at

ffiffiffi
s

p ¼ 900 GeV
[9] is the absence of the transverse momentum depen-
dence, whereas the increase of correlation radii with rising
multiplicity is similar to that observed in relativistic heavy-
ion collisions at energies up to RHIC.
The aim of the present article is to study hadronization

processes in pp collisions at ultrarelativistic energies using
the momentum correlation technique within the
Monte Carlo quark-gluon string model (QGSM) [10,11]
and to compare results of calculations with the experimen-
tal data obtained at RHIC and LHC. This model describes
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successfully the main characteristics of pp interactions,
such as multiplicity, transverse momentum and (pseudo)
rapidity distributions in a broad energy range from

ffiffiffi
s

p ¼
200 GeV up to top LHC energy

ffiffiffi
s

p ¼ 7 TeV [11]. We try
to understand to what extent one is able to describe the
correlation functions (CFs) in ultrarelativistic pp colli-
sions within the pure string model picture.

The paper is organized as follows. A brief description of
the model features is presented in Sec. II. Special attention
is given to the concept of the formation time, which plays a
very important role for study of the femtoscopy correla-
tions. Section III introduces the method of correlation
functions employed by both the STAR and the ALICE
collaboration. Model results obtained for pp collisions atffiffiffi
s

p ¼ 200 GeV and
ffiffiffi
s

p ¼ 900 GeV are presented in
Sec. IV. Comparison with the available experimental data
is given as well. The proper choice of the baseline used in
such measurements is discussed. The ability of the double-
Gaussian fit to identify the contributions of string processes
and resonances to the correlation functions is demon-
strated. Finally, conclusions are drawn in Sec. V.

II. THE MODEL

A. Basic features

Our model is the Monte Carlo realization of the quark-
gluon string model developed in [12]. Similarly to the dual

parton model [13], QGSM is based on Gribov’s Reggeon
field theory (GRT) [14] accomplished by a string phenome-
nology of particle production in inelastic hadron-hadron
collisions. The model incorporates the Field-Feynman
algorithm [15] of string fragmentation. It enables one to
consider emission of hadrons from both ends of the string
with equal probabilities. As independent degrees of free-
dom QGSM includes octet and decuplet baryons, octet and
nonet vector and pseudoscalar mesons, and their antiparti-
cles. Pauli blocking is taken into account by excluding
the already occupied final states from the available
phase space.
Strings in the QGSM can be produced as a result of the

color exchange mechanism or, like in diffractive scattering,
due to momentum transfer. The Pomeron, which is a pole
with an intercept �Pð0Þ> 1 in the GRT, corresponds to the
cylinder-type diagrams. The s-channel discontinuities of the
diagrams, representing the exchange by n Pomerons, are
related to the process of 2kðk � nÞ string production.
If the contributions of all n-Pomeron exchanges to the for-
ward elastic scattering amplitude are known, the
Abramovskii-Gribov-Kancheli cutting rules [16] enable
one to determine the cross sections for 2k strings. The hard
gluon-gluon scattering and semihard processes with quark
and gluon interactions are also incorporated in themodel via
the so-called hard Pomeron exchange [11,17], first discussed
in [18]. The hard Pomeron is nowadays a standard feature
attributed to a variety of GRT-based microscopic models,
such as the dual parton model [13,19], PHOJET [20], QGSJET
[21] and EPOS [22]. Its presence seems to be necessary to
describe the rise of multiplicity at midrapidity and pT spec-
tra of secondaries inpp interactions at LHC energies within
the QGSM [11]. Further details of the Monte Carlo version
of QGSMand its extension toAþ A collisions can be found
in [10,11,23].
Figure 1 displays the pseudorapidity and transverse

momentum distributions of charged particles produced in
nonsingle diffractive pp collisions at

ffiffiffi
s

p ¼ 200 GeV,
900 GeV and 7 TeV, respectively. Experimental data are
also plotted. Since the model reproduces the bulk charac-
teristics of the collisions quite well, we are encouraged to
apply the QGSM for the analysis of particle interferometry.
Note, however, that the GRT does not provide the space-
time picture of the system evolution, thus leaving room for
the assumptions concerning the femtoscopy correlations
quite open. Here one has to rely on approaches developed
within the framework of the string phenomenology.

B. QGSM and particle coordinates

The space-time evolution of the collisions starts from the
interacting partons, i.e., quarks, diquarks and sea quarks
distributed randomly in the projectile-target overlapping
region. The strings between them are stretching and sub-
sequently decaying into hadrons. Because of the uncertainty
principle it takes time to create a hadron from constituent
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FIG. 1 (color online). (a) The charged particle pseudorapidity
spectra and (b) their transverse momentum spectra in non-single-
diffractive events calculated in QGSM for pp collisions at

ffiffiffi
s

p ¼
200 GeV (dashed lines), 900 GeV (dash-dotted lines) and 7 TeV
(solid lines). Symbols denote the experimental data taken from
[2,3,30].
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quarks. Also, hadrons are composite particles, and this
circumstance makes the definition of the formation time
model dependent. In the framework of theLund stringmodel
[24] two definitions of the formation time or, equivalently,
formation length are eligible [25]. In the ‘‘yo-yo’’ case it
corresponds to the time/coordinate of the first intersection
point of the hadron constituents (‘‘yo-yo’’ formation time).
In the so-called constituent case it corresponds to the time/
coordinate of the point of rupture of the string (constituent
formation time). In the present version of the QGSM the
constituent formation time is used. The string length L ¼
Ms=2� depends on its massMs and on the string tension �.
The mass of the string is not fixed. It is determined by the
generation of longitudinal and transverse momenta of va-
lence quarks at the string ends, that depend on the momenta
of colliding hadrons. The length of the string varies from the
maximum value determined by the momentum of the inci-
dent hadron to the minimum value determined by the pion
mass. Therefore, for the formation of a resonance the mass
and length of the string must be much larger than for
production of a pion.

The formation time t�i and coordinate z�i of ith hadron in
the string center of mass can be expressed via its energy E�

i ,
its longitudinal momentum p�

zi and the longitudinal mo-

menta/energies of all hadrons produced by the decay of this
string (see Appendix)

t�i ¼
1

2�

�
Ms � 2

Xi
j¼1

p�
zj

�
; (1)

z�i ¼
1

2�

�
Ms � 2

Xi
j¼1

E�
j

�
: (2)

Then we calculate ti in the laboratory frame and make the
propagation of the coordinates to this point ðxi; yi; zi; tiÞ:
ai ¼ a0i þ tipai=Ei, a ¼ x, y, z. The initial spatial distri-
bution of partons in a proton is found to be insignificant
for the pion coordinate distributions at freeze-out, which
are dominated by both the formation time of hadrons
and decay lengths of resonances. To study the possible

reduction of the formation time because of, e.g., increase
of the string tension with rising incident energy we intro-
duce in Eqs. (1) and (2) the scaling parameter �, i.e.,
� ¼ ��0, where �0 ¼ 0:88 GeV=fm is the default value
of the string tension coefficient in the QGSM found from
comparison with experimental data at lower energies [10].
The coordinate distributions of pions at freeze-out are
shown in Fig. 2 for pp collisions at

ffiffiffi
s

p ¼ 900 GeV with
� ¼ 1, 1.5 and 3. One can see that increase of �makes the
coordinate distributions narrower.

III. THE CORRELATION FUNCTION
REPRESENTATIONS

The momentum correlations are usually studied
with the help of correlation functions of two or more
particles. Particularly, the two-particle correlation function
CFðp1; p2Þ ¼ Aðp1; p2Þ=Bðp1; p2Þ is defined as a ratio of
the two-particle distribution from the same event Aðp1; p2Þ
to the reference one. In experimental analysis the reference
distribution is typically constructed by mixing the particles
from different events of a given class.
In our simulations the weight of each particle pair is

calculated according to quantum statistics, using particle
four-momenta pi and four-coordinates xi of the emission
points: w¼1þcosðq ��xÞ, where q ¼ p1 � p2 and �x ¼
x1 � x2. Note that the weight w used here has equally
enhanced and reduced values. In this way quantities like
the average multiplicity are not systematically affected by
the weighting. The CF is here defined as a ratio of the
weighted histogram of the pair kinematic variables to
the unweighted one. This ‘‘ideal’’ case, CFidealðp1;p2Þ¼
Aðp1;p2;wÞ=Aðp1;p2Þ, uses unweighted pairs from the
same events as the reference.
In experiments one utilizes unweighted mixed pairs from

different events as the reference, namelyCFrealisticðp1;p2Þ¼
Aðp1;p2;wÞ=Bðp1;p2Þ. Among other effects there is a dif-
ference between the ideal pair distribution Aðp1; p2Þ and
the mixed one Bðp1; p2Þ due to the presence of energy-
momentum conservation for the pairs from the same event
and absence of it in pairs from the mixed ones. This causes a
smooth increase of CFrealistic with q, which reflects the fact
that due to energy-momentum conservation the probability
of two-particle emittence in the same direction is smaller
than that in opposite directions. Therefore, a more complex
fitting procedure is needed for the ‘‘realistic CF’’ than for
the ‘‘ideal CF.’’
Generally, the correlations are measured as a function of

pair relative momentum four vector q. An invariant form
of this momentum difference commonly used in the

one-dimensional correlation analysis is qinv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20�jqj2

q
.

In both the STAR [8] and the ALICE [9] experiments the
correlation function is fitted to a single-Gaussian

CF singleðqinvÞ ¼ ½1þ � expð�R2
invq

2
invÞ�DðqinvÞ; (3)
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FIG. 2. The dN=dri, ri ¼ x (a), y (b), z (c), t (d) distributions
of pions at freeze-out in pp collisions at

ffiffiffi
s

p ¼ 900 GeV with
� ¼ 1 (dotted line), �¼1:5 (dashed line) and � ¼ 3 (solid line).
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where the function DðqinvÞ takes into account any non-
femtoscopic correlations including the long-range correla-
tions due to energy-momentum conservation described
above. The parameters Rinv and � describe the size of
pion sources and the correlation strength, respectively.
Here Rinv is defined in the pair rest frame (PRF).
Concerning the fit given by Eq. (3) we have to note that
the best way to compare the model simulations with the
experimental data is the direct comparison of the correla-
tion functions. Unfortunately, the CFs are not always
available and one has to compare the results of the fit,
that is more complicated. For instance, choice of the
baseline DðqinvÞ is rather arbitrary. The baseline should
describe the CF behavior at large qinv where only the
conservation laws work, but the region of small qinv
remains terra incognita. Different experiments employ
different extrapolations of the baseline to small qinv, e.g.,
polynomial extrapolations, EMCIS-FIT [8], Monte Carlo
simulations with PYTHIA and PHOJET [9], that give some
specific behavior at small qinv due to strong jet contribution
in these models, especially noticeable at large kt. In order
to reproduce the experimental fitting procedures in a model
independent way and make a consistent comparison of our
simulations with different experiments we will use below a
flat baseline with DðqinvÞ ¼ 1 for STAR and ALICE data.

The correlation strength parameter � can differ from
unity due to the contribution of long-lived resonances,
particle misidentification and coherence effects. The 1D
correlation functions were studied within the different
ranges of the average pair transverse momentum kT ¼
j ~pt;1 þ ~pt;2j=2 in the midrapidity region.

If large statistics sets are available it is possible to perform
the 3D correlation analysis. Within realistic models, the
directional and velocity dependence of the correlation func-
tion can be used to get information about both the duration of
the emission and the form of the emission region, as well as
to reveal the details of the production dynamics [5–7]. For
these purposes the correlation functions can be analyzed in
terms of the out, side and logitudinal components of the
relative momentum vector q ¼ fqout; qside; qlongg [26,27].

Here qout and qside denote the transverse components of
the vector q, and the direction of qout is parallel to the
transverse component of the pair three-momentum. The
corresponding correlation widths are usually parametrized
in terms of the Gaussian correlation radii Ri

CFðp1;p2Þ¼1þ�expð�R2
outq

2
out�R2

sideq
2
side�R2

longq
2
longÞ:
(4)

The three-dimensional analysis is performed in the longitu-
dinal comoving system (LCMS), where the pair momentum
along the beam vanishes. It is possible to compare the
radii measured in LCMS with Rinv by making a boost of
all radii from LCMS to PRF, namely, Rout PRF ¼ �TRout,
Rside PRF ¼ Rside, RlongPRF¼Rlong and averaging these radii.

The method used by STAR and ALICE experiments is to
create a 3D correlation function by filling a three-
dimensional histogram with the full q ¼ fqout; qside; qlongg
vector in different ranges of the average pair transverse
momentum kT ¼ j ~pt;1 þ ~pt;2j=2.

IV. RESULTS AND DISCUSSION

The two-pion correlation functions CFðqinvÞ simulated
for pp collisions within the QGSM model with the scaling
parameters � ¼ 1, 2 and 3 are shown in different kT ranges
in Fig. 3 and 4 for

ffiffiffi
s

p ¼ 200 GeV and
ffiffiffi
s

p ¼ 900 GeV,
respectively. The denominator of the CF was calculated
by means of the mixing procedure described in Sec. III.
As expected, smaller formation times lead to smaller
freeze-out radii of the particle sources and, therefore, to
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larger CFs in the interval 0 � qinv � 0:5 GeV=c. In Fig. 4
the correlation functions obtained with the QGSM are
directly compared to those measured by the ALICE col-
laboration. The ALICE analysis performed for the mini-
mum bias event sample gives for the value of the average
pseudorapidity density hdNch=d�i ¼ 3:6, that coincides
with the results of the QGSM simulations. We compare
the QGSM low multiplicity sample with the ALICE data
at low multiplicity bin M � 6. The best description is
achieved for the scaling parameter equal to 3. In Fig. 4
one can see that the agreement between the shapes of
the correlation functions calculated within the QGSM and
measured by theALICE is rather good till kT < 0:7 GeV=c.
In the last kT bin 0:7 � kT � 1:0 GeV=c the experimental
correlation function is about 15% narrower than the QGSM
one. To understand this effect better the realistic correlation
functions without quantum statistics weights, i.e.‘‘base-
lines’’, were constructed in different kT bins as displayed
in Fig. 5. The energy-momentum conservation produces the
long-range correlation effects at large qinv, for which the
calculated values of the CFs lie above the unity. In Ref. [9]
a good description of the long-range correlations was
obtained within the PYTHIA and PHOJET models. In Fig. 5
the QGSM baseline DðqinvÞ demonstrates complicated
behavior qualitatively similar to that of the PYTHIA/PHOJET

baselines but a bit flatter in low qinv interval for large kT
bins.

Figure 6 presents the kT dependence ofRinv obtained from
the fit to Eq. (3) with the flat baseline of the QGSM CFs,
shown in Figs. 3 and 4. The available STAR andALICE data

points with flat baselines [8,9] are averaged over the multi-
plicity and compared with the multiplicity averaged QGSM
correlation functions. The best agreement with the STAR
data [8] was obtained for calculations with � ¼ 1:5.
It was reported in [9] that if PHOJET/PYTHIA baselines are

chosen the correlation radii are practically independent on
kT within the studied transversemomentum range, however,
the strength of the kT dependence relies heavily on the
baseline hypothesis. The ALICE conclusion about the ab-
sence of kT dependence is based on the assumption that both
PHOJET and PYTHIA correctly describe the nonfemtoscopic

effects at lowqinv possibly related tominijets. In this case the
enhancement at lowqinv in the large kT bins ismisinterpreted
as Bose-Einstein enhancement. We see, however, that by
assigningBose-Einsteinweights to all pion pairs we are able
to reproduce the enhancement at low-qinv shown in Fig. 4.
In such a case it will be improper to use the PHOJET/PYTHIA

or our own QGSM baseline to exclude the assumed non-
femtoscopy correlations at low qinv. The rather successful
description of the ALICE points within such an approach
suggests that there is no room for nonfemtoscopic correla-
tions at low qinv up to kT < 0:7 GeV=c.
The ALICE and STAR data points obtained with the flat

baseline reveal a similar slope in Fig. 6, which is described
rather well by the QGSM calculations with the scaling
factors � ¼ 1:5 and � ¼ 3, respectively. However, the
higher kT bins have larger deviations from the experimen-
tal points.
It is helpful to understand the origin of the strong kT

dependence of the correlation radii in the QGSM model.
The Lund hadronization schema described by Eqs. (1)
and (2) introduces automatically the space-momentum
correlations. The ‘‘p-x’’ correlations for the direct pions
displayed in Fig. 7 look similar to the space-momentum
correlations in hydrodynamic models, where they arise
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due to transverse collective flow. Note that only the
particles with nearby velocities in their center-of-mass
system contribute to the correlation function. If the
‘‘p-x’’ correlations are absent, the whole source is
‘‘seen’’ by the CF in any chosen kT range. Thus, there
should be no kT dependence of the correlation radii. In
the presence of the ‘‘p-x’’ correlations the particles with
close momenta come from nearby space regions of the
source. Therefore, one is measuring not the real geomet-
rical size of the source, but rather the size of the regions
which emit particles of a given momenta, the so-called
regions of homogeneity [28]. Higher kT pairs should have
narrower coordinate distributions due to larger ‘‘focusing
effect’’. It originates from the fact that particles with large
momenta fly away from each other much quicker than
particles with small momenta, so in order to be correlated
they have to be very close in the coordinate space. In
Fig. 8(a) and 8(b) the transverse coordinate distributions
are shown in the pair rest frame together with the corre-
sponding correlation functions CFideal for the direct pions
in three kT ranges, namely KT1 ¼ ð0:1–0:25Þ GeV=c;
KT3 ¼ ð0:4–0:55Þ GeV=c and KT5 ¼ ð0:7–1:0Þ GeV=c.
We see that the widths of the XPRF distributions decrease
with rising kT and the corresponding CFideal become
narrower. These widths are reproduced within error bars
by the fit of CFideal to the Gaussian given by Eq. (3) with
DðqinvÞ ¼ 1.

The important factor influencing the coordinate distri-
butions is the ratio of direct pions to pions from resonance
decay. Table I presents the fractions of pions from decay of
the resonances most essentially contributed to the correla-
tion functions. The path length l� ’ pd=m�� of these states
in the c.m. frame of two identical pions at small value of
qinv is listed in Table I also. Here pd is the momentum of
the decay pion in the resonance rest frame [29], m� is the
pion mass and � is the decay width. The pions from the
decays of rather long-lived resonances ! and K� cause
appearance of the exponential tails in the pion emission
function, which distorts the Gaussian-like shape of the CF,

see Fig. 8(c) and 8(d). Their relative contribution decreases
with increasing kT due to kinematical reasons, whereas the
relative contributions of direct pions and pions from �
decays increase as displayed in Fig. 9. This effect also
leads to decrease of the correlation radii with increasing
kT . The essentially non-Gaussian coordinate distributions
that include contributions from resonances cannot be fitted
well to a single Gaussian, however, the double-Gaussian fit
reproduces its shape properly, see Fig. 8(c). By fitting
the corresponding CFs to a single Gaussian one cannot
describe the narrow peak produced by pions from the
resonance decays at low qinv. On the other hand, using
the double-Gaussian fitting procedure similar to the one
suggested in [29]
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FIG. 7 (color online). The space-momentum correlations of
direct pions produced in QGSM calculated pp collisions atffiffiffi
s

p ¼ 900 GeV. Line is drawn to guide the eye.
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FIG. 8 (color online). (a) Coordinate distributions of the
direct pions in PRF in QGSM calculated pp collisions atffiffiffi
s

p ¼ 900 GeV with � ¼ 3. The three transverse momentum
intervals are KT1 ¼ ð0:1–0:25Þ GeV=c (dotted histogram),
KT3 ¼ ð0:4–0:55Þ GeV=c (dashed histogram) and KT5 ¼
ð0:7–1:0Þ GeV=c (solid histogram). The single-Gaussian fit for
the KT5 bin is shown by the solid line. (b) CFideal for KT1
(dotted histogram), KT2 (dashed histogram) and KT3 (solid
histogram). (c) The same as (a) but for all pions, the single
and the double-Gaussian fits are shown for KT5 bin by the solid
lines. (d) The same as (b) but for all pions, the double-Gaussian
fit is shown for KT5 bin by the solid line.

TABLE I. The fraction of pions from decay of main resonance
species in QGSM and the path length l� of these states.

l� (fm) 200 GeV 900 GeV

Direct �þ � � � 46.9% 37.5%

�þ from �0;þ ! ��;0�þ 3.3 37.1% 40.7%

�þ from ! ! �0���þ 28.1 11.2% 15.9%

�þ from K�;þð �K�;0Þ ! K�þ 8.0 4.2% 5.5%
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CF doubleðqinvÞ ¼ ½1þ �1 expð�R2
inv;1q

2
invÞ

þ �2 expð�R2
inv;2q

2
invÞ�DðqinvÞ; (5)

where parameters Rinvð1;2Þ and �ð1;2Þ describe the sizes and
the correlation strengths of the direct pion source and the
one of the pions from the resonance decays, respectively,
one gets a much better description of the CF shape at low
qinv, as shown in Fig. 8(d).

In order to understand to what extent one is able to
describe the correlation functions of all particles including
the resonances by the different fitting procedures we make
a comparison of the extracted values of Rinv with the

Gaussian widths of the coordinate distributions in the
pair rest frame. The comparison is presented in Fig. 8(c)
for the ideal correlation functions CFideal and in Fig. 10 for
the realistic CFs. The extracted parameters are listed in
Table II and III, respectively, for three kT ranges, namely,
KT1 ¼ ð0:1–0:25Þ GeV=c; KT3 ¼ ð0:4–0:55Þ GeV=c and
KT5 ¼ ð0:7–1:0Þ GeV=c. Because of the sharp peak of the
correlation functions at low qinv the two radii restored by
the double-Gaussian fit vary considerably. The first one is
of the order of 1 fm and has a tendency to decrease with
rising kT , whereas the second one is always larger than
3 fm and increases to 13–14 fm at high transverse mo-
menta. The second Gaussian is quite narrow thus leading to
a hair-width difference between the single-Gaussian and
double-Gaussian curves at qinv > 0:1 GeV=c.
The ideal 3D correlation functions for

ffiffiffi
s

p ¼ 200 GeV
and

ffiffiffi
s

p ¼ 900 GeV, constructed for the minimum bias
events and low multiplicity bin, are displayed in Fig. 11
and 12, respectively. The calculations were done with � ¼
1:5 and � ¼ 3:0, and the full 3D fit to the 3D Gaussian
given by Eq. (4) was performed. The extracted Ri as
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TABLE II. Gaussian widths �Xall
PRF of the coordinate distribu-

tions in PRF shown in Fig. 8(c) for single and double-Gaussian
fit in three transverse momentum intervals 0:1 � kT �
0:25 GeV=c (KT1), 0:4 � kT � 0:55 GeV=c (KT3) and 0:7 �
kT � 1:0 GeV=c (KT5), respectively.

Method

�Xall
PRF (fm)

KT1 KT3 KT5

single-Gaussian 3.37 2.45 2.96

double-Gaussian 1.48 1.08 1.00

5.35 4.72 4.23

TABLE III. Parameters Rinv extracted from Fig. 8(c) and 10 by
using different fitting strategies: 1—ideal CF is fitted to the
single-Gaussian Eq. (3) with DðqinvÞ ¼ 1; 2—‘‘realistic’’ CF is
fitted to the single-Gaussian Eq. (3) with DðqinvÞ ¼ 1; 3—
realistic CF is fitted to the single-Gaussian Eq. (3) with
DðqinvÞ ¼ aþ bqinv þ cq2inv; 4—realistic CF is fitted to the

double-Gaussian Eq. (5) with DðqinvÞ ¼ 1; 5—realistic CF is
fitted to the double-Gaussian Eq. (5) withDðqinvÞ ¼ aþ bqinv þ
cq2inv. The selected transverse momentum intervals are the same

as in Table II.

Method

Rinv1ð2Þ (fm)

KT1 KT3 KT5

1 1.00 0.77 0.66

2 1.26 0.84 0.71

3 1.10 0.84 0.71

4 1.23 0.81 0.71

5.04 3.26 13.97

5 1.05 0.81 0.71

3.61 3.25 13.83
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functions of average kT are presented in Fig. 13 and 14.
One can see that the experimental points are rather close to
the QGSM ones especially for ALICE experimental data,
see Fig. 14, where the low multiplicity bin is considered.
Note that no integration over multiplicity was done in both
cases. At 200 GeVall radii demonstrate the weak decrease
with kT , whereas at 900 GeV the radii Rout and Rside are
rather flat, the first point in Rout is lower than the other
ones, and only Rlong demonstrates the decrease with rising

kT as was observed by the ALICE collaboration at low
multiplicity.

V. CONCLUSIONS

The following conclusions can be drawn from our study.
QGSM calculations show strong dependence of the correla-
tion radius on the transverse momentum of a pion pair.
Similar dependence has been observed by the STAR
Collaboration, while the ALICE Collaboration reported al-
most constant Rinv with increasing kT . However, if the flat
baseline is employed instead of the one simulated by PYTHIA

and PHOJET, the ALICE data demonstrate the noticeable kT
dependence as well. The origin of such a dependence in the
QGSM is traced to the space-momentum correlations attrib-
uted to microscopic string models. If these correlations

1

1.5
out QGSM

Gaussian fit__

1

1.5

C
F

0 0.5 1

1

1.5

 (GeV/c)
out

q
0.5 1

1

1.5

side

 (GeV/c)
side

q
0.5 1

long
=(0.1,0.25)Tk

=(0.25,0.35)Tk

=(0.35,0.45)Tk

 (GeV/c)
long

q
0.5 1

=(0.45,0.6)Tk

FIG. 11. Projections of the 3D Cartesian representations of the
correlation functions onto the qout, qside, and qlong axes, for the

minimum bias events from pp collisions at 200 GeV for four kT
ranges. To project onto one q component, the others are inte-
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would be absent, the correlation radius Rinv would be inde-
pendent on the pair transverse momentum.

Pions in the model are produced either directly in the
processes of string fragmentation or from the decays of
resonances. The relative contribution of the long-lived
resonances to pion emission function decreases with rising
kT , while the corresponding contributions of direct pro-
cesses and short-lived resonances increase. Therefore, the
correlation radii of pions also decrease with an increase in
the pair transverse momentum. The fit of the 1D correla-
tion functions to the double Gaussian provides a good
description of the shape of the CFs at low qinv range and
enables us to separate the contributions from the direct
pions and pions from the resonances.

It was expected that the size of the freeze-out region inpp
collisions should increase with rising c.m. energy fromffiffiffi
s

p ¼ 200 GeV to
ffiffiffi
s

p ¼ 900 GeV due to the increase of
interaction cross section and the number of produced reso-
nances. Surprisingly, the radii measured by femtoscopy atffiffiffi
s

p ¼ 200 GeV are the same or even smaller than the ones atffiffiffi
s

p ¼ 900 GeV, as seen in Fig. 6. The radii obtained within
the standard Lund scenario of string breaking and the con-
stituent formation time, implemented in the QGSM, appear
to be larger compared to the experimental data. Our analysis
favors reduction of the formation time with increasing en-
ergy of hadronic collision. One of the possible solutions is
the process of string-string interaction via, e.g., fusion of
strings that leads to an increase of the string tension.
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APPENDIX: SPACE-TIME COORDINATES OF
PRODUCED HADRONS

Following Refs. [24,25] let us consider 1þ 1 fragmen-
tation model of q �q string of mass Ms with massless
constituents at the ends, as displayed in Fig. 15. The
Hamiltonian of such a system is

H ¼ jp1j þ jp2j þ �jz1 � z2j; (A1)

where jp1j and jp2j are the momenta of the quark and
antiquark, z1 and z2 are their coordinates, and � is the string
tension. The equation of motion for the constituents reads

dp

dt
¼ ��; (A2)

with the sign depending on the direction of motion of
the constituent. At a certain time ti the string breaks via
formation of qi �qi pair. The final hadrons are produced
as a result of �qi�1qi coalescence. Their energy and momen-
tum are

Ei ¼ �ðzi�1 � ziÞ; (A3)

pi ¼ �ðti�1 � tiÞ; (A4)

respectively. In terms of the light cone variables p� ¼
E� p, z� ¼ t� z one gets for the ith hadron within the
‘‘constituent’’ picture of hadron formation

pþ
i ¼ �ðzþi�1 � zþi Þ; (A5)

p�
i ¼ �ðz�i � z�i�1Þ: (A6)

Therefore,

zþi ¼ �pþ
i

�
þ zþi�1; (A7)

z�i ¼ p�
i

�
þ z�i�1: (A8)

Applying the recurrence procedure to Eqs. (A7) and (A8)we
arrive to

zþi ¼ � 1

�

Xi
j¼1

pþ
j þ zþ0 ; (A9)

z�i ¼ 1

�

Xi
j¼1

p�
j þ z�0 : (A10)

Taking into account that zþ0 ¼ ðE0 þ p0Þ=� ¼ Ms=�,
whereas z�0 ¼ 0 we finally get expressions for the ðti; ziÞ
coordinates of produced hadrons

zi¼ 1

2�

�
Ms�

Xi
j¼1

ðpþ
j þp�

j Þ
�
¼ 1

2�

�
Ms�2

Xi
j¼1

Ej

�
;

(A11)
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¼ 1
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FIG. 15. Space-time evolution of the 1þ 1 dimensional Lund
string. See text for details.
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